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Analysis procedures are needed to extract useful information from the large amount of gene expression data

that is becoming available. This work describes a set of analytical tools and their application to yeast cell cycle

data. The components of our approach are (1) a similarity measure that reduces the number of false positives,

(2) a new clustering algorithm designed specifically for grouping gene expression patterns, and (3) an interactive

graphical cluster analysis tool that allows user feedback and validation. We use the clusters generated by our

algorithm to summarize genome-wide expression and to initiate supervised clustering of genes into biologically

meaningful groups.

The advent of oligonucleotide arrays and cDNA micro-

arrays (Fodor et al. 1993; Schena et al. 1995; Lockhart

et al. 1996) has enabled biologists to measure the ex-

pression levels of thousands of genes in parallel. These

technologies have raised many exciting questions in

experimental design and data analysis. One type of ex-

periment involves monitoring gene expression while a

cell undergoes some biological process. The yeast Sac-

charomyces cerevisiae makes an excellent organism for

this type of experiment because its genome has been

sequenced and all of the ORFs have been determined.

Some of the processes in yeast that have recently been

explored are the diauxic shift (DeRisi et al. 1997),

sporulation (Chu et al. 1998) and the cell cycle (Cho et

al. 1998; Spellman et al. 1998). Each study determines

the expression level of every ORF at a series of time

points. The resulting data set must be analyzed to de-

termine the roles of specific genes in the process of

interest.

Once the expression levels have been determined

by experimental means, it is important to find genes

with similar expression patterns (coexpressed genes).

There are two reasons for interest in coexpressed genes.

First, there is evidence that many functionally related

genes are coexpressed (Eisen et al. 1998; Spellman et al.

1998). For example, genes coding for elements of a

protein complex are likely to have similar expression

patterns. Figure 1 illustrates one such case. Hence,

grouping ORFs with similar expression levels can re-

veal the function of previously uncharacterized genes.

The second reason for interest in coexpressed genes is

that coexpression may reveal much about the genes’

regulatory systems. For example, if a single regulatory

system controls two genes, then we might expect the

genes to be coexpressed. In general, there is likely to be

a relationship between coexpression and coregulation.

In this work, we present a systematic analysis proce-

dure to identify, group, and analyze coexpressed genes.

The procedure is applied to the seventeen time-point

mitotic cell cycle data (Cho et al. 1998) available at

http://genomics.stanford.edu/yeast/cellcycle.html.

Processing the Data

A brief description of the cell cycle experiment is nec-

essary to understand the data set. The detailed experi-

mental protocol is given in the original work (Cho et

al. 1998). Cells in a yeast culture were synchronized,

and culture samples were taken at 10-min intervals un-

til 17 observations were obtained. This corresponds to

the yeast undergoing approximately two cell cycles.

The mRNA was isolated from each of the samples, con-

verted to cDNA, and fluorescently labeled.

Arrays, containing oligonucleotides (oligos)

complementary to each of the yeast ORFs, were then

used to assess the quantity of various transcripts. This

was done by allowing the fluorescently labeled cDNA

to hybridize to the oligos on the arrays and then mea-

suring the intensity of fluorescent marks. Studies

(Wodicka et al. 1997) show that the transcription level

of a specific gene is roughly proportional to the inten-

sity of the fluorescent signal left on the complemen-

tary spot of the oligo array. The intensities are scaled in

an attempt to account for the differences in hybridiza-

tion properties of arrays used in the experiment. It is

these scaled intensities that are reported in Cho et al.

(1998) as the expression levels of the ORFs at the sev-

enteen time points.

Prior to initiating any analysis, we removed the

data corresponding to control sequences that were

placed on each array for calibration purposes. In addi-

tion, we removed data corresponding to ORFs anno-

tated to reflect the fact that there was a problem with

probe design that could lead to cross-hybridization,

loss of signal, or reduced accuracy. At this stage, 5914
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ORFs remained from the original 6218. Another filter-

ing step was the removal of the column of data corre-

sponding to the 90-min time point, after correspon-

dence with a coauthor (M. Campbell, pers. comm.) of

the cell cycle study revealed that the data for this time

point may not be dependable.

A final filtering step was the removal of the ORFs

that were either expressed at very low levels or did not

vary significantly across the time points. There is no

meaningful way to group these ORFs. Some of them

may not be genes, but rather, random sequences that

begin with a start codon and end with a stop codon;

the expression values of these ORFs simply reflect back-

ground hybridization. Others may be genes with such

low expression level that they cannot be distinguished

from the background level, or constitutively expressed

genes. The ORFs whose expression values across the

time points had mean or variance in the lower 25% of

the data were removed by this filtering step. The

threshold was chosen after viewing plots of expression

levels of individual ORFs, and examining the distribu-

tions of mean and variance of expression values for the

entire data set. Analogous filtering schemes include ac-

cepting only those ORFs that show at least an n-fold

change in expression level throughout the time hori-

zon (Tamayo et al. 1999). At the conclusion of the

filtering stage, expression values of 4169 ORFs at 16

time points remained.

The filtering procedure is justified by the fact that

the value at any time point only roughly reflects the

true expression level, that is, the quantity of mRNA

present. Variability is inherent in the hybridization,

the image processing, and the proportionality between

fluorescence signal and mRNA level. However, deleting

data can result in the loss of much valuable informa-

tion. Therefore, we chose a filtering procedure that re-

jects many unreliable and uninformative data points,

while accepting the majority of ORFs. Once more is

known about the variation of expression measure-

ments, it will be possible to design filters that distin-

guish actual changes in expression level from back-

ground noise and measurement error. In the absence of

such information, several different filters should be at-

tempted and subjective filtering parameters should be

chosen on the basis of the specific data set.

Once the data set has been filtered, we find that it

is useful to scale the expression level of each gene to

have mean zero and variance one. This captures the

notion that the expression patterns of two genes may

be similar in shape, even though one is expressed at a

much higher level than the other. We will refer to a

data set that has been scaled in this manner as the

standardized data.

Many of the ORFs that pass through the filter are

yeast genes. Because this is not always the case, we will

use the general term ORF, unless we are discussing a

characterized gene.

Expression Similarity

After the data set has been filtered, the ORFs with simi-

lar expression patterns (i.e., patterns that rise and fall

concordantly) must be determined. The first step is to

select a pairwise measure of coexpression. The measure

should assign high scores to coexpressed ORFs and low

scores to ORFs with unrelated expression patterns. Pos-

sible measures include correlation, rank correlation,

Euclidean distance, and the angle between vectors of

observations.

In gauging the performance of a measure, one

might consider taking gene pairs that are known to be

coregulated or functionally related, and computing the

score of each pair. These scores could then be com-

pared with the scores of unrelated gene pairs. The mea-

sure that gives high scores only to related genes would

be chosen. Unfortunately, none of the measures men-

tioned above consistently give high scores only to re-

lated gene pairs. In fact, not all related genes are coex-

pressed, and some unrelated genes have similar expres-

sion patterns. Because there is a connection between

coexpression and functional relation, coexpressed

genes provide excellent candidates for further study.

However, the connection is complex, and it cannot be

used to identify the best choice of similarity measure.

An alternate way to select a measure is needed.

One intuitive method for selecting a measure is to

plot the expression data for many ORF pairs and de-

termine whether the plots that look similar are scoring

well. With this method we are measuring coexpression

directly without any assumptions concerning gene

function or regulation. It turns out that this simple

heuristic does well in rating the measures, and suggests

Figure 1 Expression levels of the six members of the MCM
protein complex: MCM2, MCM3, MCM6, CDC46, CDC47, and
CDC54. The data have been standardized by subtracting the
mean and dividing by the standard deviation.
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improved measures that have not been considered pre-

viously.

We found that most measures scored curves with

similar expression patterns well, but often gave high

scores to dissimilar curves. We will refer to a pair that

is dissimilar, but receives a high score from the simi-

larity measure, as a false positive. The correlation co-

efficient performed better than the other measures, but

still resulted in many false positives. The intuition be-

hind using correlation as a measure is as follows. If the

expression level of an ORF at each time point is viewed

as a coordinate, then the standardized expression level

of each ORF at all t time points describes a point in t

dimensional space, and the Euclidean distance be-

tween any two points in this space can be computed. It

can be shown that the two points for which the dis-

tance is minimized are precisely the points that have

the highest correlation. In other words, highly corre-

lated ORF pairs are close. We note that simply using

Euclidean distance without standardizing the data is

ineffective, because ORF pairs whose expression pat-

terns have the same shape but different magnitudes

will not score well.

Despite this intuitive reasoning, the issue of false

positives needs to be resolved. We found that many of

the false positives occurred because of an outlier effect.

If the expression levels of two ORFs are completely

unrelated at all but one of the time points, and both

ORFs have a high peak or valley at the remaining time

point, then the correlation coefficient will be very

high. For example, Figure 2 shows the expression data

of two genes with a very high correlation coefficient

when all of the time points are considered. Removing

the single outlier from consideration results in a nega-

tive correlation. An outlier of this type can occur be-

cause of experimental error.

This example leads to a new measure we call jack-

knife correlation, after the well-known jackknifing pro-

cedure in computational statistics (Efron 1982). For an

ORF pair i,j, let rij denote the correlation of the pair i,j;

also, let r
(l)
ij denote the correlation of the pair i,j com-

puted with the lth observation deleted. For a data set

with t observations, we define the jackknife correlation

Jij as Jij = min{r(1)
ij . . . r

(2)
ij , . . . r

(t)
ij , . . . rij}. Figure 3

shows the difference between correlation and jackknife

correlation for all ORF pairs with a correlation of 0.6 or

higher. The difference between the two similarity mea-

sures exceeds 0.2 in >8% of the pairs. To show that the

measures are not distinguished by a simple shift, we

note that the range of differences is between 0 and 1.4.

Jackknife correlation is robust to single outliers.

Use of jackknife correlation results in a reduction in

false positives, while continuing to give high scores to

gene pairs that exhibit similar behavior throughout the

time points. More general definitions of jackknife cor-

relation that are robust to n outliers can easily be for-

mulated. However, deleting every subset of size n in

performing a generalized jackknife becomes computa-

tionally intensive for even small values of n. If data is

believed to contain many outliers, alternate methods

should be used.

Once a measure has been chosen, the score it gives

to any ORF pair needs to be assessed. In theory, the

statistical distribution of a measure can be used to ob-

tain the significance of a score. This does not work in

practice, because the expression level observations are

not independent, and the distributions of the various

measures are extremely complicated. Computing the

distribution of the jackknife correlation is not practi-

cal. Another possible method for determining a signifi-

cance level is to plot the histogram of all pairwise

Figure 2 (a) Standardized expression data for YJR068W (RFC2)
and YJR132W (NMD5). The gene pair has a correlation coefficient
of 0.87. (b) Standardized expression data for the same two genes
with time 100 removed. Using only the remaining points results
in a correlation coefficient of 10.29. (Solid line) RFC2; (broken
line) NMD5.
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scores and decide whether an obvious cut off exists.

However, as seen in Figure 4, the histogram of jack-

knife correlation scores does not reveal a clear thresh-

old value. To answer the question of assessing signifi-

cance, we examined the expression patterns of ORF

pairs with various jackknife correlation values. Similar

expression patterns generally had a score of 0.7 or

higher. We used this value as a rough guide in the

clustering procedure discussed in the next section.

Grouping Similar ORFs

Once a similarity score between each pair of ORFs has

been computed, this set of scores can be used as a basis

for grouping the ORFs into clusters. However, prior to

performing any cluster analysis, the following ques-

tions need to be answered. First, what information do

we expect to obtain by clustering all of the ORFs? Sec-

ond, what properties should the clusters have?

A common answer to the first question is that clus-

ters will contain functionally related genes. Several

studies support this notion by noting that some genes

known to have similar functions were grouped to-

gether (Eisen et al. 1998; Spellman et al. 1998). How-

ever, it is easy to find examples of functionally related

genes that are not coexpressed, as well as genes of un-

related function with similar expression patterns. Ex-

amples of the former may include genes involved in

DNA repair that respond to different types of damage,

whereas the latter case can occur either by chance or

because the gene products are needed at the same

phase of the cell cycle.

Another reason for clustering ORFs is that regula-

tory systems may be revealed. Expression data has been

used recently to explore regulatory networks and to

find transcription factor binding sites (Tavazoie et al.

1999). ORFs that are coexpressed throughout a variety

of conditions may be genes that are regulated by a

common regulatory system. Alternatively, two similar

regulatory systems may be at work. Additional study of

the genes in question, including their chromosomal

locations and their promoter regions, may reveal the

true answer. The point is that the clusters do not reveal

the final answers. Rather, they are an exploratory tool

that is meant to identify candidate genes for further

study.

The motivation for clustering underlies the answer

to our second question. Both functional relation and

coregulation are transitive properties; if gene x is re-

Figure 4 Relative frequency histogram of jackknife correlation
values. All 8,688,196 pairwise scores are represented. The num-
ber of pairs in each bin is normalized by this total.

Figure 3 (a) Frequency histogram of the difference between
correlation and jackknife correlation for gene pairs whose corre-
lation exceeds 0.6. (b) An amplification of the tail of the histo-
gram shown in a.
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lated to gene y, and gene y is related to gene z, then x

and z should be related. To reflect transitivity, all mem-

bers within a cluster should be coexpressed with all

other members. In other words, the cluster should

have a quality guarantee. The quality of a cluster C can

be quantified by its diameter, defined as 1–mini,j∈C{sij},

in which s is the similarity measure being used, and i,j

are ORFs in cluster C. Alternatively, the quality can be

assessed subjectively by plotting the standardized ex-

pression patterns.

There is much literature available on cluster analy-

sis, and good surveys can be found (Hartigan 1975;

Kaufman and Rousseeuw 1990; Theodoridis and Kou-

troumbas 1999). Many clustering algorithms are avail-

able in the statistical package S-PLUS (Venables and

Ripley 1997). We briefly outline some of the common

methods.

Hierarchical clustering methods are very popular

because of their simplicity and fast running times. Ap-

plications of hierarchical clustering to expression data

are described in several works (Eisen et al. 1998; Wen et

al. 1998). Agglomerative hierarchical methods itera-

tively join the closest elements in the data into a tree

structure. Once the tree is constructed, the data can be

partitioned into any number of clusters by cutting the

tree at the appropriate level. Three common options

for hierarchical clustering are single linkage, average

linkage, and complete linkage. These options differ in

their definition of the distance between two clusters.

Single linkage defines the distance between clusters C1

and C2 as the minimum distance over all pairs i,j,

where i∈C1 and j∈C2. Average linkage takes the average

distance over all pairs, and complete linkage uses the

maximum distance over all pairs.

Single linkage often produces large, elongated

clusters. Complete linkage finds small, compact clus-

ters that do not exceed some diameter threshold. The

threshold value is determined by the level at which the

tree is cut. Average linkage is sometimes used as a com-

promise between the other two options. Several prob-

lems are shared by these hierarchical methods. Deci-

sions to join two elements are based only on the dis-

tance between those elements, and once elements are

joined they cannot be separated. This is a local deci-

sion-making scheme that does not consider the data as

a whole, and it may lead to mistakes in the overall

clustering. In addition, for large data sets, the hierar-

chical tree is extremely complex, and the choice of

location for cutting the tree is unclear.

Other methods include k-means clustering and

self-organizing maps. The k-means method (Hartigan

1975) identifies k points that function as cluster cen-

ters. Each data point is then assigned to one of these

centers in a way that minimizes the sum of the dis-

tances between all points and their centers. Improved

positions for the cluster centers are sought, and the

algorithm iterates. The algorithm converges quickly for

good initial choices of the cluster centers. An applica-

tion of k-means clustering to expression data is pro-

vided in Tavazoie et al. (1999). One of the main prob-

lems with this method is that the number of clusters, k,

must be specified prior to running the algorithm. For

our data set, the number of clusters is not known in

advance, and the final clustering depends heavily on

the choice of k. Furthermore, clusters formed by k-

means do not satisfy a quality guarantee.

The method of self-organizing maps (SOM) has

been applied recently to expression data (Tamayo et al.

1999). This method is closely related to the k-means

procedure (Kohonen 1997). The k clusters resulting

from the SOM method correspond to k representative

points in a prespecified geometrical configuration,

such as a rectangular grid. Data points are mapped

onto the grid, and the positions of the representative

points are iteratively updated in a manner that even-

tually places each one at a cluster center. Clusters that

are close to each other in the initial arrangement tend

to be more similar to each other than those that are

further apart. Although this is a useful feature, the

SOM method requires the choice of geometry in addi-

tion to the choice of k. Other clustering methods, in-

cluding an interesting two-way clustering approach

(Alon et al. 1999), have been applied recently to ex-

pression data.

We have developed a clustering algorithm that

avoids many of the problems of the above algorithms.

Because it was developed with expression data in

mind, the method emphasizes the desired properties of

ORF clusters. The focus of the algorithm is to find large

clusters that have a quality guarantee. Transitivity is

ensured by finding clusters whose diameter does not

exceed a given threshold value d; thus, any two ORFs

in a cluster have a jackknife correlation value that is at

least 1–d. The cluster diameter can range from 0 to 2,

because jackknife correlation lies in the interval [–1,1].

The quality cluster algorithm (QT_Clust) works as

follows: a candidate cluster is formed by starting with

the first ORF and grouping the ORF that has greatest

jackknife correlation with it. Other ORFs are iteratively

added. Each iteration adds the ORF that minimizes the

increase in cluster diameter. The process continues un-

til no ORF can be added without surpassing the diam-

eter threshold. A second candidate cluster is formed by

starting with the second ORF and repeating the proce-

dure. We note that all ORFs are made available to the

second candidate cluster. That is, the ORFs from the

first candidate cluster are not removed from consider-

ation. The process continues for all ORFs. At the con-

clusion of this stage, we have a set of candidate clus-

ters. The number of candidate clusters is equal to the

number of ORFs, and many candidate clusters overlap.

At this point, the largest candidate cluster is selected
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and retained. The ORFs it contains are removed from

consideration and the entire procedure is repeated on

the smaller set. A possible termination criterion is to

stop when the largest remaining cluster has fewer than

some prespecified number of elements. The pseudo-

code for the algorithm is given in Figure 5.

Use of the candidate clusters in this manner elimi-

nates a bias associated with forming clusters one at a

time. Some of the elements that are incorporated into

a cluster in the beginning of the algorithm may be

more suited for a cluster that is formed in a later stage.

Because our aim is to find large clusters that satisfy a

quality guarantee, we allow each ORF to initiate a can-

didate cluster, and then we select the largest cluster

formed. This implies that the algorithm is not sensitive

to the order in which the similarity data appear.

We used a straightforward implementation of

QT_Clust to partition the 4169 ORFs into clusters with

diameter <0.3. The running time of the algorithm was

∼30 min on a Sparc Ultra, Unix workstation. The

threshold value, which corresponds to the 0.7 value of

jackknife correlation mentioned earlier was chosen af-

ter visually inspecting clusters formed at various

thresholds. The resulting clusters gave us a good indi-

cation of the type of expression patterns that existed in

the data; 24 of the largest ones are shown in Figure 6.

We note that the precise threshold value is not impor-

tant. At this point in our analysis, our goal is to dis-

cover the general cluster patterns present in the data so

that specific clusters can be analyzed with the interac-

tive approach discussed in the next section.

Although the threshold value will affect the cluster

number to some extent, this is not a serious problem.

The k- means and SOM approach assign every ORF to a

cluster. If the prespecified number of clusters is too

small, unrelated patterns will be clustered together. If it

is too large, clusters with similar patterns will be bro-

ken apart. Changing the threshold in QT_Clust may

change the number and size of clusters, but each clus-

ter will have the quality guarantee and no unrelated

patterns will be forced into a single cluster.

Our algorithm has several advantages over existing

procedures. The total number of clusters is not needed

at the start of the algorithm, and all of the clusters

achieve the quality guarantee discussed above. The al-

gorithm has some resemblance to the complete linkage

hierarchical procedure, but the clusters we find at a

specified threshold are much larger on average. Fur-

ther, because each ORF is considered as a potential

cluster center, local decisions do not have a large im-

pact on the final clustering. Therefore, we conjecture

that our method is less sensitive than hierarchical

methods to small perturbations in the data, including

the removal of ORFs through filtering.

Analyzing the Clusters

Some valuable information can be gained by examin-

ing the general expression patterns revealed by the

clustering algorithm. For example, the clusters shown

in Figures 6.1 and 6.5 are periodic. Because the time

horizon for the experiment spanned two cell cycles,

the periodicity can be explained by noting that many

of the genes in these clusters are known to be cell cycle

regulated. For example, among some of the genes

known to peak in late G1 phase that are contained in

cluster 6.1, are SWE1, RAD27, CDC21, CDC45, UNG1,

and RFA2.

Several other clusters (e.g. Fig. 6.9) show a maxi-

mum expression level in the first time point. This be-

havior is consistent with genes that are transiently af-

fected by cell cycle arrest and synchronization. In the

cell cycle experiment, the synchronization was

achieved by an increase in temperature, and six mem-

bers of the heat shock protein (HSP) family appear in

this type of cluster. It is important to note that these

types of patterns cannot be discovered if the data were

subject to a more stringent filter, particularly one that

requires periodicity in the expression levels.

Once the general cluster patterns are revealed, we

may analyze the specific clusters of interest in more

detail. Our clustering algorithm motivates an interac-

tive procedure that begins with a particular expression

pattern and builds a cluster centered at this pattern.

The pattern may either represent one of the shapes

revealed by the original clustering, or it may corre-

spond to a specific gene or gene family of interest.

After a pattern has been selected, it is used as a seed

to initiate a cluster. As described in QT_Clust, ORFs are

added to the cluster in the order that minimizes the

increase in cluster diameter. The order in which the

ORFs enter the cluster, and the increase in diameter are

recorded. The procedure terminates when a sufficiently

high diameter is achieved (e.g., d = 1). To this point,

the procedure is equivalent to running QT_Clust for a

single ORF at a high diameter threshold value.

Once the procedure terminates, interactive analy-

sis can begin. The original pattern is plotted. Addi-

tional patterns are then plotted on the same graph in

Figure 5 Algorithm QT_Clust takes as input the set G of ORFs
and a diameter threshold d, and returns a set of clusters.
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the order that they entered the cluster. The cluster di-

ameter is reported at each step. The advantage of this

supervised approach is that the user chooses the center

of the cluster and has interactive control of its size

(number of elements) and quality (diameter). We now

illustrate two applications of this method.

Figure 6 The 24 largest clusters found by QT_Clust. These plots give a good overview of the types of patterns found in the data.
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The method can be used to find cell cycle-

regulated genes. Specifically, we found candidate ORFs

whose expression level peaked in late G1 phase. We

began by choosing the representative pattern from the

cluster shown in Figure 6.1. The pattern was computed

by taking the median expression level of the 41 genes

in the cluster at each of the time points. The median

was used because it is insensitive to outliers. This tech-

nical point may become important if the representa-

tive is chosen from a cluster with no quality guarantee;

for example, one produced by k-means or SOM. Figure

7 shows three clusterings obtained by varying the di-

ameter. The cluster in Figure 7b contains 83 elements

and maintains a high quality.

Figure 7 Iterative building of G1 cluster. (a) Forty-one elements
within a diameter threshold of 0.3. (b) Eighty-three elements
within a diameter of 0.5. The cluster is beginning to contain
patterns that peak in phases other than G1. (c) By increasing the
diameter threshold to 1.2, the cluster grows to 272 elements, but
now clearly contains poorly matching patterns.

Figure 8 Iterative building of MCM cluster. The first 10 mem-
bers of the cluster include 4 of the 5 members of the MCM family
that were available to the clustering procedure.

Figure 9 Histogram of the distance between ORFs with a jack-
knife correlation of at least 0.9. Distance is measured in terms of
the number of intervening ORFs separating the members of the
pair. A disproportionate number (21) are consecutive on their
respective chromosomes.
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Another application of the interactive approach is

to initiate a cluster with a specific gene of interest. This

is more effective than clustering all of the ORFs and

then choosing the cluster that contains the gene. In

addition to the advantages of placing the gene at the

center and controlling the cluster size and quality, the

supervised approach avoids the uninformative situa-

tion in which the gene is put in a very small group, as

may occur with global clustering. When plotting the

cluster around a gene of interest interactively, possible

stopping rules may be based on cluster diameter, clus-

ter size, or fraction of known related genes found. For

example, if adding an additional ORF would cause a

sharp increase in cluster diameter, then no more ORFs

should be added. If a certain number of candidate ORFs

are required for some application, then the algorithm

can be terminated when the required number of can-

didates is attained. If the goal is to find genes related to

some known gene family, then a possible stopping

time is when some high fraction of known genes in the

family have been added to the cluster. Figure 8 dem-

onstrates this last approach on the five members of the

MCM gene family (the sixth member, MCM6, was re-

moved in the filtering process). By starting with

MCM3, a cluster of diameter 0.45 is able to group

MCM2, CDC54, and CDC47. Initiating clusters with

other members of the family that are near the family

average gives comparable results. Here we stopped ex-

tending the cluster once most of the known genes in

the family were added. The other genes in the cluster

may be related to this family.

By combining expression data with chromosomal

location information, we can use some of our analysis

tools to identify potential gene candidates that are

controlled by a common regulatory system. To this

end, we identified all ORF pairs that had jackknife cor-

relation >0.9. In 325 cases, both members of the pair

were located on the same chromosome. In a dispropor-

tionate number of these cases, the members of a pair

appeared consecutively on the chromosome. In other

words, no other ORFs existed in the region between the

pair of interest. Figure 9 plots the number of ORF pairs

with jackknife correlation >0.9 as a function of the

distance between the ORFs in the pair. There is evi-

dence that regulatory systems in yeast are located close

to the genes they regulate (Ptashne and Gann 1997),

and Cho et al. (1998) conjecture that consecutive

genes on opposite strands may be controlled by one

regulatory system. However, we note that for many of

these highly correlated pairs, the ORFs physically over-

lap on the chromosome. This observation also points

to the need for careful design of probes for ORFs that

are known to overlap.

Conclusions

In this work we have outlined a systematic analysis

procedure for gene expression data sets and applied it

to a yeast cell cycle experiment. The four steps in-

volved in the procedure are preprocessing (filtering)

the data, choosing a similarity measure, clustering the

data, and analyzing the resulting clusters.

Our method differs from related works in several

aspects. The jackknife correlation is a new similarity

measure; it is insensitive to the outlier effect, and it

captures the shape of an expression pattern. As we

noted, our new clustering algorithm has several advan-

tages over existing algorithms. Clustering the expres-

sion patterns does not conclude our analysis, but

rather provides candidates for further study. Through-

out the analysis we emphasize interaction and visual

inspection of the results. Our analysis methods can be

used on the yeast data set to discover more informa-

tion about gene function and regulation, and they can

be applied to data from other gene expression experi-

ments.
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