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Abstract

We are interested in identifying the material category,

e.g. glass, metal, fabric, plastic or wood, from a single im-

age of a surface. Unlike other visual recognition tasks in

computer vision, it is difficult to find good, reliable features

that can tell material categories apart. Our strategy is to

use a rich set of low and mid-level features that capture var-

ious aspects of material appearance. We propose an aug-

mented Latent Dirichlet Allocation (aLDA) model to com-

bine these features under a Bayesian generative framework

and learn an optimal combination of features. Experimen-

tal results show that our system performs material recog-

nition reasonably well on a challenging material database,

outperforming state-of-the-art material/texture recognition

systems.

1. Introduction

Material recognition is an important aspect of visual

recognition. We interact with a variety of materials on a

daily basis and we constantly assess their appearance. For

example, when judging where to step on an icy sidewalk

or buying fresh produce at a farmers’ market or deciding

whether a rash requires a trip to the doctor, material qual-

ities influence our decisions. Therefore, it is valuable to

build a visual recognition system that can infer material

properties from images.

The problem of recognizing materials from photographs

has been addressed mainly in the context of reflectance es-

timation. The visual appearance of a surface depends on

several factors – the illumination conditions, the geometric

structure of the surface sample at several spatial scales, and

the surface reflectance properties, often characterized by

the bidirectional reflectance distribution function (BRDF)

[24] and its variants [9, 16, 26]. A number of techniques

have been developed that can estimate the parameters of a

BRDF model from a set of photographs, under restrictive

assumptions of illumination, geometry and material proper-

ties [10, 11].

In this paper, we focus on recognizing high-level mate-

rial categories, such as glass, metal, fabric, plastic or wood,

instead of explicitly estimating reflectance properties. The

reflectance properties of a material are often correlated with
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Metal Paper

Plastic Stone

Water Wood

Figure 1.Material recognition in the wild. The goal of this paper

is to learn to recognize material categories from a single image.

For this purpose, we will use our Flickr Materials Database [28]

that captures a range of appearances within each material category.

its high-level category (e.g. glass is usually translucent and

wood is often brown), and in this work, we will exploit

these correlations. However, it is important to point out that

knowing only the reflectance properties of a surface is not

sufficient for determining the material category. For exam-

ple, the fact that a surface is translucent does not tell us if it

is made of plastic, wax or glass.

Unlike other visual recognition tasks such as object or

texture recognition, it is challenging to find good features

that can distinguish different material categories because of

the wide variations in appearance that a material can dis-

play. Our strategy is to design several low-level and middle-

level features to characterize various aspects of material ap-

pearance. In addition to well-established features such as

color, jet and SIFT [17, 21], we introduce several new fea-

tures, such as curvature of edges, histogram of oriented gra-

dient (HOG) feature along edges, and HOG perpendicular

239978-1-4244-6985-7/10/$26.00 ©2010 IEEE



Figure 2. Material recognition vs. object recognition. These

vehicles are made of different materials (from left to right): metal,

plastic and wood.

Figure 3. Material recognition vs. texture recognition. These

checkerboard patterns are made of different materials (left to

right): fabric, plastic and paper.

to edges. After quantizing these features into dictionaries,

we convert an image into a bag of words and use latent

Dirichlet allocation (LDA) [3] to model the distribution of

the words. By allowing topics to be shared amongst mate-

rial categories, LDA is able to learn clusters of visual words

that characterize different materials. We call our model aug-

mented LDA (aLDA) as we concatenate dictionaries from

various features and learn the optimal combination of the

features by maximizing the recognition rate.

It is crucial to choose the right image database to evaluate

our system. Most existing material/texture image databases

fail to capture the complexity of real world materials, be-

cause they are either instance databases, such as CURET

[9], or texture category databases with very few samples per

class, such as KTH-TIPS2 [5]. The high recognition rates

achieved on these databases (> 95% on CURET [30]) sug-

gests a need for challenging, real world material databases.

In this work, we use the Flickr Materials Database [28]

created by us, originally for studying the visual perception

of materials. This database contains 10 common material

categories - fabric, foliage, glass, leather, metal, paper,

plastic, stone, water and wood (see Figure 1). We acquired

100 color photographs from Flickr.com for each category,

including 50 close-ups and 50 object-level views. All im-

ages have 512 × 384 pixel resolution and contain a single
material category in the foreground. These images capture

a wide range of appearances within each material category.

We show that althoughmaterial categorization can be a very

challenging problem, especially on a database like ours, our

system performs reasonably well, outperforming state-of-

the-art systems such as [30].

2. Related Work

Recognizing high-level material categories in images is

distinct from the well-studied problem of object recogni-

tion. Although object identity is sometimes predictive of
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Figure 4. The projection on the first two principal components

(PCs) of the texton histograms are shown for all images in the

(left) 61 classes in the CURET database [9] and (right) 10 classes

in the Flickr Materials Database [28]. The textons were derived

from 5× 5 pixel patches, as described in [30]. The colors indicate

the various texture/material categories. CURET samples are more

separable than Flickr.

material category, a given class of objects can be made of

different materials (see Figure 2) and different classes of

objects can be made of the same material (see Figure 1).

Therefore, many recent advances in object recognition such

as shape context [2], object detectors [7] and label transfer

[19] may not be applicable for material recognition. In fact,

most object recognition systems rely on material-invariant

features and tend to ignore material information altogether.

Material recognition is closely related to, but different

from, texture recognition. Texture has been defined in terms

of dimensions like periodicity, orientedness, and random-

ness [20]. It can be an important component of material

appearance, e.g. wood tends to have textures distinct from

those of polished metal. However, as illustrated in Figure 3,

surfaces made of different materials can share the same tex-

ture patterns and as a consequence, mechanisms designed

for texture recognition [18, 30] may not be ideal for mate-

rial recognition.

Material recognition is also different fromBRDF estima-

tion. In computer graphics, there is great interest in captur-

ing the appearance of real world materials. The visual ap-

pearance of materials like wood or skin, has been modeled

in terms of the bidirectional reflectance distribution function

(BRDF) [10, 22] and related representations such as BTF

[9] and BSSRDF [16]. Material recognition might seem

trivial if the BRDF is known, but in general, it is nearly im-

possible to estimate the BRDF from a single image without

simplifying assumptions [10, 11].

A number of low-level image features have been devel-

oped for identifying materials. The shape of the luminance

histogram of images was found to correlate with human

judgement of surface albedo [25], and was used to clas-

sify images of spheres as shiny, matte, white, grey etc. [11].

Similar statistics were used to estimate the albedo and gloss

of stucco-like surfaces [27]. Several techniques have been

developed to search for specific materials in real world pho-

tographs such as glass [15, 23] or skin [14].

The choice of databases is, often, the key to success in vi-
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sual recognition. The CURET database [9] that consists of

images of 61 different texture samples under 205 different

viewing and lighting conditions, has become the standard

for evaluating 3-D texture classification algorithms. A vari-

ety of methods based on texton representations [6, 18, 29],

bidirectional histograms [8] and image patches [30] have

been successful at classifying CURET surfaces (> 95%
accuracy). The KTH-TIPS2 database [5] consisting of 11

texture categories, 4 samples per category, and each pho-

tographed under a variety of conditions, was introduced to

increase the intra-class variation. It was shown that a SVM-

based classifier achieves 98.5% accuracy on this database

[5]. Our Flickr Materials Database [28] contains 10 ma-

terial categories and 100 diverse samples in category. On

inspecting the images in Figure 1 and the plots in Figure

4, it is apparent that the Flickr Materials Database is more

challenging than the CURET database, and for this reason

we chose the Flickr Materials Database to develop and eval-

uate our material recognition system.

3. Features for Material Recognition

In order to build a material recognition system, it is im-

portant to identify features that can distinguish material cat-

egories from one another. What makesmetal look like metal

and wood look like wood? Is it color (neutral vs. browns),

textures (smooth vs. grainy) or reflectance properties (shiny

vs. matte)? Since little is known about which features are

suited for material recognition, our approach is to try a vari-

ety of features, some borrowed from the fields of object and

texture recognition, and some new ones developed specif-

ically for material recognition. From a rendering point of

view, once the camera and the object are fixed, the image

of the object can be determined by (i) the BRDF of the sur-

face, (ii) surface structures, (iii) object shape and (iv) envi-

ronment lighting. Given the diversity of appearance in the

Flickr Materials Database, we will attempt to incorporate

all these factors in our features.

(a) Color and Texture

Color is an important attribute of surfaces and can be

a cue for material recognition: wooden objects tend to be

brown, leaves are green, fabrics and plastics tend to be sat-

urated with vivid color, whereas stones tend to be less satu-

rated. We extract 3 × 3 pixel patches from an RGB image
as our color feature.

Texture, both of the wallpaper and 3-D kind [26], can be

useful for distinguishing materials. For example, wood and

stone have signature textures that can easily tell them apart.

We use two sets of features to measure texture. The first

set comprises the filter responses of an image through a set

of multi-scale, multi-orientation Gabor filters, often called

filter banks or jet [17]. Jet features have been used to recog-

nize 3-D textures [18, 30] by clustering to form textons and

using the distribution of textons as a feature. The second set
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Figure 5. Illustration of how our system generates features.

(a) Curvature (b) Edge slice (HOG) (c) Edge ribbon (HOG) 

Figure 6. We extract curvature at three scales, edge slice in 6 cells,

and edge ribbon in 6 cells at edges.

of features we use is SIFT [21]. SIFT features have been

widely used in scene and object recognition to characterize

the spatial and orientational distribution of local gradients

[13].

(b) Micro-texture

Two surfaces sharing the same BRDF can look different

if they have different surface structures, e.g. if one is smooth

and the other is rough. In practice, we usually touch a sur-

face to sense how rough (or smooth) it is. However, our

visual system is able to perceive these properties even with-

out a haptic input. For example, we can see tiny hairs on

fabric, smooth surfaces in glass objects, crinkles in leather

and grains in paper.

In order to extract information about surface structure,

we followed the idea in [1], of smoothing an image by bi-

lateral filtering [12] and then using the residual image for

further analysis. The process is illustrated in Figure 7. We

choose three images from material categories (a) - glass,

metal and fabric - and perform bilateral filtering to obtain

base image in (b) and display the residual in (d). The resid-

ual of bilateral filtering reveals variations in pixel intensity

at a finer scale. For the fabric and metal example in Figure

7, the residual is due to surface structure whereas for glass,

these variations are related to translucency. Although it is

hard to cleanly separate the contributions of surface struc-

ture from those of the BRDF, the residual contains useful

information about material category. We apply the same ap-

proach for characterizing the residual as we did for texture.
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(a) Original image  (b) Base image (bilateral filtering)  (c) Canny edges on (b)  (d) Residual image: (a)-(b)   (e) Edge slices (f) Edge ribbon

Figure 7. Some features for material recognition. From top to bottom is glass, metal and fabric. For an image (a) we apply bilateral

filtering [1] to obtain the base image (b). We run Canny edge detector [4] on the base image and obtain edge maps (c). Curvatures of

the edges are extracted as features. Subtracting (b) from (a), we get the residual image (d) that shows micro structures of the material.

We extract micro-jet and micro-SIFT features on (d) to characterize material micro-surface structure. In (e), we also show some random

samples of edge slices along the normal directions of the Canny edges. These samples reveal lighting-dependent features such as specular

highlights. The edge ribbon samples are shown in (f). Arrays of HOG’s [7] are extracted from (e) and (f) to form edge-slice and edge-ribbon

features.

We compute the jet and SIFT features of the residual image,

and name themmicro-jet andmicro-SIFT for clarity.

(c) Outline Shape

Though a material can be cast into any arbitrary shape,

the outline shape of a surface and its material category are

often related e.g. fabrics and glass have long, curved edges,

while metals have straight lines and sharp corners. The out-

line shape of a surface can be captured by an edge map. We

run the Canny edge detector [4] on the base image, trim out

short edges, and obtain the edge map shown in Figure 7 (c).

To characterize the variations in the edge maps across ma-

terial categories, we measured the curvature on the edge

map at three different scales as a feature (see Figure 6).

(d) Reflectance-based features

Glossiness and transparency are important cues for mate-

rial recognition. Metals are mostly shiny, whereas wooden

surfaces are usually dull. Glass and water are translucent,

while stones are often opaque. These reflectance properties

sometimes manifest as distinctive intensity changes at the

edges in an image. To measure these changes, as shown

in Figure 6 (b), we extract histogram of oriented gradients

(HOG) [7] features along the normal direction of edges. We

take a slice of pixels with a certain width along the nor-

mal direction, compute the gradient at each pixel, divide the

slice into 6 cells, and quantize the oriented gradients in to

12 angular bins. This feature is called edge-slice. We also

measure how the images change along the tangent direction

of the edges in a similar manner, as suggested in Figure 6

(c). This feature is called edge-ribbon, which is also quan-

tized by 6 cells and 12 angular bins for each cell.

We have described a pool of features that can be po-

tentially useful for material recognition: color, SIFT, jet,

micro-SIFT, micro-jet, curvature, edge-slice and edge-

ribbon. The flowchart of how our system generates these

features is shown in Figure 5. Amongst these features,

color, SIFT and jet are low-level features directly computed

from the original image and they are often used for texture

analysis. The rest of the features, micro-SIFT, micro-jet,

curvature, edge-slice and edge-ribbon aremid-level features

that rely on estimations of base images and edge maps (Fig-

ures 7 (b) & (c)). A priori, we do not know which of these

features will perform well. Hence, we designed a Bayesian

learning framework to select best combination of features.

4. A Bayesian Computational Framework

Now that we have a pool of features, we want to combine

them to build an effective material recognition system. We

quantize the features into visual words and extend the LDA

[3] framework to select good features and learn per-class

distributions for recognition.

4.1. Feature quantization and concatenation

We use the standard k-means algorithm to cluster the in-

stances of each feature to form dictionaries and map image
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Figure 8. The graphical model of LDA [3]. Notice that our cate-

gorization shares both the topics and codewords. Different from

[13], we impose a prior on β to account for insufficient data.

features into visual words. Suppose there are m features in

the feature pool andm corresponding dictionaries {Di}
m
i=1.

Each dictionary has Vi codewords, i.e. |Di|=Vi. Since fea-

tures are quantized separately, the words generated by the

ith feature are {w
(i)
1 , · · · , w

(i)
Ni
}, w

(i)
j ∈ {1, 2, · · · , Vi} and

Ni is the number of words. In order to put a set of different

words together, a document ofm sets of words

{w
(1)
1 , · · · , w

(1)
N1

}, {w
(2)
1 , · · · , w

(2)
N2

}, · · · ,

{w
(m)
1 , · · · , w

(m)
Nm

} (1)

can be augmented to one set

{w
(1)
1 , · · · , w

(1)
N1

, w
(2)
1 +V1, · · · , w

(2)
N2

+V1, · · · ,

w
(m)
1 +

∑m−1
i=1 Vi, · · · , w

(m)
Nm

+
∑m−1

i=1 Vi} (2)

with a joint dictionary D = ∪iDi, |D| =
∑m

i=1 Vi. In this

way, we reduced the multi-dictionary problem to a single-

dictionary one.

4.2. Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) [3] was invented

to model the hierarchical structures of words. Details of

the model can be found in [3, 13]. In order to be self-

contained, we will briefly describe the model in the con-

text of material recognition. As depicted in the graphi-

cal model in Figure 8, we first randomly draw the mate-

rial category c∼Mult(c|π) where Mult(·|π) is a multino-
mial distribution with parameter π. Based on c, we select a

hyper-parameterαc, based on which we draw θ∼Dir(θ|αc)
where Dir(·|αc) is a Dirichlet distribution with parameter

αc. θ has the following property:
∑k

i=1 θi = 1 where k is

the number of elements in θ. From θ we can draw a se-

ries of topics zn ∼ Mult(z|θ), n = 1, · · · , N . The topic

zn(= 1, · · · , k) selects a multinomial distribution βzn
from

which we draw a word wn ∼ Mult(wn|βzn
), which cor-

responds to a quantization cluster of the features. Unlike

[13] where β is assumed to be a parameter, we impose a

conjugate prior η upon β to account for insufficient data as

suggested by [3].

Since it is intractable to compute the log likelihood

log p(w|αc, η), we instead maximize the lower bound

L(αc, η) estimated through the variational distributions
over θ, {zd}, β. Please refer to [3] for details on deriving the

variational lower-bound and parameter learning forα and η.

Once we have learned αc and η, we can use Bayesian MAP

criterion to choose the material category

c∗ = argmax
c

L(αc, η) + λc. (3)

where λc =log πc.

4.3. Prior learning

A uniform distribution is often assumed for the prior

p(c), i.e. each material category will appear equally. How-
ever, since we learn the LDA model for each category inde-

pendently (only sharing the same β), the learning procedure

may not converge in finite iterations. Therefore, the proba-

bility density functions (pdfs) should be grounded for a fair

comparison. We designed the following greedy algorithm to

learn λ by maximizing the recognition rate (or minimizing

the error).

Suppose {λi}i�=c is fixed and we want to optimize λc to

maximize the rate. Let yd be the label for document d. Let

qd,i =Ld(αi, η) + λi be the “log posterior” for document d

to belong to category i. Let fd =maxi qd,i be the maximum

posterior for document d. We define two sets:

Ωc = {d|yd =c, fd >qd,c},
Φc = {d|yd �= c, fd =qd,yd

}.
(4)

SetΩc includes the documents that are labeled as c and mis-

classified. Set Φc includes the documents that are not la-

beled as c and correctly classified. Our goal is to choose λc

to make |Ωc| as small as possible and |Φc| as large as pos-
sible. Notice that if we increase λc, then |Ωc| ↓ and |Φc| ↓,
therefore the optimal λc exists. We define the set of cor-

rectly classified documents with λ′
c:s

Ψc = {d|d∈Ωc, fd < qd,c+λ′
c − λc} ∪

{d|d∈Φc, fd > qd,c+λ′
c − λc}, (5)

and choose the new λc that maximizes the size of Ψc:

λc ← argmax
λ′

c

|Ψc|. (6)

We iterate this procedure for each c repeatedly until each λc

does not change.

4.4. Augmented LDA (aLDA)

Shall we use all the features in our predefined feature

pool? Do more features imply better performance? Unfor-

tunately, this is not true as we have limited training data.

The more features we use, the more likely that the model

overfits the training data and the performance decreases on

test set. We designed a greedy algorithm in Figure 9 to se-

lect an optimal subset of our feature pool. The main idea is

to select the best feature, one at a time, that maximizes the

recognition rate on an evaluation set. The algorithm stops

when adding more features will decrease the recognition

rate. Note that we randomly split the training set H into

L for parameter learning and E for cross evaluation. After

D is learned, we use the entire training set H to relearn the

parameters for D.
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Input: dictionary pool {D1, · · ·, Dm}, training set H

• Initialize: D=∅, recognition rate r = 0

• Randomly splitH = L ∪ E

for l = 1 tom

for Di �∈ D

• Augment dictionary D
′ = D ∪ {Di}

• Concatenate words according to D
′ using Eqn. (2)

• Train LDA on L for each category (sharing β)

• Learn prior λ using Eqn. (5) and (6)
• ri = recognition rate on E using Eqn. (3)

end

ifmax ri > r

• j = arg maxi ri, D = D ∪ {Dj}, r = rj

else

break

end

end

• Train LDA and learn prior λ onH

• r = recognition rate onH

Output: D, r

Figure 9. The augmented LDA (aLDA) algorithm.

5. Experimental Results

We used the Flickr Materials Database [28] for all ex-

periments described in this paper. There are ten material

categories in the database: fabric, foliage, glass, leather,

metal, paper, plastic, stone, water and wood. Each cate-

gory contains 100 images, 50 of which are close-up views

and the rest 50 are of views at object-scale (see Figure 1).

There is a binary, human-labeled mask associated with each

image describing the location of the object. We only con-

sider pixels inside this binary mask for material recognition

and disregard all the background pixels. For each category,

we randomly chose 50 images for training and 50 images

for test. All the experimental results reported in this paper

are based on the same split of training and test.

We extract features for each image according to Figure

5. Mindful of computational costs, we sampled color, jet,

SIFT, micro-jet and micro-SIFT features on a coarse grid

(every 5th pixel in both horizontal and vertical directions).

Because there are far fewer pixels in edge maps than in the

original images, we sampled every other edge pixel for cur-

vature, edge-slice and edge-ribbon. Once features are ex-

tracted, they are clustered separately using k-means accord-

ing to the number of clusters in Table 1. We specified the

number of clusters for each feature, considering both di-

mensionality and the number of instances per feature.

After forming the dictionaries for each feature, we run

the aLDA algorithm to select features incrementally. When

learning the optimal feature set, we randomly split the 50

training images per category (set H) to 30 for estimating

parameters (set L) and 20 for evaluation (set E). After the

feature set is learned, we re-learn the parameters using the

Feature name Dim average # per image # of clusters

Color 27 6326.0 150

Jet 64 6370.0 200

SIFT 128 6033.4 250

Micro-jet 64 6370.0 200

Micro-SIFT 128 6033.4 250

Curvature 3 3759.8 100

Edge-slice 72 2461.3 200

Edge-ribbon 72 3068.6 200

Table 1. The dimension, number of clusters and average number

per image for each feature.
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Figure 12. Left: the confusion matrix of our material recogni-

tion system using color + SIFT + edge-slice feature set. Row k

is the probability distribution of class k being classified to each

category. Right: some misclassification examples. Label “metal:

glass” means that a metal material is misclassified as glass.

50 training images per category and report the training/test

rate. In the LDA learning step, we vary the number of top-

ics from 50 to 250 with step size 50 and pick the best one.

The learning procedure is shown in Figure 10, where for

each material category we plot the training rate on the left

in a darker color and test rate on the right in a lighter color.

In Figure 10, the recognition rate is computed on the en-

tire training/test set, not just on the learning/evaluation set.

First, the system tries every single feature and discovers that

amongst all features, SIFT produces the highest evaluation

rate. In the next iteration, the system picks up color from

the remaining features, and then edge-slice. Including more

features causes the performance to drop and the algorithm

in Figure 9 stops. For this final feature set “color + SIFT

+ edge-slice”, the training rate is 49.4% and the test rate is

44.6%. The recognition rate of random guesses is 10%.

The boost in performance from the single best feature

(SIFT, 35.4%) to the best feature set (color + SIFT + edge-
slice, 44.6%) is due to our aLDA model that augments vi-
sual words. Interestingly, augmenting more features de-

creases the overall performance. When we use all the fea-

tures, the test rate is 38.8%, lower than using fewer features.
More features creates room for overfitting, and one solution

to combat overfitting is to increase the size of the database.

The fact that SIFT is the best-performing single feature in-
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Figure 10. The per-class recognition rate (both training and test) with different sets of features for the Flickr database [28]. In

each plot, the left, darker bar means training, the right, lighter bar means test. For the two numbers right after the feature set label are the

recognition rate on the entire training set and the rate on the entire test set. For example, “color: 37.6%, 32.0%” means that the training

rate is 37.6% and the test rate is 32.0%. Our aLDA algorithm finds “color + SIFT + edge-slice” to be the optimal feature set on the Flickr

Materials Database.
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Figure 11. For comparison, we run Varma-Zisserman’s system [30] (nearest neighbor classifiers using histograms of visual words) on our

feature sets. Because of the nearest neighbor classifier, the training rate is always 100%, so we simply put it as N/A.

dicates the importance of texture in material recognition.

In addition, SIFT also encapsulates some of the informa-

tion captured by micro-SIFT. Edge-slice, which measures

reflectance features, is also useful.

For comparison, we implemented and tested Varma-

Zisserman’s (VZ) algorithm [30] on the Flickr Materials

Database. The VZ algorithm clusters 5× 5 pixel gray-scale
patches as codewords, obtains a histogram of the codewords

for each image, and performs recognition using a nearest

neighbor classifier. As a sanity check, we ran our im-

plementation of VZ on the CURET database and obtained

96.1% test rate (their numbers are 95 ∼ 98%, [30]). Next,
we ran the exact VZ system tested on CURET on the Flickr

Materials Database. The VZ test rate is 23.8%. This sup-
ports the conclusions from Figure 4 that the Flickr Materials

Database is much harder than the CURET texture database.

As the VZ system uses features tailored for the CURET

database (5×5 pixel patches), we ran VZ’s algorithm using
our features on Flickr Materials Database. The results of

running VZ’s system on exactly the same feature sets as in

Figure 10 are listed in Figure 11. Since VZ uses a nearest

neighbor classifier, it is meaningless to report the training

rate as it is always 100%, so we only report the test rate. It
is obvious why many of our features outperform fixed size

gray-scale patch features on Flickr Materials Datatbase. In

fact, the VZ system running on SIFT features has test rate

of 31.8%, close to our system using SIFT alone (35.2%).
However, combining features under the VZ’s framework

only slightly increases the performance to a maximum of

37.4%. Clearly, the aLDAmodel contributes to the boost in
performance from 37.4% to 44.6%.

The confusion matrix of our system (color + SIFT +

edge-slice, test rate 44.6%) in Figure 12 tells us how often
each category is misclassified as another. For example, fab-

ric is often misclassified as stone, leather misclassified as

fabric, plastic misclassified as paper. The category metal

is more likely to be classified as glass than itself. Some

misclassification examples are shown in Figure 12. These

results are not surprising because there are certain common-

alities between leather and fabric, plastic and paper, as well
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as metal and glass, as shown in Figure 12.

6. Discussion and Conclusion

Although the recognition rate achieved by our system

44.6% is lower than the rates reported in object recogni-

tion (e.g. [19]), it is significantly higher than the state of

the art (23.8%, [30]). As illustrated in Figures 1 and 4, the
sheer diversity and range of the Flickr Materials Database

makes it a challenging benchmark for material recognition.

We believe that material recognition is an important prob-

lem to study, and in this paper, we are merely taking one of

the first steps towards understanding the problem.

To conclude, we have presented a set of features and a

Bayesian computational framework for material category

recognition. Our features were chosen to capture various

aspects of material appearance in the real world. An aug-

mented LDA (aLDA) framework was designed to select an

optimal set of features by maximizing the recognition rate

on the training set. We have demonstrated a significant im-

provement in performance when using our system over the

state of the art on the challenging Flickr Materials Database

[28]. We have also analyzed the contribution of each fea-

ture in our system to the performance gain. Our feature set

and computational framework constitute the first attempt at

recognizing high-level material categories “in the wild”.
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