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 DESIGNERS OF MODERN embedded systems face 

several daunting challenges since these systems typ-

ically have to meet a range of stringent, and often 

conflicting, design requirements. As many embedded 

systems target mass production and battery-based 

devices or devices that cannot use active cooling, 

they should be cheap and power efficient. At the 

same time, a great deal of these systems must, increas-

ingly, support multiple applications and standards for 

which they need to provide real-time performance. 

For example, mobile devices must support different 

standards for communication and coding of digital 

contents. Furthermore, modern embedded systems 

also need to be reliable as well as flexible such that 

they can easily be updated and extended with future 

applications and stand-

ards. The latter calls for a 

high degree of program-

mability of these systems, 

whereas performance, 

power consumption, and 

cost constraints require 

implementing substan-

tial parts of these systems 

in dedicated hardware 

blocks. As a result, modern embedded systems often 

have a heterogeneous multiprocessor system archi-

tecture. They consist of processors that range from 

fully programmable cores to fully dedicated hardware 

blocks for time-critical application tasks. Increasingly, 

the components in such systems are integrated onto 

a single chip, yielding heterogeneous multiprocessor 

system-on-chip (MPSoC) architectures [1].

To cope with the design complexity of such sys-

tems, we have witnessed the emergence of a new 

design methodology in the past 15–20 years, called 

electronic system-level (ESL) design. It aims at rais-

ing the level of abstraction of the design process to 

improve the design productivity. Key enablers to this 

end are the use of architectural MPSoC platforms to 

facilitate reuse of IP components and the concept of 

high-level system modeling and simulation [2], [3]. 

The latter allows for capturing the behavior of plat-

form components and their interactions at a high 

Editor’s note:

As embedded systems grow more complex and as new applications such 

as IoT require many design constraints, sophisticated design space explo-

ration techniques are essential in order to find the best compromise between 

different design goals and their tradeoff. This tutorial gives a structured 

 insight into the field of design space exploration for embedded systems.

—Jörg Henkel, Karlsruhe Institute of Technology
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level of abstraction. As such, these high-level mod-

els minimize the modeling effort and are optimized 

for execution speed, and can therefore be applied 

during the very early design stages to perform design 

space exploration (DSE) [4]. During such DSE, a 

large variety of different design alternatives can be 

explored, such as the number and type of proces-

sors deployed in the platform architecture, the type 

of interconnection network used to connect system 

components, or the spatial binding and temporal 

binding (i.e., scheduling) of application tasks to 

processor cores. This process of early DSE is of para-

mount importance as the considered design choices 

may heavily influence the success or failure of the 

final product. However, the process of DSE also is 

highly challenging because the design space that 

needs to be explored typically is vast, especially 

during the early stages of design. For instance, the 

design space for exploring different mappings of 

application tasks to processing resources and trying 

to optimize the mapping for, e.g., performance or 

power consumption exponentially grows with the 

number of application tasks and processors, and is 

generally considered to be an NP-hard problem [5]. 

Therefore, the development of efficient and effective 

DSE methods has received significant research atten-

tion in recent years. In this article, we will provide a 

tutorial introduction to the topic of embedded sys-

tems DSE.

DSE: Basic concepts
During the DSE of embedded systems, multi-

ple optimization objectives, such as performance, 

power/energy consumption, and cost, should be 

considered simultaneously. This is called multiob-

jective DSE. Since the objectives are often in con-

flict, there cannot be a single optimal solution that 

simultaneously optimizes all objectives. Therefore, 

optimal decisions need to be taken in the presence 

of tradeoffs between design criteria.

Given a set of  m  decision variables, which are the 

degrees of freedom (e.g., MPSoC system parameters 

like the number and type of processors, applica-

tion mapping, etc.) that are explored during DSE, a 

so-called fitness function must optimize the  n  objec-

tive values. The fitness function is defined as

   f  i   :  R   m  →  R   1 .  (1)

A potential solution  x ∈  R   m    is an assignment of the  m  

decision variables. The fitness function   f  i     translates 

a point in the solution space  X  into the  i th objective 

value (where  1 ≤ i ≤ n ). For example, a particular 

fitness function   f  i    could assess the performance or 

energy efficiency of a certain solution  x  (represent-

ing a specific design instance). The combined fit-

ness function  f(x )  subsequently translates a point in 

the solution space into the objective space  Y . For-

mally, a multiobjective optimization problem (MOP) 

that tries to identify a solution  x  for the  m  decision 

variables that minimizes the  n  objective values using 

objective functions   f  i    with  1 ≤ i ≤ n 

 Minimize y = f(x ) = (  f  1   (x ) ,  f  2   (x ) , …,   f  n   (x )) 

where x = (  x  1   ,   x  2   , …,   x  m   ) ∈ X

y = (  y  1   ,   y  2   , …,   y  n   ) ∈ Y.  

In the remainder of this discussion, we assume a 

minimization procedure, but without loss of general-

ity, this minimization procedure can be converted 

into a maximization problem by multiplying the 

 fitness values   y  i    with −1.

With an optimization of a single objective, the 

comparison of solutions is trivial. A better fitness 

(i.e., objective value) means a better solution. 

With multiple objectives, however, the comparison 

becomes nontrivial. Take, for example, two different 

MPSoC designs: a high-performance MPSoC and a 

slower but much cheaper MPSoC. In case there is 

no preference defined with respect to the objectives 

and there are also no restrictions for the objectives, 

one cannot say if the high-performance MPSoC or 

the low-cost MPSoC is better. A MOP can have even 

more different objectives, like the performance, 

energy consumption, cost, and reliability of an 

MPSoC-based embedded system. To compare differ-

ent solutions in the case of multiple objectives, the 

Pareto dominance relation is typically used. Here, a 

solution   x  1   ∈ X  is said to dominate solution   x  2   ∈ X  if 

and only if   x  1   <  x  2   

  x  1   <  x  2   ⇔  ∀ i ∈ { 1, 2, …, n} :  f  i   (  x  1   )  ≤   f  i   (  x  2   ) ∧ 

 ∃ i ∈ { 1, 2, …, n} :  f  i   (  x  1   ) <  f  i   (  x  2   ).  

Hence, a solution   x  1    dominates   x  2    if its objec-

tive values are superior to the objective values of   x  2   . 

For all of the objectives,   x  1    must not have a worse 

objective value than solution   x  2   . Additionally, there 

must be at least one objective in which solution   x  1    is 

 better (otherwise they are equal).

An example of the dominance relation is given 

in Figure 1, which illustrates a 2-D MOP. For solution  

H , the dominance relations are shown. Solution  H  is 
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dominated by solutions  B ,  C , and  D  as all of them 

have a lower value for both   f  1    and   f  2   . On the other 

hand, solution  H  is superior to solutions  M ,  N , and  O . 

Finally, some of the solutions are not comparable 

to  H . These solutions are better for one objective but 

worse for the other.

The Pareto dominance relation only provides a 

partial ordering. For example, the solutions  A  to  F  of 

the example in Figure 1 cannot be ordered using the 

ordering relation. Since not all solutions  x ∈ X  can 

be ordered, the result of a MOP is not a single solu-

tion, but a front of nondominated solutions, called 

the Pareto front. A set   X  ′    is defined to be a Pareto 

front of the set of solutions   X   as follows:

 {x ∈  X ′   | 
  
∃

 
⧸

  
  x  i   ∈  X:x  i    < x} 

The Pareto front of Figure 1 contains six solutions:  

A − F . Each of these solutions does not dominate the 

other. An improvement on objective   f  1    is matched 

by the worse value for   f  2   . Generally, it is up to the 

designer to decide which of the solutions provides 

the best tradeoff.

The search for Pareto optimal design points 

with respect to multiple design criteria entails two 

distinct elements [4]: 1) the evaluation of a single 

design point using the fitness function(s) regarding 

all the objectives in question like system perfor-

mance, power/energy consumption, and so on; and 

2) the search strategy for covering the design space 

during the DSE process. Figure 2 shows a simple 

taxonomy for DSE approaches, recognizing the two 

DSE elements as well as different properties of these 

DSE elements. As will be discussed in more detail 

later on, there usually exists a tradeoff between the 

accuracy and speed with which the fitness of single 

design points can be evaluated. In addition to this, 

the various fitness evaluation techniques also differ 

with respect to the implementation effort and the 

capability of evaluating the fitness for a wide range 

of systems, involving issues such as modularity, reus-

ability of models etc.

Regarding the search strategy element of DSE, the 

confidence characteristic denotes how certain we are 

that the design points returned by the DSE include 

the true optimum, or alternatively, how close they 

are to the true optimum. In many search algorithms, 

confidence is obtained by avoiding local optima and 

ensuring sufficient design space coverage. Clearly, 

an exhaustive search in which every single point in 

the design space is evaluated and compared would 

provide a 100% confidence. However, such exhaus-

tive search is usually prohibitive due to the sheer size 

of the design space. In those cases, heuristic search 

techniques can be used to search the design space 

for optimal solutions using only a finite number of 

design point evaluations. The convergence property 

denotes the speed of evaluating a range of design 

points, and, more specifically, the rate at which the 

DSE search algorithm manages to converge to an opti-

mum. Finally, analogous with the effort property in 

the case of evaluating a single design point, the effort 

for searching the design space refers to the implemen-

tation of the search method and setting its parame-

ters, as well as setting up, running, and evaluating 

the results of the exploration experiment. In the two 

subsequent sections, we will provide a more detailed 

overview of the different techniques, and their proper-

ties, applied in each of the two elements of DSE.

Evaluation of a single design point
Methods for evaluating the fitness of a single 

design point in the design space roughly fall into 

one of three categories: 1) measurements on a 

(prototype) implementation; 2) simulation-based 

Figure 1. A Pareto front and an example of 

the dominance relation.

Figure 2. A taxonomy for DSE approaches 

(taken from [6]).
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evaluations; and 3) estimations based on some kind 

of analytical model. Each of these methods has dif-

ferent properties with regard to evaluation time and 

accuracy. Evaluation of prototype implementations 

provides the highest accuracy, but long develop-

ment times prohibit evaluation of many design 

options. Analytical estimations are considered the 

fastest, but accuracy is limited since they are typi-

cally unable to sufficiently capture particular intri-

cate system behavior. Simulation-based evaluation 

fills up the range in between these two extremes: 

both highly accurate (but slower) and fast (but less 

accurate) simulation techniques are available. This 

tradeoff between accuracy and speed is very impor-

tant, since successful DSE depends both on the abil-

ity to evaluate a single design point as well as being 

able to efficiently search the entire design space. 

As current DSE efforts in the domain of embedded 

systems design typically use simulation or analytical 

models to evaluate single design points, the remain-

der of this section will focus on these methods.

Simulative fitness evaluation

Simulating system components can, as was 

already mentioned above, be performed at differ-

ent levels of abstraction. The higher the abstraction 

level, the less intricately the system components are 

modeled and, therefore, the higher the simulation 

speed is. Evidently, such efficiency improvements 

come at the cost of a less accurate fitness estimation 

because of the fact that particular system details are 

not taken into account. This simulation speed-accu-

racy tradeoff is shown in Figure 3. This figure depicts 

several widely used simulation abstraction levels, 

and it does so for both the simulation of processor 

components as well as the simulation of communi-

cation between system components.

For both the simulation of processor and commu-

nication components, the lowest level of abstraction 

for simulating a digital system is the register-transfer 

level (RTL). At this level of abstraction, the flow of 

digital signals between registers and combinational 

logic is explicitly simulated. This yields a highly 

accurate but also very slow simulation. As a result, 

the use of RTL simulation in the process of DSE is 

confined to only relatively small and narrow design 

spaces focusing on, for example, the design of one 

specific system component. Performing system-level 

DSE is infeasible using RTL simulation.

Raising the level of abstraction, one can simulate 

system components at the cycle accurate level. This 

means that the system components are simulated 

on a cycle-by-cycle basis and, as such, that the sim-

ulated system state conforms to the cycle-by-cycle 

behavior of the target design. This results in more 

efficient simulations as compared to RTL simulation 

at the cost of a somewhat reduced accuracy since 

the system state between cycles is not accounted for. 

Cycle-accurate simulation is a popular technique for 

simulating microprocessors: so-called cycle-accu-

rate instruction set simulation (ISS). These ISS sim-

ulators try to capture the cycle-by-cycle behavior of 

the microarchitectural components of a micropro-

cessor, such as the pipeline logic, out-of-order pro-

cessing, branch predictors, caches, and so on. To 

account for power consumption behavior, ISS sim-

ulators often use activity-based power models that 

accumulate the power consumption of the relevant 

microarchitecture components based on their activ-

ity ratio. A good example is the widely used cycle-ac-

curate Gem5 ISS [7], which can be extended to also 

support area and power predictions using activi-

ty-based modeling frameworks such CACTI [8] and 

McPAT [9]. Although these ISS simulators can be 

deployed to perform microarchitectural DSE for pro-

cessor components, they are typically still too slow 

for performing full system-scale DSE.

In cycle-accurate ISS simulators, the fetching, 

decoding, and execution of instructions are explic-

itly simulated. To further optimize the speed of such 

simulators, one could translate the instructions from 

the target binary to be simulated to an equivalent 

sequence of instructions (using static or dynamic 

Figure 3. Different levels of abstraction for 

(a)  simulating processors and (b) simulating 

 communication.
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just-in-time translation) that can be executed on 

the simulation host computer. This so-called binary 

translation technique, which is, e.g., deployed in the 

widely used QEMU simulator [10], aims at reducing 

the overhead of explicitly simulating the instruction 

fetch and decode stages. The translated instruction 

sequences are often instrumented with additional 

code to keep track of the extra-functional behavior, 

such as timing and power consumption, of the origi-

nal code as it would have been executed on the tar-

get processor.

For simulating communication between system 

components, one could use so-called bus-cycle 

accurate simulation [11] to speed up the simula-

tion process. In this type of simulation, all signals of 

the communication bus are modeled explicitly in 

a cycle accurate fashion, but this accuracy is only 

maintained for the signals on the communication 

bus and not for the logic around it. The surround-

ing components can thus use more abstract timing 

models.

Raising the abstraction level even further for 

processor simulation yields so-called host-compiled 

simulation [12]. In this technique, the source code of 

the target program is directly compiled into a binary 

program that can run on the host computer. In addi-

tion, and similar to the binary translation technique, 

the source code can be instrumented with a timing 

and power consumption model based on the target 

architecture. Since these simulations are efficient as 

they directly execute target programs on the host 

computer, they are very suitable for system-level 

DSE. However, at this level of abstraction, it is dif-

ficult to accurately capture intricate microarchitec-

tural behavior, like pipeline and cacheing behavior. 

Another drawback of this simulation approach is 

that one needs to have access to the source code of 

a target program.

For simulating communication, transaction-level 

modeling (TLM) [11] provides the highest level of 

abstraction. In TLM, communication details at the 

level of signals and protocols are abstracted away 

by means of encapsulation into entire transactions 

between system components. At this level, the 

emphasis is more on the functionality of the data 

transfers, i.e., what data are transferred to and from 

what locations, rather than on their actual imple-

mentation. Evidently, the extra-functional behavior 

in TLM simulation models is also captured at the 

level of entire transactions.

The above processor simulation techniques are 

all execution-driven simulation methods as they 

are directly driven by the execution of a program. 

Alternatively, there are also trace-driven simulation 

techniques in which the simulation is driven by 

event traces that have been collected through the 

execution of a program (e.g., [13] and [14]). These 

trace events can focus on the evaluation of specific 

system elements such as memory address traces for 

cache simulation. However, an event trace may also 

consist of the full sequence of executed instructions, 

thereby allowing full, trace-driven microprocessor 

simulation for the purpose of performance and/or 

power estimation. To optimize for simulation speed, 

the trace events may also represent computations 

(and, if needed, communication) at a higher level 

of abstraction than the level of machine instructions, 

like at the level of the execution of basic blocks or 

even entire functions. Another advantage of trace-

driven simulation is the fact that the event traces 

often only need to be generated once (i.e., executing 

the program to collect the traces once), after which 

they can be reused in the DSE process. Drawbacks 

of trace-driven simulation evidently are the need 

for storing the event traces which can become 

extremely large in size, and the fact that trace-driven 

simulation does not allow for simulating all intricate 

system behavior, such as the effects of speculative 

instruction execution in microprocessors.

An example of a high-level, trace-driven MPSoC 

simulation environment is the Sesame system-level 

modeling and simulation framework [15]. Sesame 

is based on the Y-chart methodology [16], and 

accordingly it recognizes separate application and 

architecture models. The application models are 

explicitly mapped onto the architecture models by 

means of trace-driven simulation. The workload 

of an application is captured by instrumenting the 

application model, which is a parallel specification 

of the application, with annotations that describe 

the application’s computational and communica-

tion actions at a coarse-grained level (typically at the 

level of the execution of entire functions). By exe-

cuting this instrumented application model, these 

annotations cause the generation of traces of appli-

cation events that subsequently drive the underlying 

architecture model. This architecture model, cap-

turing the system resources and their constraints, 

then simulates the consequences of the consumed 

computation and communication events in terms 
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of extra-functional system behavior (performance, 

power consumption, etc.). Figure 4 depicts Sesame’s 

layered organization, illustrating the mapping of 

two multimedia applications (an MP3 encoder and 

video decoder) onto a bus-based MPSoC platform. 

A special mapping layer in Sesame provides the 

scheduling of application events in the case multi-

ple application processes are mapped onto a single 

processing resource.

Orthogonal to most of the (processor) simula-

tion methods described above, there are additional 

techniques to further improve the simulation speed 

[17]. In sampled simulation, for example, the sim-

ulation does not cover the execution of an entire 

program but only simulates relatively small samples 

of the program’s execution. Here, the challenge is 

to select the samples in such a manner that they 

sufficiently represent the behavior as if the entire 

program was simulated. Another technique for 

speeding up simulation is statistical simulation. 

Rather than using real (benchmark) programs for 

simulation, it uses a statistical program profile. This 

profile captures the distributions of important pro-

gram characteristics, and is used for generating a 

synthetic instruction trace that drives a simple trace-

driven simulator. As the synthetic trace is randomly 

generated from a statistical profile, this type of simu-

lations can converge to a set of performance predic-

tions fairly quickly.

Analytical fitness evaluation

In comparison to simulation, analytical mod-

els allow for much more efficient prediction of the 

extra-functional system behavior at the expense of 

a reduced accuracy. This makes analytical models 

very suitable for exploring large design spaces to 

rapidly identify regions of interest that can be later 

explored in more detail using simulation. Another 

advantage of analytical models is that they can pro-

vide direct insight into the relationship between 

model parameters (representing design choices) 

and the predicted extra-functional behavior. For sim-

ulative methods, such understanding would require 

a large number of simulations.

Analytical models can roughly be divided into 

three classes [17]: 1) mechanistic (or whitebox) 

models; 2) empirical (or blackbox) models; and 

3) a hybrid combination of mechanistic and empir-

ical modeling. Mechanistic models are based on 

first principles, which implies that they are built in 

a bottom-up fashion starting from a basic under-

standing of the mechanics of the modeled system. 

For example, in a mechanistic microprocessor per-

formance model, penalties due to cache misses, 

branch mispredictions, the execution of instruc-

tions with different latencies, etc., are explicitly 

captured in the model.

In empirical models, statistical inference and 

machine learning techniques, like regression models 

or neural networks, are used to automatically synthe-

size a model through the process of learning from train-

ing data. For example, using a set of microarchitectural 

parameters such as pipeline depth, issue width, caches 

sizes, etc., one could train a model that predicts the 

Instructions Per Cycle (IPC) or Cycles Per Instruction 

(CPI) of a microprocessor. Inferring a model by means 

of automatic training typically is easier than develop-

ing a mechanistic model because it does not require 

intimate understanding of the mechanics of the mod-

eled system. Evidently, the latter is also an immediate 

drawback as empirical models also tend to provide 

less insight than mechanistic models.

In hybrid mechanistic-empirical modeling, 

which is sometimes referred to as greybox mode-

ling, extra-functional system aspects are captured 

using a formula that has been derived from insights 

in the underlying system. However, this formula 

includes a number of unknown parameters, which 

are then inferred through fitting (e.g., using regres-

sion), similarly to empirical modeling. Such hybrid 

Figure 4. The Sesame system-level MPSoC 

simulation infrastructure.
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mechanistic-empirical modeling is motivated by the 

fact that it provides insight (like mechanistic mod-

eling) while easing the construction of the model 

(like empirical modeling).

Searching the design space
As explained before, searching a design space is 

a multiobjective optimization process. This process 

will evidently benefit from a good tradeoff between 

speed, accuracy, and effort of the method for evalu-

ating the fitness of a single design point, as discussed 

in the previous section. But, even if this tradeoff is 

ideal, we still have to make sure that each evaluation 

of a design point contributes as much as possible to 

an effective and efficient search of the design space. 

A crucial component toward this goal is the search 

algorithm that navigates the design space toward 

areas of interest by proposing which design points 

to evaluate next. Regardless of the specific type of 

search method that is used for such a design space 

traversal, its success depends on three major con-

cerns, as was shown in Figure 2: confidence, conver-

gence, and effort. These concerns typically cannot 

be considered in isolation, as they are highly interde-

pendent, contradictory, and sometimes overlapping. 

The state of the art in DSE can be summarized as 

finding a good tradeoff between these concerns.

DSE search algorithms can be divided into exact 

and heuristic methods. In exact DSE methods, like 

those implemented using integer linear program-

ming (ILP) solutions (e.g., [18] and [19]) or branch 

& bound algorithms (e.g., [20]), the optimum is guar-

anteed to be found. As such methods generally are 

compute intensive, they typically use design space 

pruning (i.e., discarding unsuitable design points) 

to optimize the efficiency of the search, thereby 

allowing to handle larger design spaces. However, 

for realistic design problems with design spaces 

that are vast, these methods may still be less suited. 

Alternatively, in heuristic methods, metaheuristics 

are used to find a design point in the known design 

space that meets the design requirements as best 

as possible. To this end, these methods search the 

design space for optimal solutions using only a finite 

number of design point evaluations, and can thus 

handle larger design spaces. However, there is no 

guarantee that the global optimum will be found 

using metaheuristics, and therefore the result can be 

a local optimum within the design space. Examples 

of metaheuristics are hill climbing, tabu search, 

simulated annealing, ant colony optimization, parti-

cle swarm optimization, and genetic algorithms. In 

this tutorial, we will focus on methods to navigate 

the design space that are based on genetic algo-

rithms (GA). GA-based DSE has been widely stud-

ied in the domain of system-level embedded design 

(e.g., [21] and [22]) and has been demonstrated to 

yield good results. Moreover, GAs can be used in 

their basic (domain-independent) form or, as will 

also be explained later on, with custom extensions 

that incorporate domain-dependent knowledge in 

order to improve search performance even further.

GA-based DSE

GAs operate by searching through the solution 

space (spanned by the design variables/decisions 

being explored) where each possible solution 

is encoded as a string-like representation, often 

referred to as the chromosome [23]. A (randomly 

initialized) population of these chromosomes is then 

iteratively modified by performing a fixed sequence 

of actions that are inspired by their counterparts 

from biology: fitness evaluation and selection, cross-

over, and mutation. A fundamental design choice 

of a GA is the genetic representation of the solution 

space, because each of the crossover and mutation 

steps depends on it. To illustrate how such a genetic 

representation could look like, let us use a widely 

studied DSE problem in the domain of system-level 

embedded system design as an example: optimizing 

the mapping of a (set of) concurrent application(s) 

onto an underlying (heterogeneous) MPSoC plat-

form architecture [5]. As a convenient mapping 

description for an application with  n  tasks, we use a 

vector of size  n  with processor identifiers   p  i   , where   p  i    

indicates the mapping target of task  i 

 [  p  0   , …,  p  i   , …,  p  n−1   ]. 

This commonly used description is very suitable to 

serve as the chromosome representation for a GA. A 

valid mapping specification is a feasible partition-

ing of all  n  tasks. With feasible, we mean that tasks 

are mapped onto processing elements that can exe-

cute those tasks (i.e., there are no functional restric-

tions of the processing element in question, like an 

ASIC component that only allows the execution 

of one particular piece of functionality), and that 

communicating tasks are mapped onto processing 

elements that can actually communicate with each 

other (i.e., there are no topological communication 
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 restrictions). In case an infeasible mapping is cre-

ated by the genetic operators of a GA (crossover 

and mutation), a mechanism is required that either 

discards or repairs such a chromosome. Repairing 

a chromosome implies that it is transformed into 

a valid chromosome (mapping) that is as close 

as possible to the original, invalid one. Moreover, 

note that task partitions specifying a mapping may 

also be empty [particular processor(s) not in use] 

or contain all  n  tasks (a single processor system). 

A processor that is not assigned any tasks (having 

an empty task partition) can be considered idle or 

nonexistent.

In Figure 5a, the different steps of a GA are 

shown. This figure also illustrates the mapping rep-

resentation of a chromosome for an application 

with six tasks and a 4-processor bus-based MPSoC 

platform. Starting from a (randomly initialized) pop-

ulation of chromosomes, representing the different 

mapping design instances, the fitness of the mapping 

solutions in the population is first evaluated. To this 

end, any of the previously discussed analytical or 

simulative techniques can be used. Subsequently, 

based on the fitness evaluation, a selection of 

chromosomes is made that will be used to create 

offspring. This offspring is created by combining 

genetic material from two parents using a crossover 

operation, as illustrated in the top part of in Figure 5b. 

There exist various forms of this crossover opera-

tor, of which the uniform, onepoint, and two-point 

crossovers are the most popular. Next, new genetic 

material is introduced in the offspring by means of 

a mutation operator as illustrated at the bottom of 

Figure 5b. Such a mutation randomly changes one 

or more genes within chromosomes. Finally, the 

newly created offspring is used to update the popu-

lation by either replacing it or by deploying so-called 

elitism. Such elitism involves the combination of the 

new offspring with a small number of the best solu-

tions from the original population to avoid loosing 

strong solutions.

To provide a small example of the results a 

GA-based DSE could obtain, we present some 

results of a small-scale case study where the design 

space consists of an application with 11 tasks that is 

to be mapped onto a 4-processor MPSoC architec-

ture with a crossbar interconnect [6]. The mapping 

design space contains more than four million design 

points, of which 175   000 are unique ones (as the tar-

get platform is a homogeneous, symmetric MPSoC). 

Because of the relatively small design space, in this 

particular case, we were also able to perform an 

Figure 5. GA-based mapping DSE: (a) general overview of the GA steps; and 

(b)  crossover and mutation operators.
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exhaustive search, allowing us to evaluate the qual-

ity of the GA-based search results. To account for 

the stochastic behavior of GAs, all results are aver-

ages over 300 GA runs. The fitness of mapping solu-

tions has been evaluated using the Sesame MPSoC 

simulation framework [15] (see also the Simulative 

fitness evaluation section). Figure 6 shows the 

results of the GA-based DSE with different popula-

tion sizes (10, 15, 40, or 80 chromosomes), a con-

stant mutation rate (0.1) and crossover probability 

(0.9), and a uniform crossover in a so-called prob-

ability-quality (P-Q) plot. Regarding the top part of 

this plot, the horizontal axis (top  x -axis) represents 

the quality of the result as a percentile toward the 

true optimum (a lower percentile indicates a result 

closer to the optimum) and the vertical axis repre-

sents the probability of achieving a result with that 

quality. The straight lines in the graph represent the 

theoretically derived probabilities of finding results 

using a simple, uniform random search. We have 

also computed the 80%–95% confidence intervals 

of the mean fitness value (execution time in cycles, 

in this case) of mapping solutions found by the 

GA, averaged over the 300 runs of each GA search. 

These confidence intervals, shown at the bottom 

of the graph in Figure 6, indicate how certain (as 

specified by the confidence level) we are that the 

real mean lies within the confidence interval. The 

more the confidence intervals for different exper-

iments are nonoverlapping, the more significant 

the difference of the mean behavior (which is 

clearly the case in the example of Figure 6). The 

results from this particular case study show that the 

GA-based DSE with the largest population size can 

find mapping solutions that are always very close to 

the real optimum: within the 0.1 percentile, imply-

ing that they belong to the best  175    000 / 1000 = 175  

solutions. A larger population size, however, comes 

with a higher number of fitness evaluations during 

the search and thus requires a longer search time 

(assuming the number of search iterations remains 

constant). According to Figure 6, a population size 

of 40 may therefore provide a good compromise.

Optimizing GA-based DSE

There are various methods for making the search 

process of a GA-based DSE more efficient. This 

allows the DSE process to either find the design 

candidates quicker (i.e., improve the convergence 

behavior of the DSE) or to spend the same amount 

of time to evaluate more design points. The latter 

can be used to enable the search of larger design 

spaces or to improve the chance of finding better 

design candidates (i.e., improve the confidence 

property of the DSE). One approach for optimizing 

the GA-based search is to enrich the genetic opera-

tors of the GA with domain knowledge such that they 

produce more diverse offspring or offspring with a 

higher probability of being closer to the optimum. 

For example, in [24], new GA operators have been 

proposed that optimize the search performance by 

1) reducing the redundancy present in chromo-

some representations (e.g., mapping symmetries in 

the case of homogeneous, symmetrical MPSoC plat-

forms); or 2) using a new crossover operator that is 

based on a mapping distance metric that provides a 

measure of similarity between mappings. Using this 

mapping distance information, the new crossover 

operator aims at retaining the strong chromosome 

parts of both of the parents. In [25], a new mutation 

operator has been proposed that considers the affin-

ity of tasks with respect to processors, the commu-

nication cost between tasks, and the differences of 

processor workloads to steer the mutation in such a 

way that offspring is produced with a higher proba-

bility of being (near) optimal.

Another approach for optimizing GA-based DSE 

concerns the reduction of the time taken to evaluate 

the fitness of solutions during the GA’s execution. 

As mentioned before, DSE approaches typically use 

either simulation or an analytical model to evalu-

ate the fitness of design points, where simulative 

approaches prohibit the evaluation of many design 

options due to the higher evaluation performance 

Figure 6. P-Q plot for GA-based DSE with different 

 population sizes.
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costs and analytical approaches suffer from accu-

racy issues. Therefore, in [26], a hybrid form of 

mapping DSE has been proposed that combines 

simulation with analytical estimations to prune the 

design space in terms of application mappings that 

need to be evaluated using simulation. To this end, 

the DSE technique uses an analytical model that 

estimates the expected throughput of an applica-

tion given a certain architectural configuration and 

application-to-architecture mapping. In the majority 

of the search iterations of the DSE process, this ana-

lytical throughput estimation avoids the use of simu-

lations to evaluate the design points. However, since 

the analytical estimations may in some cases be less 

accurate, the analytical estimations still need to be 

interleaved with simulative evaluations in order to 

ensure that the DSE process is steered into the right 

direction. A similar approach is taken in [27], where 

an iterative DSE methodology is proposed exploiting 

the statistical properties of the design space to infer, 

by means of an empirical analytic model, the design 

points to be analyzed with low-level simulations. 

The knowledge of a few design points is used to 

predict the expected improvement of unknown con-

figurations. Alternatively, in hierarchical DSE (e.g., 

[28], [29], and [30]), DSE is first performed using 

analytical or symbolic models to quickly find the 

interesting parts in the design space, after which sim-

ulation-based DSE is performed to more accurately 

search for the optimal design points.

Workload models: Static versus 
 dynamic

The DSE techniques discussed so far focus on the 

evaluation and exploration of MPSoC architectures 

under static, single-application workloads. Todays 

MPSoC systems, however, often require supporting 

an increasing number of applications and standards, 

where multiple applications can run simultaneously 

and concurrently contend for system resources. For 

each single application, there may also be different 

execution modes (or program phases) with different 

computational and communication requirements. 

For example, in software-defined radio appliances, a 

radio may change its behavior according to resource 

availability, such as the long-term evolution (LTE) 

standard which uses adaptive modulation and cod-

ing to dynamically adjust modulation schemes and 

transport block sizes based on channel conditions. 

Another example would be a video application that 

dynamically lowers its resolution to decrease its com-

putational demands in order to save battery life. As a 

consequence, the behavior of application workloads 

executing on the embedded system can change dra-

matically over time.

To capture the dynamism in application work-

load behavior during the design process, this section 

describes the concept of application scenarios [31] 

as well as scenario-based DSE [32], [33]. Like in the 

previous section, we will again use the example of 

application mapping exploration to illustrate the 

concepts. Application scenarios are able to describe 

the dynamism of embedded applications and the 

interaction between the different applications on 

the embedded system. An application scenario con-

sists of two parts: an inter-application scenario and 

an intra-application scenario. An inter-application 

scenario describes the interaction between multiple 

applications, i.e., which applications are concur-

rently executing at a certain moment in time. Inter-

application scenarios can be used to prevent the 

overdesign of a system. If some of the applications 

cannot run concurrently, then there is no need of 

reserving resources for the situation where these 

applications are running together. Intra-application 

scenarios, on the other hand, describe the different 

execution modes for each individual application.

The number of different application scenarios 

grows exponentially with the number of applications 

involved. So, to perform DSE with these application 

scenarios, this so-called scenario-based DSE needs to 

solve the problem that the number of possible appli-

cation scenarios is too large to exhaustively evaluate 

the fitness of design points with all of these scenarios. 

Therefore, a small but representative subset of sce-

narios must be selected for the evaluation of MPSoC 

design points. This representative subset must be used 

for comparing mappings and should lead to the same 

performance ordering as would have been produced 

when the complete set of the application scenarios 

would have been used. That is, if mapping m1 is better 

than mapping m2, the representative subset should be 

able to give a better predicted fitness to mapping m1 

than it assigns to mapping m2. However, the selection 

of such a representative subset is not trivial [34]. This 

is because the representative subset is dependent on 

the current set of mappings that are being explored. 

Depending on the set of mappings, a different subset of 

application scenarios may reflect the relative mapping 

qualities of the majority of the application scenarios.
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As a result, the representative subset cannot stat-

ically be selected. For a static selection, one would 

need to have a large fraction of the mappings that 

are going to be explored during the MPSoC DSE. 

However, since these mappings are only available 

during DSE, a dynamic selection method must be 

used. Thus, both the set of optimal mappings and the 

representative subset of scenarios need to be coex-

plored simultaneously such that the representative 

subset is able to adapt to the set of mappings that are 

currently being explored. Figure 7 shows the scenar-

io-based DSE framework. The left part of the picture 

provides a general overview of the exploration flow, 

whereas the right part illustrates the scenario-based 

DSE in more detail. As an input, the scenario-based 

DSE requires a scenario database, application mod-

els, and an MPSoC platform architecture model. The 

description of the application workload is split into 

two parts: 1) the structure and 2) the behavior. The 

structure of applications is described using appli-

cation models (as described before), whereas a 

scenario database [35] explicitly stores all the pos-

sible multiapplication workload behaviors in terms 

of application scenarios (i.e., intra-application and 

inter-application scenarios). In the scenario-based 

DSE framework, two separate components are rec-

ognized that simultaneously perform the coexplora-

tion tasks: the design explorer searches for the set 

of optimal mappings while the subset selector tries 

to select a representative subset of scenarios. To this 

end, they exchange data in an asynchronous fashion 

after every search iteration. Here, the design explorer 

sends a sample of the current mapping population 

to the subset selector, whereas the subset selector 

makes the most representative subset available for 

the fitness prediction in the design explorer.

The design explorer performs a traditional 

mapping DSE using a GA, as discussed in the pre-

vious section. As explained above, it uses a rep-

resentative subset of scenarios to evaluate the 

fitness of mapping solutions. At every iteration 

of the GA, the design explorer reads in the most 

recent representative scenario subset from the 

subset selector and submits the current popula-

tion of mapping solutions to the subset selector in 

order to allow the latter to select the appropriate 

representative subset. This subset selection is not 

trivial as there are many scenarios to pick from, 

leading to a huge number of possible scenario 

subsets. Therefore, the subset selector uses the set 

of mappings it regularly receives from the design 

explorer to train the scenario subset such that it 

is representative for the current population in the 

design explorer. As the population of the design 

explorer slowly changes over time, the representa-

tive subset will change accordingly. In [33], three 

different techniques for selecting a representative 

scenario subset are presented and evaluated: a 

GA-based scenario space search (which means 

that two GAs are running concurrently, one for the 

design explorer and one for the subset selector), 

a feature selection (FS)-based search algorithm, 

and a hybrid combination (HYB) between these 

two. The latter aims at combining the strengths 

of both the GA-based and FS-based searches. 

That is, a GA is capable of quickly exploring the 

space of potential scenario subsets, but due to its 

stochastic nature, it is susceptible to missing the 

optimal scenario subsets. This is not the case with 

the  feature selection algorithm as it more system-

atically explores the local neighborhood of a sce-

nario subset.

Figure 7. The exploration framework for scenario-based DSE.
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To give a feeling of the performance of the three 

different fitness prediction techniques, Figure 8 

shows the results of a scenario-based DSE experi-

ment in which the three techniques are compared 

for three different scenario subset sizes: 1%, 4%, and 

8% of the total number of application scenarios. In 

this experiment, the mapping of ten applications 

with a total of 58 tasks and 75 communication chan-

nels is explored. The multiapplication workload 

consists of 4607 different application scenarios in 

total. The target platform is a heterogeneous MPSoC 

with four general-purpose processors, two ASIPs and 

two ASICs, all connected using a crossbar network. 

In this experiment, a DSE with a fixed duration of 

100 min is performed for all three subset selector 

approaches. The results have been averaged over 

nine runs. To evaluate the fitness of mapping solu-

tions, we have again deployed the Sesame MPSoC 

simulation framework (see the Simulative fitness 

evaluation section). To determine the efficiency of 

the multiobjective DSE, we obtain the distance of 

the estimated Pareto front (execution time versus 

energy consumption of mapping solutions) to the 

optimal Pareto front. For this purpose, we normal-

ized execution time and energy consumption to a 

range from 0 to 1. As the optimal Pareto front is not 

exactly known since the design space is too large to 

exhaustively search it, we have used the combined 

Pareto front of all our experiments for this. 

The size of the scenario subset provides a trade-

off between accuracy and convergence of the 

search. That is, a larger scenario subset will lead 

to a more accurate fitness prediction of mappings 

in the design explorer at the cost of a larger com-

putational overhead to obtain the fitness of a sin-

gle mapping causing a slower convergence of the 

search. This can be seen in Figure 8. The GA and 

the FS subset selection methods have worse results 

when the subset becomes larger (remember that 

we use a fixed DSE duration of 100 min). For a sub-

set size of 4%, the hybrid selector is, however, still 

able to benefit from a subset with a higher accu-

racy. The slower convergence only starts to effect 

the efficiency for the 8% subset.  Comparing the dif-

ferent methods, the hybrid method shows the best 

results. The only exception is for the 1% subset. In 

this case, the GA is still able to search the smaller 

design space of possible subsets. Still, the result of 

the hybrid method at 4% is better than the result  

of the GA at 1%. With the larger subset sizes, the 

hybrid method can exploit both the benefits of  

the feature selection and the GA.

IN THIS ARTICLE, we have presented various aspects 

of the state of the art in embedded systems DSE. Here, 

we have organized our discussion along the lines of 

the two primary elements of DSE: the evaluation of 

single design points and the search strategy for cover-

ing the design space. For the coming years, there are 

still many open research challenges for this domain. 

Just to give a few examples, first, embedded systems 

more and more need to become adaptive systems due 

to increasingly dynamic application workload behav-

ior (as was previously discussed), the need for QoS 

management to dynamically trade off different system 

qualities such as performance, precision, and power 

consumption, and the fact that we have reached a 

technology level where our circuits are no longer fully 

reliable, increasing the chances of transient and per-

manent faults. This calls for research to take system 

adaptivity, in which a system can continuously cus-

tomize itself at runtime according to the application 

workload at hand and the state of the system (e.g., [5] 

and  [36]), into account in the process of DSE.

Second, the trend toward cyberphysical systems 

and the IoT makes the process of DSE even more 

complicated since DSE in this context requires 

taking the behavior of the physical environment 

(including user behavior) into account. This calls for 

renewed research into the speed-accuracy tradeoff 

for the different models and their possible co-simula-

tion applied in DSE for this domain.

Figure 8. Quality of the DSE for the different subset 

selection approaches. The quality is determined 

based on the distance between the estimated Pareto 

front and the optimal front.
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A FINAL RESEARCH direction involves the introduc-

tion of new design objectives in the process of (early) 

DSE, in addition to the traditional objectives such as 

system performance and power/energy consumption. 

Arguably, a good example is the need for taking system 

security into account as an optimization objective. As 

embedded systems are becoming increasingly ubiq-

uitous and interconnected, they attract a worldwide 

attention of attackers, which makes the security aspect 

more important than ever during the design of those 

systems. Currently, system security is still mostly consid-

ered as an afterthought and typically is not taken into 

account during the very early design stages. However, 

any security measure that may eventually be taken 

later in the design process does affect the already 

established tradeoffs with respect to the other system 

objectives such as performance, power/energy con-

sumption, cost, etc. Thus, covering the security aspect 

in the earliest phases of design is necessary to design 

systems that are, in the end, optimal with regard to all 

system objectives. However, this poses great difficulties 

because unlike the earlier mentioned conventional 

system objectives like performance and power con-

sumption, security is hard to quantify. This necessitates 

research on techniques that make it possible to incor-

porate security as an objective in early DSE. 
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