
Exploring Feature Interactions in the Wild

The New Feature-Interaction Challenge

Sven Apel,
Sergiy Kolesnikov,
Norbert Siegmund
University of Passau

Germany

Christian Kästner
Carnegie Mellon University

USA

Brady Garvin
University of

Nebraska—Lincoln
USA

ABSTRACT
The feature-interaction problem has been keeping researchers and
practitioners in suspense for years. Although there has been sub-
stantial progress in developing approaches for modeling, detect-
ing, managing, and resolving feature interactions, we lack suffi-
cient knowledge on the kind of feature interactions that occur in
real-world systems. In this position paper, we set out the goal to
explore the nature of feature interactions systematically and com-
prehensively, classified in terms of order and visibility. Under-
standing this nature will have significant implications on research
in this area, for example, on the efficiency of interaction-detection
or performance-prediction techniques. A set of preliminary results
as well as a discussion of possible experimental setups and corre-
sponding challenges give us confidence that this endeavor is within
reach but requires a collaborative effort of the community.

Categories and Subject Descriptors: D.3.1 [Software Engineer-
ing]: Management—Software Configuration Management; D.3.3
[Software Engineering]: Reusable Software—Domain Engineer-
ing

General Terms: Management, Experimentation, Performance, Re-
liability

Keywords: Feature Interactions, Feature-Interaction Problem, Fea-
ture Modularity, Feature-Oriented Software Development

1. INTRODUCTION
The feature interaction problem is fascinating because
it is real and easy to explain, yet has been hard to pin
down in a satisfactory way [12].

Feature modularity is the holy grail of feature-oriented software
development. Ideally, one can deduce the behavior of a system
composed from a set of features solely on the basis of the behavior
of the features involved. But, features interact. Despite substantial
progress in developing plugin architectures for feature composi-
tion [25, 26, 52, 53], formalisms for describing features as coher-
ent units [10, 13, 20, 39], as well as modularization techniques for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD ’13 October 26, 2013, Indianapolis, IN, USA
Copyright 2013 ACM 978-1-4503-2168-6/13/10...$15.00.
http://dx.doi.org/10.1145/2528265.2528267.

crosscutting feature implementations, such as feature-oriented pro-
gramming [1,2,9,45] and aspect-oriented programming [3,31,34],
feature interactions are still a major challenge and counteract fea-
ture modularity and compositional reasoning [14, 29, 43, 57].

A feature interaction occurs when the behavior of one feature
is influenced by the presence of another feature (or a set of other
features). Often, the interaction cannot be deduced easily from the
behaviors of the individual features involved, which hinders com-
positional reasoning. A classic example is the inadvertent inter-
action between the call-forwarding and call-waiting features of a
telephony system [14]: If both features are activated, the system
reaches an undefined, possibly unsafe state when it receives a call
on a busy line.

Not all feature interactions are undesired. Often a feature com-
municates and cooperates with other features to accomplish a task
in concert. For example, transaction management and locking in a
database system cooperate to ensure atomicity, consistency, isola-
tion, and durability [24].

Nevertheless, it is imperative to analyze and understand the con-
sequences of all feature interactions inside a system, and, pos-
sibly, to resolve undesired interactions. The root of the feature-
interaction problem is that the number of potential interactions in a
system is exponential in the number of features.

A question that has not been addressed so far in sufficient breadth
and depth is: Which kinds of feature interactions exist in real-world
systems and how do they manifest? Especially, we are interested in
two dimensions that characterize feature interactions: (1) order and
(2) visibility. The order of a feature interaction is defined as the
minimal number of features (minus one) that need to be activated
to trigger the interaction. For example, an interaction between two
features is of order one. The visibility of a feature interaction de-
notes the context in which a feature interaction appears. Feature
interactions may appear at the level of the externally observable
behavior of a program, including functional behavior (e.g., seg-
mentation faults and all kinds of other bugs) and non-functional
behavior (e.g., performance anomalies and memory leaks). Feature
interactions may also appear internally in a system, at the level of
code that gives rise to an interaction or at the level of control and
data flow of a system (e.g., data-flows that occur only when two or
more features are present). We believe that there may be systematic
correlations between externally-visible and internally-visible inter-
actions, which is a major motivation for our endeavor to explore
and understand the nature of feature interactions.

There is a large body of research on detecting, managing, and re-
solving different kinds of feature interactions, in various domains
(e.g., Internet applications [16], service systems [55], automotive
systems [18], software product lines [27], requirements engineer-
ing [42], and computational biology [19]), and using different ap-

proaches (e.g., formalisms describing features and their interac-
tions [10, 13, 20, 39], architectures that avoid classes of interac-
tions [25,26,52,53], sampling, static-analysis, and model-checking
approaches for interaction detection [4,5,15,21,27,28,44,48], and
techniques for resolving interactions at run-time [22, 51]). While
this body is substantial and diverse, the individual approaches and
studies concentrate on specific kinds of interactions, in specific set-
tings, using specific solutions.

In this position paper, we set out the goal to explore the nature
of feature interactions systematically and comprehensively. Which
feature interactions occur in real-world systems? What order do
they have? Are they internally or externally visible? Answer-
ing these questions will immediately lead to a series of follow-up
questions: Which strategies for interaction detection, management,
and resolution are superior in which circumstances (e.g., differ-
ent sampling heuristics vs. variability-aware analysis vs. feature-
based analysis [7,36,38,50])? Do different kinds of (internally and
externally-visible) feature interactions correlate (e.g., are memory
leaks caused by interactions among multiple features correlate with
data-flow interactions)? Can we predict feature interactions of one
kind based on the knowledge about feature interactions of another
kind (e.g., predicting performance anomalies based on control-flow
and data-flow interactions)? Notably, some empirical studies have
been published in the literature, mostly concentrating on specific
kinds of interactions in specific settings [21, 28, 30, 33, 37, 48, 56],
but a systematic and coordinated effort is necessary to answer these
questions.

This paper is not meant to make a technical contribution to the
area, but to propose and motivate a research endeavor based on a
review and classification of feature interactions addressed in the
literature. In particular, we make the following contributions:

• A discussion and classification of different kinds of feature
interactions addressed in the literature.

• An agenda, setup, and a discussion of challenges for a re-
search endeavor to explore the nature of feature interactions,
as well as a report on preliminary results.

As a call for participation to the community, let us accept and ad-
dress the feature-interaction challenge!

2. CHARACTERIZING
FEATURE INTERACTIONS

Different kinds of feature interactions have been discussed in the
literature, and there have been many attempts to characterize and
classify feature interactions [12, 35, 54, 55]. In the quest of under-
standing feature interactions, we classify feature interactions along
two dimensions: (1) order and (2) visibility. But, before we ex-
plain this classification, we stress the role of specifications for the
feature-interaction problem.

2.1 Specifications
Talking about feature interactions without talking about speci-

fications makes little sense. To identify a feature interaction, one
needs to be able to identify deviating and inadvertent properties or
behaviors. A specification defines the expected behavior when fea-
tures are combined. If a feature combination f1 • . . . • fn, with ‘•’
denoting composition, satisfies specification φ, we write:

f1 • . . . • fn |= φ (1)

Specifications may be concerned with individual features (stat-
ing their expectations and provisions; in this case, φ in Equation 1

would be combined of multiple smaller specifications, associated
with individual features) or combinations of features (e.g., stating
properties that all feature combinations must exhibit) [6]. In the
remainder, we abstract over this difference, for simplicity.

Furthermore, depending on the kind of feature interaction, spec-
ifications are formulated more or less explicitly. The requirement
that a system does not crash with a segmentation fault is very gen-
eral and is often implicitly assumed; the same applies to other prop-
erties, such as the absence of null-pointer dereferences and data
races. However, in other situations, specifications are much more
explicitly formulated, using formalisms such as temporal logic or
automata, for example, stating that a certain process terminates be-
fore another process or that adaptive cruise control does not disable
the break system [18].

Specifications are essential for the endeavor to understand fea-
ture interactions, as we explain next when discussing two proper-
ties along which we classify feature interactions.

2.2 Model of Feature Interactions
Given a set of features F , predicate interactφi (f1, . . . , fn) de-

notes a feature interaction i that occurs in the subset {f1, . . . , fn} ⊆
F of features with respect to specification φ, and that the feature
set is minimal—removing one feature from the set would deactivate
interaction i. Accordingly, the only derivation rule for interact is:

f1 • . . . • fn 6|= φ n > 1

∀ {g1, . . . , gk} ⊂ {f1, . . . , fn} : ¬interactφi (g1, . . . , gk)
interactφi (f1, . . . , fn)

(2)
This inference rule applies only to feature sets with two or more
features, and it does not rule out that a given feature combination
may contain multiple feature interactions of the same or different
orders. This is in line with Siegmund et al., who found that the
presence of higher-order interactions often implies the presence of
corresponding lower-order interactions [48], which we model as
distinct interactions i1, . . . , im.

As a design decision, we model interactions as violations of
specifications. If features interact and satisfy a given specifica-
tion, predicate interact does not hold. To model such desired in-
teractions, one can adapt the specification such that it exposes the
interaction—a case that we ignore, for simplicity.

Furthermore, our definition of feature interactions is centered
around the presence of features, which is natural when reasoning
about feature-oriented systems. Work on interaction testing also
considers interactions that occur when one feature must be selected
and another must be deselected [21, 56], which we do not consider
for simplicity.

Finally, we do not consider constraints among features (e.g., that
one feature requires or excludes another feature). Although con-
strains play an important role in modeling, managing, and analyz-
ing variability [17], including them into our model would make
it more complicated, but does not add anything substantial to our
message. See Garvin et al. [21] and Siegmund et al. [48] for exam-
ples of how constraints are incorporated in modeling and detecting
feature interactions.

Inspired by Batory et al. [8], we denote an interaction between
the n features f1, . . . , fn with the shorthand f1# . . .#fn.

2.3 Order of Feature Interactions
The order of a feature interaction f1# . . .#fn is the number n

of participating features minus one:

order(f1# . . .#fn) = n− 1 (3)

An interaction between two features has order one (i.e., is of first-
order); an interaction between three features has order two (i.e., is
of second-order); and so on. 1

The number of potential interactions in a system can be expo-
nential in the number of its set F of features:

2|F| − |F| − 1 ∈ O(2|F|) (4)

Fortunately, the situation is not that bad in practice. The num-
ber of actual feature interactions that occur is likely to be much
lower [15, 27, 49]—otherwise feature-based systems would not be
practical. Motivated by this assumption, some researchers focus
only of interactions between pairs of features, which is much more
tractable:

|F| · (|F| − 1)

2
∈ O(|F|2) (5)

Note that Equation 4 and Equation 5 are approximations in the
sense that they ignore that a given set of features may give rise
to multiple different interactions of the same order. Still, they illus-
trate the nature of the feature-interaction problem very well.

A major problem in practice is that, for a given system and spec-
ification, it is not obvious which feature interactions really occur.
Intuitively, the higher the order of a feature interaction, the harder
the interaction is to detect. Feature interactions of order one (or
two) can be simply detected by creating all pairs (or triples) of fea-
tures [7, 15, 27] and applying a proper interaction-detection tech-
nique (e.g., testing [21, 27, 28] or model checking [5, 7]). But, this
way, one may miss interactions of a higher order—these can be
found reliably only by creating all possible feature combinations,
which induces, again, an exponential effort.

The tradeoff between the ability to find feature interactions of
higher orders and the computational effort to achieve this raises
the question of how the order of feature interactions are actually
distributed in practice, which we discuss in Section 3.

2.4 Visibility of Feature Interactions
Different levels of visibility of feature interactions have been dis-

cussed in the literature. Feature interactions may appear at the level
of the externally-visible behavior, which we call henceforth exter-
nal feature interactions, for short, and at the level of the internal
properties of a system, which we call henceforth internal feature
interactions, for short.

2.4.1 External Feature Interactions
Feature interactions, as such, have been described first in the do-

main of telecommunication systems [11]. There, feature interac-
tions have been described as inadvertent deviations from the ex-
pected externally-visible behavior of a system. Basically, the be-
havior of a system composed of features is more (or less) than the
sum of the (well-known and well-defined) behaviors of the individ-
ual features involved.

This behavior-centric view requires to specify which behaviors
are expected and desired (and which are not) and how behaviors re-
late. Does a behavior subsume another behavior? Does a behavior
violate a specification? Is the combination of two behaviors more
than the sum of its constituents (however ‘sum’ is defined)? An-
swering these questions is notoriously difficult. As we mentioned
previously, the feature-interaction community has been developing
a whole tool set of formalisms, methods, and tools for answering
these and other questions.

1Some researchers call interactions between n features also n-way
feature interactions [32].

Functional Interactions. Interestingly, two lines of research
on external feature interactions emerged in the recent years. One
line of research is concerned mainly with interactions that violate
the functional specification of a composed system, which includes
all kinds of bugs, including segmentation faults, race conditions,
and deadlocks. We call these interactions functional feature inter-
actions. 2

Consider Hall’s e-mail system with features for message encryp-
tion and forwarding as an example [23]: While encryption and for-
warding operate individually as expected, their combination gives
rise to an undesired feature interaction. The interaction occurs if
one host sends an encrypted message to a second host that forwards
the message automatically to a third host. If the second host does
not have the public key of the third host, it forwards the message
in plain text. The reason is that the forwarding feature has been
developed independently of the encryption feature, so it does not
“know” whether an e-mail is encrypted. This interaction is clearly
undesired: it contradicts what we expect from the encryption fea-
ture, and it violates the specification of the encryption feature (if
there is one), which states that messages that have been encrypted
initially must never be sent unencrypted over the network.

Finding feature interactions that violate the functional specifica-
tion of a composed system boils down to combining analysis tech-
niques, such as testing, static analysis, and model checking, with
strategies to reduce the analysis effort in the face of feature combi-
natorics (e.g., sampling, feature-based and variability-aware analy-
ses). In the e-mail example, one could create (a subset of) feature
combinations and analyze whether messages are sent unintention-
ally in plain text over the network using the following temporal-
logic specification [6]:

AG
(
recv(msgm) ∧m.isEncrypted

)
⇒(

(send(msgm)⇒ m.isEncrypted) R send(msgm)
) (6)

This specification states essentially that all incoming messages (recv)
that were encrypted (isEncrypted) must be encrypted when leaving
the system (send).

Non-Functional Interactions. Another line of research is con-
cerned with interactions that influence non-functional properties of
a composed system, including performance, memory consumption,
energy consumption, etc. We call these interactions non-functional
feature interactions. Non-functional feature interactions have been
discussed in the literature with regard to explicit and implicit spec-
ification [46, 48, 54]. If we have an explicit specification of the
desired non-functional properties of a system at hand (e.g., the
maximum latency), we can typically decide whether a given fea-
ture combination satisfies the specification (e.g., whether it is fast
enough).

If we do not have a specification at hand, it is still useful to rea-
son about non-functional feature interactions. An assumption that
guides work on the prediction of non-functional properties [48,49]
is that each feature has an influence on the non-functional proper-
ties of a system and that this influence can be quantified. Features
are considered not to interact, if their contributions to a given non-
functional property can be simply aggregated (e.g., by adding their
execution times or taking the maximum peak performance). This
statement is actually an implicit specification that serves to detect
feature interactions, and to make predictions more accurate [48].
In this sense, feature are considered to interact, if a non-functional
property of the composed system diverges from the aggregation of

2The concept of interaction faults used in the interaction-testing
community is very similar [21, 28, 33].

the individual contributions of the features involved, for example,
in that the performance goes substantially down.

For example, many features in a database system can be freely
combined to tailor the system to the specific needs of a customer or
application scenario, including encryption, compression, and vari-
ous kinds of index structures and locking strategies [47]. However,
there are subtle feature interactions that lead to performance ab-
normalities, for example, when a coarse-grained locking strategy
hinders query evaluation and optimization [41].

Detecting non-functional feature interactions is, at least, as chal-
lenging as detecting function feature interactions. Typically, vari-
ous techniques for the measurement, prediction, and modeling of
non-functional properties are combined with strategies to reduce
the analysis effort in the face of feature combinatorics [48]. For
example, if we measure the performance of a database system with
and without encryption and with and without compression, we will
notice that these two feature interact: encrypting compressed data
is computationally less expense than encrypting uncompressed data.

2.4.2 Internal Feature Interactions
Beside the behavior-centric view, researchers have proposed to

take an implementation-centric view, which aims at the internals of
a system, to understand the feature-interaction problem [8, 30, 40].
Specifications are given usually implicitly, as we will discuss.

Structural Interactions. It is a matter of fact that a feature is
typically not an island; it communicates and cooperates with other
features and the environment. In the end, the communication and
cooperation among features needs to be implemented somewhere.
To let features interact, we need corresponding coordination code.
Interestingly, Batory et al. uses the # operator also to denote such
coordination code when describing feature compositions [8]. For
example, if we attempt to coordinate the call-forwarding and call-
waiting features of the telephony example, we have to add addi-
tional code for this task (e.g., to deactivate one of the two features
in favor of the other). If we activate both features in a system, we
need to include also the corresponding coordination code:

CallForw ∧ CallWait ⇒ CallForw#CallWait (7)

Coordination code breaks feature modularity and hinders com-
positional reasoning [29]. But, there is more to this. Much like with
external feature interactions at the behavioral level, in the worst
case, the number of pieces of coordination code grows exponen-
tially with the number of features. Although researchers have pro-
posed and discussed a number of solutions, there is no “silver bul-
let” to this problem [30]. The problem becomes even more prob-
lematic when all interacting features are supposed to be indepen-
dently selectable or activatable by the user [30].

The key observation that is important here is that coordination
code gives rise to a structural feature interaction. Features are con-
sidered to interact structurally if some coordination code is neces-
sary that is different from the combination of the code of the indi-
vidual features involved [8, 30, 40].

In many cases, structural feature interactions can be easily identi-
fied statically (e.g., based on naming or coding conventions, code-
nesting structure, feature-tracing approaches, or dedicated imple-
mentation techniques [30, 40, 45]). As an example, in practice, the
presence of coordination code is often controlled by nested prepro-
cessor directives [37] or dedicated glue-code modules [30], such as
lifters in feature-oriented programming [45] and connector plugins
in ECLIPSE.

Operational Interactions. Apart from just analyzing the code
base and searching for coordination code that gives rise to structural
interactions, one can collect more detailed information on internal
feature interactions by analyzing the execution or operation of a
system. Which features refer to which other features? Which fea-
tures pass control to which other features? Which features pass
data to which other features? This information on operational in-
teractions cannot be easily extracted from just looking syntactically
at the source code, but requires more sophisticated (static or dy-
namic) analyses of the control and data flow. These analyses may
provide valuable insights. For example, if we find that a contact-
management and a messaging feature in an office groupware inter-
act at the level of the control flow, but not at the level of the data
flow (i.e., they do not exchange or share any data, even not via other
features), we can infer that private contact data will not be send via
the messaging feature to an untrusted receiver. This kind of infor-
mation would help to make analysis techniques smarter and more
efficient, as we will discuss in the next section.

Features are considered to interact operationally, if the occur-
rence of specific control and data flows, diverges from the combi-
nation of the flows of the individual features involved [8, 30, 40].
For example, two feature interact at the level of the control flow if
there are control flows that occur only when the two features are
combined, and that are not just the addition or union of the control
flows induced by the two individual features.

3. EXPLORING
FEATURE INTERACTIONS

Although some researchers studied feature interactions in real-
world systems empirically [21,28,30,33,37,48,56], the community
does not yet entirely understand the nature of feature interactions
with all its facets, in depth and breadth. In particular, we are inter-
ested in the following research question:

Which kinds and how many feature interactions occur
in real-world systems, in terms of order and visibility?

We argue that answering this question is imperative to make prog-
ress in developing and evaluating general and efficient solutions to
the feature-interaction problem. In the remaining section, we out-
line the requirements and challenges of an exploratory study to an-
swer this question, we report on preliminary results, and we discuss
perspectives of further research on feature interactions.

3.1 Exploratory Study
At first glance, the setup of an exploratory study that answers

our research question is straightforward. Just take a representative
set of systems, identify all feature interactions, and collect statis-
tics about the number and distribution of their order and visibility.
However, taking a closer look, there are many challenges, such as
how to select representative systems among the multitude of do-
mains (e.g., Internet applications vs. automotive systems vs. soft-
ware product lines), the problem of obtaining and defining proper
specifications, or the fact that some interactions are notoriously
hard to discover, even if we have the minimal set of interacting fea-
tures at hand (e.g., revealing a feature interaction based on a spec-
ification may be undecidable; or measuring non-functional feature
interactions has to take measurement bias into account).

We concentrate on the most severe challenge for the envisioned
exploratory study: The key problem is that detecting all feature
interactions in a given system (according to a set of specifications)
is often computationally infeasible. This was exactly the reason for
why we need to develop better detection methods, for which we

Table 1: Overview of the subject systems

|F| LOC Description

LINUX1 9 102 5 986 427 Operating-system kernel,
Version 2.6.28.7

BUSYBOX2 792 191 615 Standard UNIX utilities,
Version 1.18.5

GCC3 171 2 648 177 GNU compiler collection,
Version 4.4.0

APACHE4 9 230 277 Web server, Version 2.2

1 http://www.kernel.org
2 http://www.busybox.net/

3 http://gcc.gnu.org/
4 http://httpd.apache.org/

need the data set of the envisioned exploratory study—a chicken-
and-egg problem.

Certainly, it is possible to accumulate a considerable data set
based on smaller systems, for which computing and analyzing all
feature combinations is feasible. Such systems have been used in
several case studies [7, 21, 28, 30, 33, 37, 48, 56], so that they can
form the basis of the data set. Still, to establish a representative
data set, also information on larger systems needs to be included.
The only way to cut the Gordian knot, is to apply a whole array of
different detection approaches based on different sampling strate-
gies, heuristics, and random choices to accumulate information on
feature interactions (including the combinations that have been an-
alyzed to reveal them), and to utilize this information to tune the
detection approaches and strategies to find further interactions, and
so on. But, one word of caution: Analyzing a set of mature and
deployed systems tells only half the story. At later development
stages, many feature interactions may have been resolved (or prop-
erly controlled) already, which might bias our conclusions. Hence,
also earlier development stages of the systems under study should
be analyzed.

In the face of this huge endeavor, it is certainly reasonable to
expect many studies by many researchers, rather than one, and
some studies have already been conducted whose results can be
used right away [7, 21, 28, 30, 33, 37, 48, 56]. But, to be successful,
we need to progress systematically, guided by a classification and
model like the one we propose or similar ones. This paper is meant
as a call to the community to start the endeavor and to overcome
the feature-interaction challenge.

3.2 Preliminary Results
To illustrate the kind and usefulness of the data obtained by the

envisioned exploratory study, we report on some of our own prelim-
inary results. As subjects, we selected four real-world systems that
have been used before in the literature: LINUX, BUSYBOX, GCC,
and APACHE. In Table 1, we summarize relevant background in-
formation on the subject systems.

In our exploratory study, we collected information on different
kinds of feature interactions, one kind per subject system:

Structural interactions in LINUX: With the help of Jörg Liebig
and his code-analysis tool CPPSTATS [37], we analyzed the
nesting structure of C-preprocessor directives in the LINUX
kernel. In particular, we determined the presence condition
of each code block. Each (syntactically) unique presence
condition represents a structural feature interaction of n-th

order, where n is the number of unique macro names in the
presence condition.3

Operational interactions in BUSYBOX: Using the analysis tool
TYPECHEF [38], we determined which control flows in BUSY-
BOX occur in which feature combinations. Fortunately, BUSY-
BOX provides a variability model that lists all configurable
features and their dependencies. Each control flow across
method boundaries that occurs only when, at least, n features
are selected represents an operational feature interaction of
order n− 1.

Functional interactions in GCC: We obtained information on the
functional feature interactions in GCC from a previously pub-
lished study on interaction testing [21]. The authors of the
study analyzed which of the faults reported for GCC are
configuration faults, that is, faults that arise only with cer-
tain combinations of command-line parameters. The mini-
mal number of participating parameters determines the or-
der of the corresponding functional feature interaction (mi-
nus one).

Non-functional interactions in APACHE: Based on the data set of
Siegmund et al. [48], we computed all feature interactions
that have an effect on performance (i.e., all combinations of
features whose performance is not the sum of the contribu-
tions to performance of the individual features involved). In
this study, we considered a subset of APACHE’s plugins (i.e.,
loadable modules) as features. The number of plugins that
exhibit a (measurable) performance interaction determines
the order of this non-functional feature interaction (minus
one).

In Figure 1, we show the results of our analysis of the four
subject systems. Notice that the y-axes of Figure 1a and 1b are
in logarithmic scale, to enable us to show the broad spectrum of
interaction-order frequencies. Looking at the results, we make the
following observations:

O1: Feature interactions occur in all systems, and we found inter-
actions of all kinds, including structural, operational, func-
tional, and non-functional interactions.

O2: Higher-order interactions (i.e., with an order larger than one)
occur in all subject systems, many with orders around 2 to
10, up to an order of 33 (in LINUX).

O3: The major fraction of feature interactions we found have or-
ders lower than 10.

O4: We found many more internal feature interactions than exter-
nal feature interactions, and external interactions of higher
orders are rare in the subject systems.

O5: Although all distributions are right-skewed, there is no obvi-
ous strong correlation between them, which is not too sur-
prising as the distributions have been obtained from different
subject systems.

We believe that this kind of observations can have an influence on
the judgment of contemporary approaches as well as on the devel-
opment of further work. Nevertheless, the results presented here
are not meant to be generalizable. Still, we carefully discus some
of the observations next, in the context of perspectives for feature-
interaction research.
3We are aware that not all macros correspond to features that are
visible to the end user. In this sense, we deliberately take also in-
ternal variability into account.

http://www.kernel.org
http://www.busybox.net/
http://gcc.gnu.org/
http://httpd.apache.org/

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 ...

Interaction order

Fr
eq

ue
nc

y
(lo

ga
rit

hm
ic

 s
ca

le
)

0
1

10
10

0
10

00

(a) LINUX (structural: code nesting)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 ...

Interaction order

Fr
eq

ue
nc

y
(lo

ga
rit

hm
ic

 s
ca

le
)

0
1

10
10

0
10

00
40

00

(b) BUSYBOX (operational: control flow)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 ...

Interaction order

Fr
eq

ue
nc

y
0

1
2

3
4

(c) GCC (functional: configuration faults)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 ...

Interaction order

Fr
eq

ue
nc

y
0

5
10

15
20

25
30

(d) APACHE (non-functional: performance)

Figure 1: Distribution of different kinds feature interactions in four subject systems

3.3 Perspectives
As the data set collected by the envisioned exploratory study

grows, it will form, more and more, a viable basis for further re-
search on feature interactions. Next, we will discuss some promis-
ing directions.

Information on the order of feature interactions that occur in real-
world systems is very valuable for tuning existing approaches of
interaction detection, management, and resolution. For example,
in feature-interaction detection, it is best practice to assume that a
major fraction of feature interactions is first order. This assumption
is the basis for several sampling-based analysis techniques that aim
at covering all pairs of features, but disregard larger feature combi-
nations [15, 27, 49]. If it turns out that this assumption misses the
point—and this is what our preliminary results suggest—this would
have definitive implications for the precision of the approaches and
the development of alternative approaches. Also, work on feature-
based [36] and variability-aware analyses [50], would benefit from
knowledge on the distribution of feature-interaction orders (e.g.,
finding a considerable number of higher-order feature interactions
in real-world systems, as it was the case in some of our subject
systems, would be a strong argument for variability-aware analy-
ses and against sampling; or search strategies and precision levels
could be tailored to certain kinds of interactions).

Another interesting issue arises from the observation that differ-
ent kinds of feature interactions are differently difficult to detect.
For example, internal feature interactions, such as control-flow in-
teractions, can be detected statically. Detecting external interac-
tions, such as performance interactions, requires more heavyweight
and often dynamic analysis techniques. It would be very interesting

to see whether the occurrences of different kinds of feature inter-
actions correlate. For example, is there a correlation between the
occurrences of control-flow or data-flow interactions and perfor-
mance interactions? It would be even more interesting, if we found
that the occurrences of internal feature interactions have a certain
power to predict external feature interactions. For example, can we
predict the occurrences of memory-consumption interactions based
on data-flow interactions with reasonable accuracy?

4. CONCLUSION
The feature-interaction problem is a major threat to feature mod-

ularity and compositional reasoning. Although being addressed by
researchers and practitioners over years, there is still a lack of com-
prehensive empirical data on which kinds of feature interactions
occur in real-world systems and to what extent. In this position pa-
per, we set out the goal to explore the nature of feature interactions
in the wild, in particular, in terms of their order and visibility.

A characterization and classification of feature interactions and a
set of preliminary data obtained from four subject systems give us
confidence that knowledge on the distribution of feature-interaction
orders and visibilities will help us to answer a number of important
questions: Which strategies for interaction detection, management,
and resolution are superior in which circumstances? Do different
kinds of feature interactions correlate? Can we predict feature in-
teractions of one kind based on the knowledge about feature inter-
actions of another kind?

However, as an analysis of possible experimental setups and cor-
responding challenges reveals, establishing a comprehensive over-
view and gaining deeper insights about the nature of feature inter-

actions will be a huge endeavor. To this end, the paper is meant as
a call for contributions of the community to accept and address the
feature-interaction challenge.

Acknowledgments
We thank Jo Atlee and Armin Größlinger for fruitful discussions
on the ideas presented in this paper, and Jörg Liebig for providing
data on the feature interactions in LINUX. Apel’s and Kolesnikov’s
work has been supported by the DFG grants AP 206/2, AP 206/4,
and AP 206/5. Kästner’s work has been supported by the ERC
grant 203099 and NSF award 1318808. Garvin’s work has been
supported by the NSF award CFDA#47.076, the NSF grant CCF-
0747009, and the AFOSR grant FA9550-10-1-0406.

5. REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer, 2013. To appear.

[2] S. Apel and C. Kästner. An overview of feature-oriented
software development. Journal of Object Technology (JOT),
8(5):49–84, 2009.

[3] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Transactions on Software Engineering (TSE),
34(2):162–180, 2008.

[4] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting
dependences and interactions in feature-oriented design. In
Proceedings of the International Symposium on Software
Reliability Engineering (ISSRE), pages 161–170. IEEE,
2010.

[5] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer.
Detection of feature interactions using feature-aware
verification. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages 372–375.
IEEE, 2011.

[6] S. Apel, A. von Rhein, T. Thüm, and C. Kästner.
Feature-interaction detection based on feature-based
specifications. Computer Networks, 57(12):2399–2409,
2013.

[7] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer. Strategies for product-line verification: Case
studies and experiments. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
482–491. IEEE, 2013.

[8] D. Batory, P. Höfner, and J. Kim. Feature interactions,
products, and composition. In Proceedings of the
International Conference on Generative Programming and
Component Engineering (GPCE), pages 13–22. ACM, 2011.

[9] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

[10] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for
modular specification of telephone services. In Feature
Interactions in Telecommunications Systems, pages 197–216.
IOS Press, 1994.

[11] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman,
and Y.-J. Lin. The feature interaction problem in
telecommunications systems. In Proceedings of the
International Conference on Software Engineering for
Telecommunication Switching Systems (SETSS), pages
59–62. IEEE, 1989.

[12] G. Bruns. Foundations for features. In Feature Interactions
in Telecommunications and Software Systems VIII, pages
3–11. IOS Press, 2005.

[13] G. Bruns, P. Mataga, and I. Sutherland. Features as service
transformers. In Feature Interactions in Telecommunications
Systems V, pages 85–97. IOS Press, 1998.

[14] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec.
Feature interaction: A critical review and considered
forecast. Computer Networks, 41(1):115–141, 2003.

[15] M. Calder and A. Miller. Feature interaction detection by
pairwise analysis of LTL properties: A case study. Formal
Methods in System Design, 28(3):213–261, 2006.

[16] R. Crespo, M. Carvalho, and L. Logrippo. Distributed
resolution of feature interactions for Internet applications.
Computer Networks, 51(2):382–397, 2007.

[17] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[18] A. Dominguez. Detection of Feature Interactions in
Automotive Active Safety Features. PhD thesis, University of
Waterloo, 2012.

[19] R. Donaldson and M. Calder. Modular modelling of
signalling pathways and their cross-talk. Theoretical
Computer Science, 456(0):30–50, 2012.

[20] A. Felty and K. Namjoshi. Feature specification and
automated conflict detection. ACM Transactions on Software
Engineering and Methodology (TOSEM), 12(1):3–27, 2003.

[21] B. Garvin and M. Cohen. Feature interaction faults revisited:
An exploratory study. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE),
pages 90–99. IEEE, 2011.

[22] N. Griffeth and H. Velthuijsen. The negotiating agents
approach to runtime feature interaction resolution. In Feature
Interactions in Telecommunications Systems, pages 217–235.
IOS Press, 1994.

[23] R. Hall. Fundamental nonmodularity in electronic mail.
Automated Software Engineering, 12(1):41–79, 2005.

[24] T. Härder and A. Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4):287–317,
1983.

[25] J. Hay and J. Atlee. Composing features and resolving
interactions. In Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE),
pages 110–119. ACM, 2000.

[26] M. Jackson and P. Zave. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE
Transactions on Software Engineering (TSE),
24(10):831–847, 1998.

[27] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa.
Model composition in product lines and feature interaction
detection using critical pair analysis. In Proceedings of the
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), LNCS 4735, pages
151–165. Springer, 2007.

[28] M. Johansen, Ø. Haugen, F. Fleurey, E. Carlson, J. Endresen,
and T. Wien. A technique for agile and automatic interaction
testing for product lines. In Testing Software and Systems,
LNCS 7641, pages 39–54. Springer, 2012.

[29] C. Kästner, S. Apel, and K. Ostermann. The road to feature
modularity? In Proceedings of the International Workshop
on Feature-Oriented Software Development (FOSD), pages
5:1–5:8. ACM, 2011.

[30] C. Kästner, S. Apel, S. ur Rahman, M. Rosenmüller,
D. Batory, and G. Saake. On the impact of the optional
feature problem: Analysis and case studies. In Proceedings
of the International Software Product Line Conference
(SPLC), pages 181–190. Software Engineering Institute,
2009.

[31] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), LNCS 1241,
pages 220–242. Springer, 1997.

[32] C. Kim, C. Kästner, and D. Batory. On the modularity of
feature interactions. In Proceedings of the International
Conference on Generative Programming and Component
Engineering (GPCE), pages 23–34. ACM, 2008.

[33] D. Kuhn, D. Wallace, and A. Gallo, Jr. Software fault
interactions and implications for software testing. IEEE
Transactions on Software Engineering (TSE),
30(6):418–421, 2004.

[34] K. Lee, K. Kang, M. Kim, and S. Park. Combining
feature-oriented analysis and aspect-oriented programming
for product line asset development. In Proceedings of the
International Software Product Line Conference (SPLC),
pages 103–112. IEEE, 2006.

[35] C. Lengauer and S. Apel. Feature-oriented system design and
engineering. International Journal of Software and
Informatics (IJSI), 5(1–2, Part II):231–244, 2011. Special
Issue on Foundations and Practice of Systems and Software
Engineering, Festschrift in Honor of Manfred Broy.

[36] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
Cross-Cutting Features as Open Systems. In Proceedings of
the ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), pages 89–98. ACM, 2002.

[37] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An analysis of the variability in forty preprocessor-based
software product lines. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
105–114. ACM, 2010.

[38] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable analysis of variable software. In
Proceedings of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages
81–91. ACM, 2013.

[39] F. Lin and Y.-J. Lin. A building block approach to detecting
and resolving feature interactions. In Feature Interactions in
Telecommunications Systems, pages 86–119. IOS Press,
1994.

[40] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In Proceedings of the
International Conference on Software Engineering (ICSE),
pages 112–121. ACM, 2006.

[41] C. Mohan. Interactions between query optimization and
concurrency control. In Proceedings of the International
Workshop on Research Issues on Data Engineering:
Transaction and Query Processing (RIDE-TQP), pages
26–35. IEEE, 1992.

[42] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature
interaction: The security threat from within software
systems. Progress in Informatics, 5:75–89, 2008.

[43] K. Ostermann, P. Giarrusso, C. Kästner, and T. Rendel.
Revisiting information hiding: Reflections on classical and

nonclassical modularity. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
LNCS 6813, pages 155–178, 2011.

[44] K. Pomakis and J. Atlee. Reachability analysis of feature
interactions: A progress report. In Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), pages 216–223. ACM, 1996.

[45] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), LNCS 1241,
pages 419–443. Springer, 1997.

[46] T. Repasi, S. Giessl, and C. Prehofer. Using model-checking
for the detection of non-functional feature interactions. In
Proceedings of the International Conference on Intelligent
Engineering Systems (INES), pages 167–172. IEEE, 2012.

[47] M. Rosenmüller, S. Apel, T. Leich, and G. Saake.
Tailor-made data management for embedded systems: A
case study on Berkeley DB. Data & Knowledge Engineering
(DKE), 68(12):1493–1512, 2009.

[48] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake. Predicting performance via
automated feature-interaction detection. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 167–177. IEEE, 2012.

[49] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso,
S. Apel, and S. Kolesnikov. Scalable prediction of
non-functional properties in software product lines:
Footprint and memory consumption. Information & Software
Technology (IST), 55(3):491–507, 2013.

[50] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer,
and G. Saake. Analysis strategies for software product lines.
Technical Report FIN-004-2012, University of Magdeburg,
2012.

[51] S. Tsang and E. Magill. Learning to detect and avoid
run-time feature interactions in intelligent networks. IEEE
Transactions on Software Engineering (TSE),
24(10):818–830, 1998.

[52] G. Utas. A pattern language of feature interaction. In Feature
Interactions in Telecommunications Systems V, pages
98–114. IOS Press, 1998.

[53] R. van der Linden. Using an architecture to help beat feature
interaction. In Feature Interactions in Telecommunications
Systems, pages 24–35. IOS Press, 1994.

[54] M. Weiss and B. Esfandiari. On feature interactions among
web services. International Journal of Web Services
Research (IJWSR), 2(4):22–47, 2005.

[55] M. Weiss, B. Esfandiari, and Y. Luo. Towards a classification
of web service feature interactions. Computer Networks,
51(2):359–381, 2007.

[56] C. Yilmaz, M. Cohen, and A. Porter. Covering arrays for
efficient fault characterization in complex configuration
spaces. IEEE Transactions on Software Engineering (TSE),
32(1):20–34, 2006.

[57] P. Zave. Modularity in Distributed Feature Composition. In
Software Requirements and Design: The Work of Michael
Jackson, pages 267–290. Good Friends Publishing, 2010.

