
 Open access Journal Article DOI:10.1109/MDAT.2016.2626445

Exploring Exploration: A Tutorial Introduction to Embedded Systems Design Space
Exploration — Source link

Andy D. Pimentel

Institutions: University of Amsterdam

Published on: 01 Feb 2017 - IEEE Design & Test of Computers (IEEE)

Topics: Design space exploration, MULTICUBE and Space exploration

Related papers:

 Methods for evaluating and covering the design space during early design development

 Hardware architecture exploration: automatic exploration of distributed automotive hardware architectures

 Model-Driven Design-Space Exploration for Software-Intensive Embedded Systems

 Software Design and Development Principles for Large- Scale Mission-Critical Embedded Systems

Development and Management of Large-Scale Mission-Critical Embedded Software Systems for Robotic
Spacecraft

Share this paper:

View more about this paper here: https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-
3gskk1506d

https://typeset.io/
https://www.doi.org/10.1109/MDAT.2016.2626445
https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d
https://typeset.io/authors/andy-d-pimentel-175lswe5sh
https://typeset.io/institutions/university-of-amsterdam-2zr0utpp
https://typeset.io/journals/ieee-design-test-of-computers-1zp7hs5t
https://typeset.io/topics/design-space-exploration-1b67j1ty
https://typeset.io/topics/multicube-30c9jm32
https://typeset.io/topics/space-exploration-3leryt75
https://typeset.io/papers/methods-for-evaluating-and-covering-the-design-space-during-ldylezuqgw
https://typeset.io/papers/hardware-architecture-exploration-automatic-exploration-of-3i209rl4xh
https://typeset.io/papers/model-driven-design-space-exploration-for-software-intensive-4ehmude80q
https://typeset.io/papers/software-design-and-development-principles-for-large-scale-ax91jagl54
https://typeset.io/papers/development-and-management-of-large-scale-mission-critical-4s3ajlurpc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d
https://twitter.com/intent/tweet?text=Exploring%20Exploration:%20A%20Tutorial%20Introduction%20to%20Embedded%20Systems%20Design%20Space%20Exploration&url=https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d
https://typeset.io/papers/exploring-exploration-a-tutorial-introduction-to-embedded-3gskk1506d

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Exploring Exploration: A Tutorial Introduction to Embedded Systems Design
Space Exploration

Pimentel, A.D.
DOI
10.1109/MDAT.2016.2626445
Publication date
2017
Document Version
Final published version
Published in
IEEE Design & Test
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Pimentel, A. D. (2017). Exploring Exploration: A Tutorial Introduction to Embedded Systems
Design Space Exploration. IEEE Design & Test, 34(1), 77-90.
https://doi.org/10.1109/MDAT.2016.2626445

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:30 May 2022

https://doi.org/10.1109/MDAT.2016.2626445
https://dare.uva.nl/personal/pure/en/publications/exploring-exploration-a-tutorial-introduction-to-embedded-systems-design-space-exploration(d91527ff-6f4c-4484-8437-7c9e38648a0b).html
https://doi.org/10.1109/MDAT.2016.2626445

772168-2356/16 © 2016 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJanuary/February 2017

Exploring Exploration:
A Tutorial Introduction
to Embedded Systems
Design Space
Exploration

Digital Object Identifier 10.1109/MDAT.2016.2626445

Date of publication: 8 November 2016; date of current version:

10 January 2017.

Andy D. Pimentel

University of Amsterdam

 DESIGNERS OF MODERN embedded systems face

several daunting challenges since these systems typ-

ically have to meet a range of stringent, and often

conflicting, design requirements. As many embedded

systems target mass production and battery-based

devices or devices that cannot use active cooling,

they should be cheap and power efficient. At the

same time, a great deal of these systems must, increas-

ingly, support multiple applications and standards for

which they need to provide real-time performance.

For example, mobile devices must support different

standards for communication and coding of digital

contents. Furthermore, modern embedded systems

also need to be reliable as well as flexible such that

they can easily be updated and extended with future

applications and stand-

ards. The latter calls for a

high degree of program-

mability of these systems,

whereas performance,

power consumption, and

cost constraints require

implementing substan-

tial parts of these systems

in dedicated hardware

blocks. As a result, modern embedded systems often

have a heterogeneous multiprocessor system archi-

tecture. They consist of processors that range from

fully programmable cores to fully dedicated hardware

blocks for time-critical application tasks. Increasingly,

the components in such systems are integrated onto

a single chip, yielding heterogeneous multiprocessor

system-on-chip (MPSoC) architectures [1].

To cope with the design complexity of such sys-

tems, we have witnessed the emergence of a new

design methodology in the past 15–20 years, called

electronic system-level (ESL) design. It aims at rais-

ing the level of abstraction of the design process to

improve the design productivity. Key enablers to this

end are the use of architectural MPSoC platforms to

facilitate reuse of IP components and the concept of

high-level system modeling and simulation [2], [3].

The latter allows for capturing the behavior of plat-

form components and their interactions at a high

Editor’s note:

As embedded systems grow more complex and as new applications such

as IoT require many design constraints, sophisticated design space explo-

ration techniques are essential in order to find the best compromise between

different design goals and their tradeoff. This tutorial gives a structured

 insight into the field of design space exploration for embedded systems.

—Jörg Henkel, Karlsruhe Institute of Technology

78 IEEE Design&Test

Tutorial

level of abstraction. As such, these high-level mod-

els minimize the modeling effort and are optimized

for execution speed, and can therefore be applied

during the very early design stages to perform design

space exploration (DSE) [4]. During such DSE, a

large variety of different design alternatives can be

explored, such as the number and type of proces-

sors deployed in the platform architecture, the type

of interconnection network used to connect system

components, or the spatial binding and temporal

binding (i.e., scheduling) of application tasks to

processor cores. This process of early DSE is of para-

mount importance as the considered design choices

may heavily influence the success or failure of the

final product. However, the process of DSE also is

highly challenging because the design space that

needs to be explored typically is vast, especially

during the early stages of design. For instance, the

design space for exploring different mappings of

application tasks to processing resources and trying

to optimize the mapping for, e.g., performance or

power consumption exponentially grows with the

number of application tasks and processors, and is

generally considered to be an NP-hard problem [5].

Therefore, the development of efficient and effective

DSE methods has received significant research atten-

tion in recent years. In this article, we will provide a

tutorial introduction to the topic of embedded sys-

tems DSE.

DSE: Basic concepts
During the DSE of embedded systems, multi-

ple optimization objectives, such as performance,

power/energy consumption, and cost, should be

considered simultaneously. This is called multiob-

jective DSE. Since the objectives are often in con-

flict, there cannot be a single optimal solution that

simultaneously optimizes all objectives. Therefore,

optimal decisions need to be taken in the presence

of tradeoffs between design criteria.

Given a set of m decision variables, which are the

degrees of freedom (e.g., MPSoC system parameters

like the number and type of processors, applica-

tion mapping, etc.) that are explored during DSE, a

so-called fitness function must optimize the n objec-

tive values. The fitness function is defined as

 f i : R m → R 1 . (1)

A potential solution x ∈ R m is an assignment of the m

decision variables. The fitness function f i translates

a point in the solution space X into the i th objective

value (where 1 ≤ i ≤ n). For example, a particular

fitness function f i could assess the performance or

energy efficiency of a certain solution x (represent-

ing a specific design instance). The combined fit-

ness function f(x) subsequently translates a point in

the solution space into the objective space Y . For-

mally, a multiobjective optimization problem (MOP)

that tries to identify a solution x for the m decision

variables that minimizes the n objective values using

objective functions f i with 1 ≤ i ≤ n

 Minimize y = f(x) = (f 1 (x) , f 2 (x) , …, f n (x))

where x = (x 1 , x 2 , …, x m) ∈ X

y = (y 1 , y 2 , …, y n) ∈ Y.

In the remainder of this discussion, we assume a

minimization procedure, but without loss of general-

ity, this minimization procedure can be converted

into a maximization problem by multiplying the

 fitness values y i with −1.

With an optimization of a single objective, the

comparison of solutions is trivial. A better fitness

(i.e., objective value) means a better solution.

With multiple objectives, however, the comparison

becomes nontrivial. Take, for example, two different

MPSoC designs: a high-performance MPSoC and a

slower but much cheaper MPSoC. In case there is

no preference defined with respect to the objectives

and there are also no restrictions for the objectives,

one cannot say if the high-performance MPSoC or

the low-cost MPSoC is better. A MOP can have even

more different objectives, like the performance,

energy consumption, cost, and reliability of an

MPSoC-based embedded system. To compare differ-

ent solutions in the case of multiple objectives, the

Pareto dominance relation is typically used. Here, a

solution x 1 ∈ X is said to dominate solution x 2 ∈ X if

and only if x 1 < x 2

 x 1 < x 2 ⇔ ∀ i ∈ { 1, 2, …, n} : f i (x 1) ≤ f i (x 2) ∧

 ∃ i ∈ { 1, 2, …, n} : f i (x 1) < f i (x 2).

Hence, a solution x 1 dominates x 2 if its objec-

tive values are superior to the objective values of x 2 .

For all of the objectives, x 1 must not have a worse

objective value than solution x 2 . Additionally, there

must be at least one objective in which solution x 1 is

 better (otherwise they are equal).

An example of the dominance relation is given

in Figure 1, which illustrates a 2-D MOP. For solution

H , the dominance relations are shown. Solution H is

79January/February 2017

dominated by solutions B , C , and D as all of them

have a lower value for both f 1 and f 2 . On the other

hand, solution H is superior to solutions M , N , and O .

Finally, some of the solutions are not comparable

to H . These solutions are better for one objective but

worse for the other.

The Pareto dominance relation only provides a

partial ordering. For example, the solutions A to F of

the example in Figure 1 cannot be ordered using the

ordering relation. Since not all solutions x ∈ X can

be ordered, the result of a MOP is not a single solu-

tion, but a front of nondominated solutions, called

the Pareto front. A set X ′ is defined to be a Pareto

front of the set of solutions X as follows:

 {x ∈ X ′ |

∃

⧸

 x i ∈ X:x i < x}

The Pareto front of Figure 1 contains six solutions:

A − F . Each of these solutions does not dominate the

other. An improvement on objective f 1 is matched

by the worse value for f 2 . Generally, it is up to the

designer to decide which of the solutions provides

the best tradeoff.

The search for Pareto optimal design points

with respect to multiple design criteria entails two

distinct elements [4]: 1) the evaluation of a single

design point using the fitness function(s) regarding

all the objectives in question like system perfor-

mance, power/energy consumption, and so on; and

2) the search strategy for covering the design space

during the DSE process. Figure 2 shows a simple

taxonomy for DSE approaches, recognizing the two

DSE elements as well as different properties of these

DSE elements. As will be discussed in more detail

later on, there usually exists a tradeoff between the

accuracy and speed with which the fitness of single

design points can be evaluated. In addition to this,

the various fitness evaluation techniques also differ

with respect to the implementation effort and the

capability of evaluating the fitness for a wide range

of systems, involving issues such as modularity, reus-

ability of models etc.

Regarding the search strategy element of DSE, the

confidence characteristic denotes how certain we are

that the design points returned by the DSE include

the true optimum, or alternatively, how close they

are to the true optimum. In many search algorithms,

confidence is obtained by avoiding local optima and

ensuring sufficient design space coverage. Clearly,

an exhaustive search in which every single point in

the design space is evaluated and compared would

provide a 100% confidence. However, such exhaus-

tive search is usually prohibitive due to the sheer size

of the design space. In those cases, heuristic search

techniques can be used to search the design space

for optimal solutions using only a finite number of

design point evaluations. The convergence property

denotes the speed of evaluating a range of design

points, and, more specifically, the rate at which the

DSE search algorithm manages to converge to an opti-

mum. Finally, analogous with the effort property in

the case of evaluating a single design point, the effort

for searching the design space refers to the implemen-

tation of the search method and setting its parame-

ters, as well as setting up, running, and evaluating

the results of the exploration experiment. In the two

subsequent sections, we will provide a more detailed

overview of the different techniques, and their proper-

ties, applied in each of the two elements of DSE.

Evaluation of a single design point
Methods for evaluating the fitness of a single

design point in the design space roughly fall into

one of three categories: 1) measurements on a

(prototype) implementation; 2) simulation-based

Figure 1. A Pareto front and an example of

the dominance relation.

Figure 2. A taxonomy for DSE approaches

(taken from [6]).

80 IEEE Design&Test

Tutorial

evaluations; and 3) estimations based on some kind

of analytical model. Each of these methods has dif-

ferent properties with regard to evaluation time and

accuracy. Evaluation of prototype implementations

provides the highest accuracy, but long develop-

ment times prohibit evaluation of many design

options. Analytical estimations are considered the

fastest, but accuracy is limited since they are typi-

cally unable to sufficiently capture particular intri-

cate system behavior. Simulation-based evaluation

fills up the range in between these two extremes:

both highly accurate (but slower) and fast (but less

accurate) simulation techniques are available. This

tradeoff between accuracy and speed is very impor-

tant, since successful DSE depends both on the abil-

ity to evaluate a single design point as well as being

able to efficiently search the entire design space.

As current DSE efforts in the domain of embedded

systems design typically use simulation or analytical

models to evaluate single design points, the remain-

der of this section will focus on these methods.

Simulative fitness evaluation

Simulating system components can, as was

already mentioned above, be performed at differ-

ent levels of abstraction. The higher the abstraction

level, the less intricately the system components are

modeled and, therefore, the higher the simulation

speed is. Evidently, such efficiency improvements

come at the cost of a less accurate fitness estimation

because of the fact that particular system details are

not taken into account. This simulation speed-accu-

racy tradeoff is shown in Figure 3. This figure depicts

several widely used simulation abstraction levels,

and it does so for both the simulation of processor

components as well as the simulation of communi-

cation between system components.

For both the simulation of processor and commu-

nication components, the lowest level of abstraction

for simulating a digital system is the register-transfer

level (RTL). At this level of abstraction, the flow of

digital signals between registers and combinational

logic is explicitly simulated. This yields a highly

accurate but also very slow simulation. As a result,

the use of RTL simulation in the process of DSE is

confined to only relatively small and narrow design

spaces focusing on, for example, the design of one

specific system component. Performing system-level

DSE is infeasible using RTL simulation.

Raising the level of abstraction, one can simulate

system components at the cycle accurate level. This

means that the system components are simulated

on a cycle-by-cycle basis and, as such, that the sim-

ulated system state conforms to the cycle-by-cycle

behavior of the target design. This results in more

efficient simulations as compared to RTL simulation

at the cost of a somewhat reduced accuracy since

the system state between cycles is not accounted for.

Cycle-accurate simulation is a popular technique for

simulating microprocessors: so-called cycle-accu-

rate instruction set simulation (ISS). These ISS sim-

ulators try to capture the cycle-by-cycle behavior of

the microarchitectural components of a micropro-

cessor, such as the pipeline logic, out-of-order pro-

cessing, branch predictors, caches, and so on. To

account for power consumption behavior, ISS sim-

ulators often use activity-based power models that

accumulate the power consumption of the relevant

microarchitecture components based on their activ-

ity ratio. A good example is the widely used cycle-ac-

curate Gem5 ISS [7], which can be extended to also

support area and power predictions using activi-

ty-based modeling frameworks such CACTI [8] and

McPAT [9]. Although these ISS simulators can be

deployed to perform microarchitectural DSE for pro-

cessor components, they are typically still too slow

for performing full system-scale DSE.

In cycle-accurate ISS simulators, the fetching,

decoding, and execution of instructions are explic-

itly simulated. To further optimize the speed of such

simulators, one could translate the instructions from

the target binary to be simulated to an equivalent

sequence of instructions (using static or dynamic

Figure 3. Different levels of abstraction for

(a) simulating processors and (b) simulating

 communication.

81January/February 2017

just-in-time translation) that can be executed on

the simulation host computer. This so-called binary

translation technique, which is, e.g., deployed in the

widely used QEMU simulator [10], aims at reducing

the overhead of explicitly simulating the instruction

fetch and decode stages. The translated instruction

sequences are often instrumented with additional

code to keep track of the extra-functional behavior,

such as timing and power consumption, of the origi-

nal code as it would have been executed on the tar-

get processor.

For simulating communication between system

components, one could use so-called bus-cycle

accurate simulation [11] to speed up the simula-

tion process. In this type of simulation, all signals of

the communication bus are modeled explicitly in

a cycle accurate fashion, but this accuracy is only

maintained for the signals on the communication

bus and not for the logic around it. The surround-

ing components can thus use more abstract timing

models.

Raising the abstraction level even further for

processor simulation yields so-called host-compiled

simulation [12]. In this technique, the source code of

the target program is directly compiled into a binary

program that can run on the host computer. In addi-

tion, and similar to the binary translation technique,

the source code can be instrumented with a timing

and power consumption model based on the target

architecture. Since these simulations are efficient as

they directly execute target programs on the host

computer, they are very suitable for system-level

DSE. However, at this level of abstraction, it is dif-

ficult to accurately capture intricate microarchitec-

tural behavior, like pipeline and cacheing behavior.

Another drawback of this simulation approach is

that one needs to have access to the source code of

a target program.

For simulating communication, transaction-level

modeling (TLM) [11] provides the highest level of

abstraction. In TLM, communication details at the

level of signals and protocols are abstracted away

by means of encapsulation into entire transactions

between system components. At this level, the

emphasis is more on the functionality of the data

transfers, i.e., what data are transferred to and from

what locations, rather than on their actual imple-

mentation. Evidently, the extra-functional behavior

in TLM simulation models is also captured at the

level of entire transactions.

The above processor simulation techniques are

all execution-driven simulation methods as they

are directly driven by the execution of a program.

Alternatively, there are also trace-driven simulation

techniques in which the simulation is driven by

event traces that have been collected through the

execution of a program (e.g., [13] and [14]). These

trace events can focus on the evaluation of specific

system elements such as memory address traces for

cache simulation. However, an event trace may also

consist of the full sequence of executed instructions,

thereby allowing full, trace-driven microprocessor

simulation for the purpose of performance and/or

power estimation. To optimize for simulation speed,

the trace events may also represent computations

(and, if needed, communication) at a higher level

of abstraction than the level of machine instructions,

like at the level of the execution of basic blocks or

even entire functions. Another advantage of trace-

driven simulation is the fact that the event traces

often only need to be generated once (i.e., executing

the program to collect the traces once), after which

they can be reused in the DSE process. Drawbacks

of trace-driven simulation evidently are the need

for storing the event traces which can become

extremely large in size, and the fact that trace-driven

simulation does not allow for simulating all intricate

system behavior, such as the effects of speculative

instruction execution in microprocessors.

An example of a high-level, trace-driven MPSoC

simulation environment is the Sesame system-level

modeling and simulation framework [15]. Sesame

is based on the Y-chart methodology [16], and

accordingly it recognizes separate application and

architecture models. The application models are

explicitly mapped onto the architecture models by

means of trace-driven simulation. The workload

of an application is captured by instrumenting the

application model, which is a parallel specification

of the application, with annotations that describe

the application’s computational and communica-

tion actions at a coarse-grained level (typically at the

level of the execution of entire functions). By exe-

cuting this instrumented application model, these

annotations cause the generation of traces of appli-

cation events that subsequently drive the underlying

architecture model. This architecture model, cap-

turing the system resources and their constraints,

then simulates the consequences of the consumed

computation and communication events in terms

82 IEEE Design&Test

Tutorial

of extra-functional system behavior (performance,

power consumption, etc.). Figure 4 depicts Sesame’s

layered organization, illustrating the mapping of

two multimedia applications (an MP3 encoder and

video decoder) onto a bus-based MPSoC platform.

A special mapping layer in Sesame provides the

scheduling of application events in the case multi-

ple application processes are mapped onto a single

processing resource.

Orthogonal to most of the (processor) simula-

tion methods described above, there are additional

techniques to further improve the simulation speed

[17]. In sampled simulation, for example, the sim-

ulation does not cover the execution of an entire

program but only simulates relatively small samples

of the program’s execution. Here, the challenge is

to select the samples in such a manner that they

sufficiently represent the behavior as if the entire

program was simulated. Another technique for

speeding up simulation is statistical simulation.

Rather than using real (benchmark) programs for

simulation, it uses a statistical program profile. This

profile captures the distributions of important pro-

gram characteristics, and is used for generating a

synthetic instruction trace that drives a simple trace-

driven simulator. As the synthetic trace is randomly

generated from a statistical profile, this type of simu-

lations can converge to a set of performance predic-

tions fairly quickly.

Analytical fitness evaluation

In comparison to simulation, analytical mod-

els allow for much more efficient prediction of the

extra-functional system behavior at the expense of

a reduced accuracy. This makes analytical models

very suitable for exploring large design spaces to

rapidly identify regions of interest that can be later

explored in more detail using simulation. Another

advantage of analytical models is that they can pro-

vide direct insight into the relationship between

model parameters (representing design choices)

and the predicted extra-functional behavior. For sim-

ulative methods, such understanding would require

a large number of simulations.

Analytical models can roughly be divided into

three classes [17]: 1) mechanistic (or whitebox)

models; 2) empirical (or blackbox) models; and

3) a hybrid combination of mechanistic and empir-

ical modeling. Mechanistic models are based on

first principles, which implies that they are built in

a bottom-up fashion starting from a basic under-

standing of the mechanics of the modeled system.

For example, in a mechanistic microprocessor per-

formance model, penalties due to cache misses,

branch mispredictions, the execution of instruc-

tions with different latencies, etc., are explicitly

captured in the model.

In empirical models, statistical inference and

machine learning techniques, like regression models

or neural networks, are used to automatically synthe-

size a model through the process of learning from train-

ing data. For example, using a set of microarchitectural

parameters such as pipeline depth, issue width, caches

sizes, etc., one could train a model that predicts the

Instructions Per Cycle (IPC) or Cycles Per Instruction

(CPI) of a microprocessor. Inferring a model by means

of automatic training typically is easier than develop-

ing a mechanistic model because it does not require

intimate understanding of the mechanics of the mod-

eled system. Evidently, the latter is also an immediate

drawback as empirical models also tend to provide

less insight than mechanistic models.

In hybrid mechanistic-empirical modeling,

which is sometimes referred to as greybox mode-

ling, extra-functional system aspects are captured

using a formula that has been derived from insights

in the underlying system. However, this formula

includes a number of unknown parameters, which

are then inferred through fitting (e.g., using regres-

sion), similarly to empirical modeling. Such hybrid

Figure 4. The Sesame system-level MPSoC

simulation infrastructure.

83January/February 2017

mechanistic-empirical modeling is motivated by the

fact that it provides insight (like mechanistic mod-

eling) while easing the construction of the model

(like empirical modeling).

Searching the design space
As explained before, searching a design space is

a multiobjective optimization process. This process

will evidently benefit from a good tradeoff between

speed, accuracy, and effort of the method for evalu-

ating the fitness of a single design point, as discussed

in the previous section. But, even if this tradeoff is

ideal, we still have to make sure that each evaluation

of a design point contributes as much as possible to

an effective and efficient search of the design space.

A crucial component toward this goal is the search

algorithm that navigates the design space toward

areas of interest by proposing which design points

to evaluate next. Regardless of the specific type of

search method that is used for such a design space

traversal, its success depends on three major con-

cerns, as was shown in Figure 2: confidence, conver-

gence, and effort. These concerns typically cannot

be considered in isolation, as they are highly interde-

pendent, contradictory, and sometimes overlapping.

The state of the art in DSE can be summarized as

finding a good tradeoff between these concerns.

DSE search algorithms can be divided into exact

and heuristic methods. In exact DSE methods, like

those implemented using integer linear program-

ming (ILP) solutions (e.g., [18] and [19]) or branch

& bound algorithms (e.g., [20]), the optimum is guar-

anteed to be found. As such methods generally are

compute intensive, they typically use design space

pruning (i.e., discarding unsuitable design points)

to optimize the efficiency of the search, thereby

allowing to handle larger design spaces. However,

for realistic design problems with design spaces

that are vast, these methods may still be less suited.

Alternatively, in heuristic methods, metaheuristics

are used to find a design point in the known design

space that meets the design requirements as best

as possible. To this end, these methods search the

design space for optimal solutions using only a finite

number of design point evaluations, and can thus

handle larger design spaces. However, there is no

guarantee that the global optimum will be found

using metaheuristics, and therefore the result can be

a local optimum within the design space. Examples

of metaheuristics are hill climbing, tabu search,

simulated annealing, ant colony optimization, parti-

cle swarm optimization, and genetic algorithms. In

this tutorial, we will focus on methods to navigate

the design space that are based on genetic algo-

rithms (GA). GA-based DSE has been widely stud-

ied in the domain of system-level embedded design

(e.g., [21] and [22]) and has been demonstrated to

yield good results. Moreover, GAs can be used in

their basic (domain-independent) form or, as will

also be explained later on, with custom extensions

that incorporate domain-dependent knowledge in

order to improve search performance even further.

GA-based DSE

GAs operate by searching through the solution

space (spanned by the design variables/decisions

being explored) where each possible solution

is encoded as a string-like representation, often

referred to as the chromosome [23]. A (randomly

initialized) population of these chromosomes is then

iteratively modified by performing a fixed sequence

of actions that are inspired by their counterparts

from biology: fitness evaluation and selection, cross-

over, and mutation. A fundamental design choice

of a GA is the genetic representation of the solution

space, because each of the crossover and mutation

steps depends on it. To illustrate how such a genetic

representation could look like, let us use a widely

studied DSE problem in the domain of system-level

embedded system design as an example: optimizing

the mapping of a (set of) concurrent application(s)

onto an underlying (heterogeneous) MPSoC plat-

form architecture [5]. As a convenient mapping

description for an application with n tasks, we use a

vector of size n with processor identifiers p i , where p i

indicates the mapping target of task i

 [p 0 , …, p i , …, p n−1].

This commonly used description is very suitable to

serve as the chromosome representation for a GA. A

valid mapping specification is a feasible partition-

ing of all n tasks. With feasible, we mean that tasks

are mapped onto processing elements that can exe-

cute those tasks (i.e., there are no functional restric-

tions of the processing element in question, like an

ASIC component that only allows the execution

of one particular piece of functionality), and that

communicating tasks are mapped onto processing

elements that can actually communicate with each

other (i.e., there are no topological communication

84 IEEE Design&Test

Tutorial

 restrictions). In case an infeasible mapping is cre-

ated by the genetic operators of a GA (crossover

and mutation), a mechanism is required that either

discards or repairs such a chromosome. Repairing

a chromosome implies that it is transformed into

a valid chromosome (mapping) that is as close

as possible to the original, invalid one. Moreover,

note that task partitions specifying a mapping may

also be empty [particular processor(s) not in use]

or contain all n tasks (a single processor system).

A processor that is not assigned any tasks (having

an empty task partition) can be considered idle or

nonexistent.

In Figure 5a, the different steps of a GA are

shown. This figure also illustrates the mapping rep-

resentation of a chromosome for an application

with six tasks and a 4-processor bus-based MPSoC

platform. Starting from a (randomly initialized) pop-

ulation of chromosomes, representing the different

mapping design instances, the fitness of the mapping

solutions in the population is first evaluated. To this

end, any of the previously discussed analytical or

simulative techniques can be used. Subsequently,

based on the fitness evaluation, a selection of

chromosomes is made that will be used to create

offspring. This offspring is created by combining

genetic material from two parents using a crossover

operation, as illustrated in the top part of in Figure 5b.

There exist various forms of this crossover opera-

tor, of which the uniform, onepoint, and two-point

crossovers are the most popular. Next, new genetic

material is introduced in the offspring by means of

a mutation operator as illustrated at the bottom of

Figure 5b. Such a mutation randomly changes one

or more genes within chromosomes. Finally, the

newly created offspring is used to update the popu-

lation by either replacing it or by deploying so-called

elitism. Such elitism involves the combination of the

new offspring with a small number of the best solu-

tions from the original population to avoid loosing

strong solutions.

To provide a small example of the results a

GA-based DSE could obtain, we present some

results of a small-scale case study where the design

space consists of an application with 11 tasks that is

to be mapped onto a 4-processor MPSoC architec-

ture with a crossbar interconnect [6]. The mapping

design space contains more than four million design

points, of which 175 000 are unique ones (as the tar-

get platform is a homogeneous, symmetric MPSoC).

Because of the relatively small design space, in this

particular case, we were also able to perform an

Figure 5. GA-based mapping DSE: (a) general overview of the GA steps; and

(b) crossover and mutation operators.

85January/February 2017

exhaustive search, allowing us to evaluate the qual-

ity of the GA-based search results. To account for

the stochastic behavior of GAs, all results are aver-

ages over 300 GA runs. The fitness of mapping solu-

tions has been evaluated using the Sesame MPSoC

simulation framework [15] (see also the Simulative

fitness evaluation section). Figure 6 shows the

results of the GA-based DSE with different popula-

tion sizes (10, 15, 40, or 80 chromosomes), a con-

stant mutation rate (0.1) and crossover probability

(0.9), and a uniform crossover in a so-called prob-

ability-quality (P-Q) plot. Regarding the top part of

this plot, the horizontal axis (top x -axis) represents

the quality of the result as a percentile toward the

true optimum (a lower percentile indicates a result

closer to the optimum) and the vertical axis repre-

sents the probability of achieving a result with that

quality. The straight lines in the graph represent the

theoretically derived probabilities of finding results

using a simple, uniform random search. We have

also computed the 80%–95% confidence intervals

of the mean fitness value (execution time in cycles,

in this case) of mapping solutions found by the

GA, averaged over the 300 runs of each GA search.

These confidence intervals, shown at the bottom

of the graph in Figure 6, indicate how certain (as

specified by the confidence level) we are that the

real mean lies within the confidence interval. The

more the confidence intervals for different exper-

iments are nonoverlapping, the more significant

the difference of the mean behavior (which is

clearly the case in the example of Figure 6). The

results from this particular case study show that the

GA-based DSE with the largest population size can

find mapping solutions that are always very close to

the real optimum: within the 0.1 percentile, imply-

ing that they belong to the best 175 000 / 1000 = 175

solutions. A larger population size, however, comes

with a higher number of fitness evaluations during

the search and thus requires a longer search time

(assuming the number of search iterations remains

constant). According to Figure 6, a population size

of 40 may therefore provide a good compromise.

Optimizing GA-based DSE

There are various methods for making the search

process of a GA-based DSE more efficient. This

allows the DSE process to either find the design

candidates quicker (i.e., improve the convergence

behavior of the DSE) or to spend the same amount

of time to evaluate more design points. The latter

can be used to enable the search of larger design

spaces or to improve the chance of finding better

design candidates (i.e., improve the confidence

property of the DSE). One approach for optimizing

the GA-based search is to enrich the genetic opera-

tors of the GA with domain knowledge such that they

produce more diverse offspring or offspring with a

higher probability of being closer to the optimum.

For example, in [24], new GA operators have been

proposed that optimize the search performance by

1) reducing the redundancy present in chromo-

some representations (e.g., mapping symmetries in

the case of homogeneous, symmetrical MPSoC plat-

forms); or 2) using a new crossover operator that is

based on a mapping distance metric that provides a

measure of similarity between mappings. Using this

mapping distance information, the new crossover

operator aims at retaining the strong chromosome

parts of both of the parents. In [25], a new mutation

operator has been proposed that considers the affin-

ity of tasks with respect to processors, the commu-

nication cost between tasks, and the differences of

processor workloads to steer the mutation in such a

way that offspring is produced with a higher proba-

bility of being (near) optimal.

Another approach for optimizing GA-based DSE

concerns the reduction of the time taken to evaluate

the fitness of solutions during the GA’s execution.

As mentioned before, DSE approaches typically use

either simulation or an analytical model to evalu-

ate the fitness of design points, where simulative

approaches prohibit the evaluation of many design

options due to the higher evaluation performance

Figure 6. P-Q plot for GA-based DSE with different

 population sizes.

86 IEEE Design&Test

Tutorial

costs and analytical approaches suffer from accu-

racy issues. Therefore, in [26], a hybrid form of

mapping DSE has been proposed that combines

simulation with analytical estimations to prune the

design space in terms of application mappings that

need to be evaluated using simulation. To this end,

the DSE technique uses an analytical model that

estimates the expected throughput of an applica-

tion given a certain architectural configuration and

application-to-architecture mapping. In the majority

of the search iterations of the DSE process, this ana-

lytical throughput estimation avoids the use of simu-

lations to evaluate the design points. However, since

the analytical estimations may in some cases be less

accurate, the analytical estimations still need to be

interleaved with simulative evaluations in order to

ensure that the DSE process is steered into the right

direction. A similar approach is taken in [27], where

an iterative DSE methodology is proposed exploiting

the statistical properties of the design space to infer,

by means of an empirical analytic model, the design

points to be analyzed with low-level simulations.

The knowledge of a few design points is used to

predict the expected improvement of unknown con-

figurations. Alternatively, in hierarchical DSE (e.g.,

[28], [29], and [30]), DSE is first performed using

analytical or symbolic models to quickly find the

interesting parts in the design space, after which sim-

ulation-based DSE is performed to more accurately

search for the optimal design points.

Workload models: Static versus
 dynamic

The DSE techniques discussed so far focus on the

evaluation and exploration of MPSoC architectures

under static, single-application workloads. Todays

MPSoC systems, however, often require supporting

an increasing number of applications and standards,

where multiple applications can run simultaneously

and concurrently contend for system resources. For

each single application, there may also be different

execution modes (or program phases) with different

computational and communication requirements.

For example, in software-defined radio appliances, a

radio may change its behavior according to resource

availability, such as the long-term evolution (LTE)

standard which uses adaptive modulation and cod-

ing to dynamically adjust modulation schemes and

transport block sizes based on channel conditions.

Another example would be a video application that

dynamically lowers its resolution to decrease its com-

putational demands in order to save battery life. As a

consequence, the behavior of application workloads

executing on the embedded system can change dra-

matically over time.

To capture the dynamism in application work-

load behavior during the design process, this section

describes the concept of application scenarios [31]

as well as scenario-based DSE [32], [33]. Like in the

previous section, we will again use the example of

application mapping exploration to illustrate the

concepts. Application scenarios are able to describe

the dynamism of embedded applications and the

interaction between the different applications on

the embedded system. An application scenario con-

sists of two parts: an inter-application scenario and

an intra-application scenario. An inter-application

scenario describes the interaction between multiple

applications, i.e., which applications are concur-

rently executing at a certain moment in time. Inter-

application scenarios can be used to prevent the

overdesign of a system. If some of the applications

cannot run concurrently, then there is no need of

reserving resources for the situation where these

applications are running together. Intra-application

scenarios, on the other hand, describe the different

execution modes for each individual application.

The number of different application scenarios

grows exponentially with the number of applications

involved. So, to perform DSE with these application

scenarios, this so-called scenario-based DSE needs to

solve the problem that the number of possible appli-

cation scenarios is too large to exhaustively evaluate

the fitness of design points with all of these scenarios.

Therefore, a small but representative subset of sce-

narios must be selected for the evaluation of MPSoC

design points. This representative subset must be used

for comparing mappings and should lead to the same

performance ordering as would have been produced

when the complete set of the application scenarios

would have been used. That is, if mapping m1 is better

than mapping m2, the representative subset should be

able to give a better predicted fitness to mapping m1

than it assigns to mapping m2. However, the selection

of such a representative subset is not trivial [34]. This

is because the representative subset is dependent on

the current set of mappings that are being explored.

Depending on the set of mappings, a different subset of

application scenarios may reflect the relative mapping

qualities of the majority of the application scenarios.

87January/February 2017

As a result, the representative subset cannot stat-

ically be selected. For a static selection, one would

need to have a large fraction of the mappings that

are going to be explored during the MPSoC DSE.

However, since these mappings are only available

during DSE, a dynamic selection method must be

used. Thus, both the set of optimal mappings and the

representative subset of scenarios need to be coex-

plored simultaneously such that the representative

subset is able to adapt to the set of mappings that are

currently being explored. Figure 7 shows the scenar-

io-based DSE framework. The left part of the picture

provides a general overview of the exploration flow,

whereas the right part illustrates the scenario-based

DSE in more detail. As an input, the scenario-based

DSE requires a scenario database, application mod-

els, and an MPSoC platform architecture model. The

description of the application workload is split into

two parts: 1) the structure and 2) the behavior. The

structure of applications is described using appli-

cation models (as described before), whereas a

scenario database [35] explicitly stores all the pos-

sible multiapplication workload behaviors in terms

of application scenarios (i.e., intra-application and

inter-application scenarios). In the scenario-based

DSE framework, two separate components are rec-

ognized that simultaneously perform the coexplora-

tion tasks: the design explorer searches for the set

of optimal mappings while the subset selector tries

to select a representative subset of scenarios. To this

end, they exchange data in an asynchronous fashion

after every search iteration. Here, the design explorer

sends a sample of the current mapping population

to the subset selector, whereas the subset selector

makes the most representative subset available for

the fitness prediction in the design explorer.

The design explorer performs a traditional

mapping DSE using a GA, as discussed in the pre-

vious section. As explained above, it uses a rep-

resentative subset of scenarios to evaluate the

fitness of mapping solutions. At every iteration

of the GA, the design explorer reads in the most

recent representative scenario subset from the

subset selector and submits the current popula-

tion of mapping solutions to the subset selector in

order to allow the latter to select the appropriate

representative subset. This subset selection is not

trivial as there are many scenarios to pick from,

leading to a huge number of possible scenario

subsets. Therefore, the subset selector uses the set

of mappings it regularly receives from the design

explorer to train the scenario subset such that it

is representative for the current population in the

design explorer. As the population of the design

explorer slowly changes over time, the representa-

tive subset will change accordingly. In [33], three

different techniques for selecting a representative

scenario subset are presented and evaluated: a

GA-based scenario space search (which means

that two GAs are running concurrently, one for the

design explorer and one for the subset selector),

a feature selection (FS)-based search algorithm,

and a hybrid combination (HYB) between these

two. The latter aims at combining the strengths

of both the GA-based and FS-based searches.

That is, a GA is capable of quickly exploring the

space of potential scenario subsets, but due to its

stochastic nature, it is susceptible to missing the

optimal scenario subsets. This is not the case with

the feature selection algorithm as it more system-

atically explores the local neighborhood of a sce-

nario subset.

Figure 7. The exploration framework for scenario-based DSE.

88 IEEE Design&Test

Tutorial

To give a feeling of the performance of the three

different fitness prediction techniques, Figure 8

shows the results of a scenario-based DSE experi-

ment in which the three techniques are compared

for three different scenario subset sizes: 1%, 4%, and

8% of the total number of application scenarios. In

this experiment, the mapping of ten applications

with a total of 58 tasks and 75 communication chan-

nels is explored. The multiapplication workload

consists of 4607 different application scenarios in

total. The target platform is a heterogeneous MPSoC

with four general-purpose processors, two ASIPs and

two ASICs, all connected using a crossbar network.

In this experiment, a DSE with a fixed duration of

100 min is performed for all three subset selector

approaches. The results have been averaged over

nine runs. To evaluate the fitness of mapping solu-

tions, we have again deployed the Sesame MPSoC

simulation framework (see the Simulative fitness

evaluation section). To determine the efficiency of

the multiobjective DSE, we obtain the distance of

the estimated Pareto front (execution time versus

energy consumption of mapping solutions) to the

optimal Pareto front. For this purpose, we normal-

ized execution time and energy consumption to a

range from 0 to 1. As the optimal Pareto front is not

exactly known since the design space is too large to

exhaustively search it, we have used the combined

Pareto front of all our experiments for this.

The size of the scenario subset provides a trade-

off between accuracy and convergence of the

search. That is, a larger scenario subset will lead

to a more accurate fitness prediction of mappings

in the design explorer at the cost of a larger com-

putational overhead to obtain the fitness of a sin-

gle mapping causing a slower convergence of the

search. This can be seen in Figure 8. The GA and

the FS subset selection methods have worse results

when the subset becomes larger (remember that

we use a fixed DSE duration of 100 min). For a sub-

set size of 4%, the hybrid selector is, however, still

able to benefit from a subset with a higher accu-

racy. The slower convergence only starts to effect

the efficiency for the 8% subset. Comparing the dif-

ferent methods, the hybrid method shows the best

results. The only exception is for the 1% subset. In

this case, the GA is still able to search the smaller

design space of possible subsets. Still, the result of

the hybrid method at 4% is better than the result

of the GA at 1%. With the larger subset sizes, the

hybrid method can exploit both the benefits of

the feature selection and the GA.

IN THIS ARTICLE, we have presented various aspects

of the state of the art in embedded systems DSE. Here,

we have organized our discussion along the lines of

the two primary elements of DSE: the evaluation of

single design points and the search strategy for cover-

ing the design space. For the coming years, there are

still many open research challenges for this domain.

Just to give a few examples, first, embedded systems

more and more need to become adaptive systems due

to increasingly dynamic application workload behav-

ior (as was previously discussed), the need for QoS

management to dynamically trade off different system

qualities such as performance, precision, and power

consumption, and the fact that we have reached a

technology level where our circuits are no longer fully

reliable, increasing the chances of transient and per-

manent faults. This calls for research to take system

adaptivity, in which a system can continuously cus-

tomize itself at runtime according to the application

workload at hand and the state of the system (e.g., [5]

and [36]), into account in the process of DSE.

Second, the trend toward cyberphysical systems

and the IoT makes the process of DSE even more

complicated since DSE in this context requires

taking the behavior of the physical environment

(including user behavior) into account. This calls for

renewed research into the speed-accuracy tradeoff

for the different models and their possible co-simula-

tion applied in DSE for this domain.

Figure 8. Quality of the DSE for the different subset

selection approaches. The quality is determined

based on the distance between the estimated Pareto

front and the optimal front.

89January/February 2017

A FINAL RESEARCH direction involves the introduc-

tion of new design objectives in the process of (early)

DSE, in addition to the traditional objectives such as

system performance and power/energy consumption.

Arguably, a good example is the need for taking system

security into account as an optimization objective. As

embedded systems are becoming increasingly ubiq-

uitous and interconnected, they attract a worldwide

attention of attackers, which makes the security aspect

more important than ever during the design of those

systems. Currently, system security is still mostly consid-

ered as an afterthought and typically is not taken into

account during the very early design stages. However,

any security measure that may eventually be taken

later in the design process does affect the already

established tradeoffs with respect to the other system

objectives such as performance, power/energy con-

sumption, cost, etc. Thus, covering the security aspect

in the earliest phases of design is necessary to design

systems that are, in the end, optimal with regard to all

system objectives. However, this poses great difficulties

because unlike the earlier mentioned conventional

system objectives like performance and power con-

sumption, security is hard to quantify. This necessitates

research on techniques that make it possible to incor-

porate security as an objective in early DSE. 

 References
 [1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor

system-on-chip (MPSoC) technology,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 27,

no. 10, pp. 1701–1713, Oct. 2008.

 [2] K. Keutzer, A. R. Newton, J. M. Rabaey, and A.

Sangiovanni-Vincentelli, “System-level design:

Orthogonalization of concerns and platform-based

design,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

 [3] A. Sangiovanni-Vincentelli and G. Martin, “Platform-

based design and software design methodology for

embedded systems,” IEEE Design Test Comput.,

vol. 18, no. 6, pp. 23–33, Nov./Dec. 2001.

 [4] M. Gries, “Methods for evaluating and covering the

design space during early design development,”

Integr., VLSI J., vol. 38, no. 2, pp. 131–183, Dec. 2004.

 [5] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel,

“Mapping on multi/many-core systems: Survey of

current and emerging trends,” in Proc. Design Autom.

Conf., Jun. 2013, pp. 1–10.

 [6] M. Thompson, “Tools and techniques for efficient

system-level design space exploration,” Ph.D.

dissertation, Univ. Amsterdam, Amsterdam, The

Netherlands, Jan. 2012.

 [7] N. Binkert et al., “The gem5 simulator,” ACM

SIGARCH Comput. Architecture News,” vol. 39, no. 2,

pp. 17, May 2011.

 [8] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman,

and N. P. Jouppi, “A comprehensive memory

modeling tool and its application to the design and

analysis of future memory hierarchies,” in Proc. Int.

Symp. Comput. Architect., Jun. 2008, pp. 51–62.

 [9] S. Li et al., “The mcpat framework for multicore and

manycore architectures: Simultaneously modeling

power, area, and timing,” ACM Trans. Architect. Code

Optim., vol. 10, no. 1, p. 5, 2013.

[10] F. Bellard, “Qemu, a fast and portable dynamic

translator,” in Proc. USENIX Annu. Tech. Conf., Apr.

2005, pp. 41–46.

[11] L. Cai and D. Gajski, “Transaction level modeling: An

overview,” in Proc. Int. Conf. Hardw./Softw. Codesign

Syst. Synthesis, Oct. 2003, pp. 19–24.

[12] O. Bringmann et al., “The next generation of virtual

prototyping: Ultra-fast yet accurate simulation of hw/sw

systems,” in Proc. Int. Conf. Design Autom. Test Eur.,

Mar. 2015, pp. 1698–1707.

[13] A. Butko et al., “A trace-driven approach for fast and

accurate simulation of manycore architectures,” in

Proc. Asia South Pacific Design Autom. Conf., Jan.

2015, pp. 707–712.

[14] J. Castrillon et al., “Trace-based KPN composability

analysis for mapping simultaneous applications to

MPSoC platforms,” in Proc. Conf. Design Autom. Test

Eur., Mar. 2010, pp. 753–758.

[15] A. D. Pimentel, C. Erbas, and S. Polstra,

“A systematic approach to exploring embedded system

architectures at multiple abstraction levels,” IEEE Trans.

Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006.

[16] B. Kienhuis, F. Deprettere, P. van der Wolf, and K.

Vissers, “A methodology to design programmble

embedded systems: The y-chart approach,”

Embedded Processor Design Challenges, ser.

Lecture Notes in Computer Science, Berlin, Germany:

Springer-Verlag, 2002, vol. 2268, pp. 18–37.

[17] L. Eeckhout, Computer Architecture Performance

Evaluation Methods (Synthesis Lectures on Computer

Architecture). San Rafael, CA, USA: Morgan Claypool

Publishers, 2010.

[18] R. Niemann and P. Marwedel, “An algorithm for

hardware/software partitioning using mixed integer

linear programming,” Design Autom. Embedded Syst.,

vol. 2, no. 2, pp. 165–193, 1997.

90 IEEE Design&Test

Tutorial

[19] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich,

“Efficient symbolic multi-objective design space

exploration,” in Proc. Asia South Pacific Design Autom.

Conf., Mar. 2008, pp. 691–696.

[20] S. Padmanabhan, Y. Chen, and R. D. Chamberlain,

“Optimal design space exploration of streaming

applications,” in Proc. IEEE Int. Conf. Appl.-Specific

Syst. Architect. Process., Sep. 2011, pp. 227–230.

[21] M. Palesi and T. Givargis, “Multi-objective design

space exploration using genetic algorithms,” in Proc.

Int. Symp. Hardw./Softw. Codesign, 2002, pp. 67–72.

[22] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel,

“Multiobjective optimization and evolutionary

algorithms for the application mapping problem in

multiprocessor system-on-chip design,” IEEE Trans.

Evol. Comput., vol. 10, no. 3, pp. 358–374, Jun. 2006.

[23] D. Beasley, D. R. Bull, and R. R. Martin, “An overview

of genetic algorithms: Part I—Fundamentals,” Univ.

Comput., vol. 15, no. 2, pp. 58–69, 1993.

[24] M. Thompson and A. D. Pimentel, “Exploiting

domain knowledge in system-level MPSoC design

space exploration,” J. Syst. Architect., vol. 59, no. 7,

pp. 351–360, Aug. 2013.

[25] W. Quan and A. D. Pimentel, “Towards exploring vast

mpsoc mapping design spaces using a bias-elitist

evolutionary approach,” in Proc. Euromicro Digital

Syst. Design Conf., Aug. 2014, pp. 655–658.

[26] R. Piscitelli and A. D. Pimentel, “Design space pruning

through hybrid analysis in system-level design space

exploration,” in Proc. Int. Conf. Design Autom. Test

Eur., Mar. 2012, pp. 781–786.

[27] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V.

Zaccaria, and C. Silvano, “A correlation-based design

space exploration methodology for multi-processor

systems-on-chip,” in Proc. Design Autom. Conf.,

2010, pp. 120–125.

[28] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis,

“Rapid design space exploration of heterogeneous

embedded systems using symbolic search and multi-

granular simulation,” in Proc. LCTES+SCOPES, 2002,

pp. 18–27.

[29] Z. J. Jia, T. Bautista, A. Núñez, M. Thompson,

and A. D. Pimentel, “A system-level infrastructure

for multidimensional MP-SoC design space co-

exploration,” ACM Trans. Embedded Comput. Syst.,

vol. 13, no. 15, p. 27, 2013.

[30] Z. J. Jia, A. Núñez, T. Bautista, and A. D. Pimentel,

“A two-phase design space exploration strategy for

system-level real-time application mapping onto

MPSoC,” Microprocess. Microsyst., vol. 38, no. 1,

pp. 9–21, 2014.

[31] S. V. Gheorghita et al., “System-scenario-based

design of dynamic embedded systems,” ACM Trans.

Design Autom. Electron. Syst., vol. 14, no. 1,

pp. 1–45, 2009.

[32] P. van Stralen and A. D. Pimentel, “Scenario-based

design space exploration of MPSoCs,” in Proc. Int.

Conf. Comput. Design, Oct. 2010, pp. 305–312.

[33] P. van Stralen and A. Pimentel, “Fitness prediction

techniques for scenario-based design space

exploration,” IEEE Trans. Comput.-Aided Design

Integr., vol. 32, no. 8, pp. 1240–1253, Aug. 2013.

[34] P. van Stralen, “Applications of scenarios in early

embedded system design space exploration”, Ph.D.

dissertation, Univ. Amsterdam, Amsterdam, The

Netherlands, Jan. 2014.

[35] P. van Stralen and A. D. Pimentel, “A trace-based

scenario database for high-level simulation of multimedia

MP-SoCs,” in Proc. Int. Conf. Embedded Comput. Syst.

Architect. Model. Simul., Jul. 2010, pp. 11–19.

[36] W. Quan and A. D. Pimentel, “A hybrid task mapping

algorithm for heterogeneous MPSoCs”, ACM Trans.

Embedded Comput. Syst., vol. 14, no. 1, p. 14, Jan.

2015.

Andy D. Pimentel is an Associate Professor at

the System and Network Engineering Lab, University

of Amsterdam, Amsterdam, The Netherlands. His

research centers around system-level modeling,

simulation, and exploration of (embedded) multicore

and manycore computer systems with the purpose

of effectively designing and programming these

systems. Pimentel has a PhD in computer science

from the University of Amsterdam. He is a cofounder

of the International Conference on Embedded

Computer Systems: Architectures, Modeling, and

Simulation (SAMOS). He has (co)authored more

than 100 scientific publications and is an Associate

Editor of Elseviers Simulation Modelling Practice

and Theory as well as Springers Journal of Signal

Processing Systems. He served as the General Chair

of HIPEAC’15, as Local Organization Co-Chair of

ESWeek’15, and he serves as Program (Vice-)Chair

of CODES+ISSS in 2016 and 2017. Furthermore, he

has served on the TPC of many leading (embedded)

computer systems design conferences, such as DAC,

DATE, CODES+ISSS, ICCD, ICCAD, FPL, SAMOS,

and ESTIMedia.

 Direct questions and comments about this article to

Andy D. Pimentel, Institute of Informatics, University of

Amsterdam, 1098XH Amsterdam, The Netherlands;

a.d.pimentel@uva.nl.

