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Abstract

XXL-Computed Tomography (XXL-CT) is able to produce large scale volume datasets of scanned objects such as crash

tested cars, sea and aircraft containers or cultural heritage objects. The acquired image data consists of volumes of up to and

above 10,0003 voxels which can relate up to many terabytes in file size and can contain multiple 10,000 of different entities

of depicted objects. In order to extract specific information about these entities from the scanned objects in such vast datasets,

segmentation or delineation of these parts is necessary. Due to unknown and varying properties (shapes, densities, materials,

compositions) of these objects, as well as interfering acquisition artefacts, classical (automatic) segmentation is usually

not feasible. Contrarily, a complete manual delineation is error-prone and time-consuming, and can only be performed by

trained and experienced personnel. Hence, an interactive and partial segmentation of so-called “chunks” into tightly coupled

assemblies or sub-assemblies may help the assessment, exploration and understanding of such large scale volume data. In

order to assist users with such an (possibly interactive) instance segmentation for the data exploration process, we propose

to utilize delineation algorithms with an approach derived from flood filling networks. We present primary results of a flood

filling network implementation adapted to non-destructive testing applications based on large scale CT from various test

objects, as well as real data of an airplane and describe the adaptions to this domain. Furthermore, we address and discuss

segmentation challenges due to acquisition artefacts such as scattered radiation or beam hardening resulting in reduced data

quality, which can severely impair the interactive segmentation results.
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1 Introduction

Volumetric datasets produced by computed tomography (CT)

may yield huge amounts of image information of the scanned

specimen which are used in the field of non-destructive test-

ing (NDT). The acquired image data consist of volumes of up

to and above 10,0003 voxels which can relate up to terabytes

in file size and can depict a multiple of 10,000 of different

entities of objects (see Fig. 1). As there are seldom similar

objects of similar types in the data (the “lot-one” problem),

one of the major obstacles in the NDT domain is the lack

of solid reasonable and generic segmentations methods for

such images. Existing algorithms are usually not sufficient

to deal with this information density and therefore perform

poorly or need a lot of parameter tuning.

This work deals with the task of interactive segmenta-

tion of this vast amount of data into individual segments

and into sub-assemblies using the recently published Flood

Filling Networks (FFN) suggested by Januszewski et al. [11–
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Fig. 1 Rendering of the front part of the reconstructed hull of the scanned aircraft. Viewed with all surfaces enabled (a) and as sectional rendering

(b)

13]. The goal of our experiments is to evaluate FFNs for the

challenging task of instance segmentation of sub-assemblies

which are captured and depicted by XXL-Computer Tomog-

raphy (XXL-CT) [31,35]. After a brief introduction into the

current state of instance segmentation we will describe our

data acquisition process using XXL-CT as well as conven-

tional CT systems. We will also provide an overview of

our annotation pipeline, which will be used to obtain refer-

ence annotations for the training of the flood-filling networks

as well as ground truth data. The used annotation pipeline

incorporates both, manual annotation as well as conventional

image processing steps. Furthermore, we will show the appli-

cability of FFNs to our problem domain and describe next

steps in order to realize a feasible segmentation approach for

vast volumetric CT datasets in the field of NDT.

2 Principles andMethods

2.1 RelatedWork of XXL-CT Data Image
Segmentation

There exist a multitude of established algorithms for large-

scale image data segmentation. Many of these are domain

specific (e.g. for specific purposes such as defect detec-

tion, segmentation of well-known metal castings or bulk

seed analysis [4]) or generic approaches using classical

image processing approaches. Recently, more and more

machine learning, and more specifically, deep learning based

approaches are being developed which are trying to overcome

some shortcomings of the classical algorithms. Specifically,

these shortcomings relate to thresholds and mask sizes of the

various image processing modules, which have to be manu-

ally adjusted, in this possibly separately for multiple spatial

distributed regions or volumes inside the dataset. Other short-

comings include the difficulty to find valid parameters over a

wide range of input data under consideration of outliers or the

need for domain experts which can configure and supervise

such systems.

Hence, deep convolutional neural networks based seg-

mentation approaches attempt to compensate these named

disadvantages by deriving the needed required settings, con-

figurations and parametrization of the processing pipeline

from adequate training data collected directly in the problem

domain. Users of such systems then only need to be trained

for the preceding data annotation process and no longer need

to be experts in the image processing chain itself.

2.1.1 Deep Neural Networks

Many of the machine learning and also deep learning based

segmentation approaches can be grouped by the generalized

task they try to accomplish. For example, object detection

algorithms [6,7,10,21,22,28–30,32,42] try to locate the posi-

tion and dimension of one or multiple objects of interest

inside an image. In some cases, like the Mask R-CNN [9]

algorithm individual parts of objects can also be located and

delineated.

For semantic segmentation [7,14,20,24,25,33] the seg-

mentation task consists of assigning each pixel (or voxel) to

a specific target class with the same identifier, meaning that

all pixels (or voxels) which are part of for example a screw

should be labeled with the identifier ‘screw’. For instance

segmentation [5], additionally each individual instance of a

class should be assigned an individual identifier. Thus, for

example all pixels (or voxels) of a screw should be labelled

with the identifier ‘screw’ but also each detected and seg-

mented screw should be assigned its individual identifier.

Many popular deep neural network-based algorithms

make use of huge annotated datasets like [3,10,15,17,23,36–

38] depicting millions of objects and most often multiple

instances of the same class, as e.g. many screws of the
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same type. The segmentation task addressed within our own

research relates to large-scale volumetric image data where

there often exists only one available instance for a specific

specimen. For example the front window of a car or a single

existing scan of a cultural heritage. So in principle, we are

working with data related to a ‘lot size of one’.

Furthermore, the vast data size of the XXL-CT image data

introduces the need to incorporate adequate hardware based

parallelization or sequentialization mechanisms to deal with

such volumes as they are difficult to process on off-the-shelf

computer hardware. Methods which iteratively access only a

small part of the data are particularly suitable for processing

large volume data records. This can be done using attention

mechanisms, e.g. described in [19,39] or by sequential wan-

dering over the input data as in [12] or [26]. Using such

mechanisms it is possible to segment large datasets [18].

Those algorithms e.g. use temporary buffers to store areas

that have already been segmented [8].

It is possible to interactively involve the user in the learn-

ing [41] or evaluation [34,40] process. Clever modelling of

the input masks for convolutional neural networks [1,16,17]

allow the field of view of a filter layer to be expanded with-

out significantly increasing the required amount of neurons

[1,2].

2.1.2 Flood Filling Networks (FFNs)

In this work we primarily use Flood Filling Networks (FFNs)

introduced by Januszewski et al. [11,13], which already inc-

operates various of the above mentioned techniques to deal

with huge datasets. They showed their capability to perform

instance segmentation on volumetric ‘Serial Blockface Scan-

ning Electron Microscopy’ (SBEM) datasets.

One strength of these FFNs lies in the fact that they do

not learn the classes of each object. Instead they try to detect

the boundaries of an object. The segmentation itself is an

iterative algorithm with two nested loops. The outer loop

iterates over all seed points and the inner loop runs through all

sub-volumes containing the same segment. So the algorithm

finds all segments one after the other.

The outer loop begins at a manually selected or automat-

ically detected seed point and segments the current object

using the inner loop. After the inner loop has completed, the

next seed point which does not belong to an already recog-

nized segment is selected. The outer loop is executed until

all seed points have been consumed.

The inner loop is executed for each segment. It first checks

whether the seed point passed by the outer loop does not

belong to an already segmented object. If the seed point

voxel is not marked as belonging to an known segment a

sub-volume (or ‘field of view’) is extracted from the input

data.

The original authors chose a size of 33 × 33 × 17 voxels

for the sub-volume. Due to the use of SBEM for data acquisi-

tion, the spatial resolution in the third dimension was coarser

than in the other two dimensions. By choosing an anisotropic

receptive field, however, their sub-volume retained a cubic

region of the specimen. For our experiments we chose to

start with a sub-volume size of 33 × 33 × 33 voxels to keep

the sub-volume dimension constant between the bulk mate-

rial and XXL-CT experiments (see Sect. 2.2). Otherwise we

retained the settings from the original authors [12] and also

used this adopted implementation for our test.

The sub-volume is added to the processing queue and the

inner loop iterates over this queue. With each iteration of

the inner loop, the current sub-volume is transferred to a

convolutional network (see Fig. 2). This network consists

of a series of 3D convolutions with relu activation function

and skip connections. The input volume is zero padded prior

to each convolution which keeps the volume size between

the different layers constant. The output from this network

is a new mask volume of the same size. Each voxel value

indicates the probability that this voxel belongs to the same

segment as the current seed point. By means of an threshold

value, an intermediate segmentation of the current segment is

created. The selected voxels will then be marked as ‘already

segmented’.

If a segment extends beyond the boundaries of the current

sub-volume, additional sub-volumes are added to the inner

loop processing queue. The new sub-volumes are defined

with a large overlap to the original sub-volume. The field of

view moves iteratively in an adjustable increment across the

input volume, as long as the current segments extends beyond

the limit of the current sub-volume. The currently detected

segments are merged with the already detected active seg-

ment and can thus create resulting segments that span several

sub-volumes. If the inner loop queue is empty, the segment

is initially considered to be fully segmented.

The next iteration of the outer loop selects a new seed

point that is not part of an already detected segment. The

corresponding sub-volume gets added to a new inner loop

processing queue which than iterates over all sub-volumes of

the new segments. The outer loop stops after all seed points

have been consumed. Between and after these iterations, sev-

eral checking and combining mechanisms are used to avoid

over- and under-segmentation (splits and merges).

2.2 Data Acquisitionsec: Data

For our experiments (see Sect. 3) two types of datasets were

used. Firstly, we performed CT scans of various bulk mate-

rial samples which are visually closely related to the SBEM

datasets originally used for the development of the FFNs [11].

The second dataset consists of two 5123 voxel chunks of

a XXL-CT scan of a Second World War era airplane. The

123



1 Page 4 of 14 Journal of Nondestructive Evaluation (2021) 40 :1

Fig. 2 Graph of the convolution network used by FFN to segment the

given field of view of the input volume. Active voxels in the segmen-

tation sub-volume are used as seed points to guide the segmentation.

The network creates an updated version of the segmentation volume by

activating voxels associated with the selected segment

image and content characteristics of this dataset are highly

related to the future datasets for which we want to develop

our image volume segmentation pipeline.

2.2.1 Bulk Material

In order to transfer and evaluate the performance of the

FFNs for NDT tasks, we performed multiple scans of corn,

glass marbles, buttons, and pasta bulk material samples (see

Fig. 3), which relate closely to the original SBEM data

for which the FFNs have been developed. Similar to the

SBEM data, the scanned bulk materials depict a higher

foreground-to-background ratio and provide different seg-

mentation challenges. For example, the corn sample (see Fig.

3a and e) consists of non-homogeneous, material, whereas

the glass of marbles (see Figs. 3b, e and f) is highly affected

by beam hardening artefacts which can be seen as broad dark

spots and stripes inside the object.

For the bulk material measurements, the X-ray source was

set to a acceleration voltage of 120 kV (175 kV for the mar-

bles) and 4 mA current. The focal spot size was 400 µm. No

prefilter was used. The object detector distance was set to

157.5 mm and the object source distance was set to 822.5

mm. The detector has a pixel size of 90 µm and a spatial

resolution of 3328 × 2777 pixels. The resulting magnifica-

tion of about 1.19 leads to a voxel size of equal spacing with

75.53 mm×75.53mm×75.53mm. The measurements were

reconstructed in a 160 µm voxel grid.

As trade-off between resolution and performance, a com-

plete scan consists of 1200 projections. In combination with

an exposure time of 350 ms this leads to a measurement

time of 7 minutes for one CT-scan. The bulk material sam-

ples have been placed into transparent plastic containers (see

Fig. 3, top row). Between successive measurements the con-

tainer was emptied and refilled with the same material to

achieve a random mixture of positions and orientations of

the bulk material for each measurement. To increase the scan-

ning throughput some of the containers have been measured

stacked onto another with a multi cm sheet of low density

foam placed between them.

2.2.2 XXL-CT

The XXL-CT dataset of the airplane consists of two scans,

related to the hull and wings of an airplane (see Fig. 4). Each

of them is stitched together from two individual CT scans,

namely the front and rear of the plane’s hull and the base and

tips of the wings respectively. The task is to automatically

detect and segment each individual semantic object (metals

sheets, screws, rivets, …) in this dataset.

The four CT scans of the airplane parts took about

17 days. The X-ray source was a 9 MeV linear accelera-

tor set to 7.8 MeV. The source detector distance was set to
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Fig. 3 Examples of the bulk material samples. top row: corn (a), mar-

bles (b), pasta (c) and buttons (d) in their transparent measurement

containers. Bottom row: related examples of the corresponding 3D-

reconstructions

approxmatly 12 m and the source object distance was set to

aproxmatly 10 m. The line detector had a pixel pitch of 400

µm. One scan consists of 2300 projections with a resolution

of 9984 × 5286 pixels. The resulting magnification of 1.2

lead to a voxel resolution of 330 × 330 × 600 µm within the

reconstructed volume.

The obtained volumes of the hull (see Fig. 1) have an file

size of 6144 × 9600 × 5288 voxels or 609 gigabytes for the

front and 6144×9600×5186 voxels or 597 gigabyte for the

rear.

As can be seen in Fig. 4c, most of the airplane’s interior of

the reconstruction consist of empty space (as it is usually the

case with airplanes). The main content of the CT volumes

consists of thin metal sheets, which have poorly or barely

visible edge transitions to the adjacent sheets.

For the many occurrences where two metal sheets bluntly

meet semantic information has to be used to decide about

the correct object boundaries. Also many volume regions are

highly affected by data acquisition and reconstruction arte-

facts like beam hardening or scattered radiation especially

near massive metal structures.

2.3 Annotation Pipeline

We used two approaches to generate training and validation

data. A conventional image processing pipeline was used to

annotate the bulk material datasets. The XXL-CT datasets

have manually been segmentated by human annotators.

2.3.1 Conventional Image Processing Chain

Manual annotation or segmentation of volumetric image data

is very time consuming and error-prone as the results are

depending on human factors. Due to the homogeneity of bulk

material, we used a conventional image processing chain to

Fig. 4 Hull (a) and wings (b) of the ME163 airplane inside the mount-

ing brackets for the CT scan. Slice (c) of the 3D reconstruction of the

airplane’s hull located near the landing gear used for training (lower

half) and testing (upper half) the proposed FFN approach

Fig. 5 Axial Slice of the corn data (a) and result of conventional image

segmentation based on morphological filters (b)

generate a segmentation baseline examples of for the bulk

material of corn and marbles.

Our pipeline starts with a binarization using an threshold

gained by Otsu’s method. This is followed by a 3D-distance

transform which treats the voids between the specimens as

foreground. The distance transform provides a height map

with value ‘0’ in the voids between the specimens and

increasing distance values inside the specimens. Afterwards

we applied watershed transform with a pre-flooding depth of

3 on this output. We then iterated over every segment iden-

tifier in the volume and applied a label wise morphological

closing using a spherical mask with diameter of 13 voxels to

smoothen the edges. In the next step all the segments were

recombined into one output volume. We used a connected

component analysis with chessboard metric to find segments

which might have been split during the process and assigned

unique segment identifiers to such split segments. So optical

disjunct segments would not have the same segment identifier

and disturb the training process.

For the actual processing a 2563 voxel sub-volume has

been extracted from each measurement in a way so that the

whole sub-volume only consists of the bulk material and

none of the transparent container which was used for the

measurement was included (see Fig. 5).

While this approach of using a conventional image-

processing pipeline is well suited for our needs to formulate

a baseline algorithm, typical error cases arise in the form of
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Fig. 6 Typical error cases for the classical segmentation pipeline: a and

b are showing over-segmentation of the top left marble. c and d depict

the merged labels of the two light green corns on the center of the left

border. e and f show multiple boundary errors due to data artefacts at

the border of center orange and grey marbles

over-segmentation, merged labels and boundary errors (see

Fig. 6).

We corrected the over-segmentation for the marble dataset

in the occurring three cases by manually unifying the respec-

tive segments. We did not correct the over-segmentation in

the other datasets as the occurrence of over-segmentation was

not as distinctive as in the marble cases with their large voxel

count and iconic shapes. We also did not choose to correct

the other error conditions in all the datasets as it would be

a too costly and human-intensive process involving manual

segmentation which we wanted to avoid for these datasets.

Table 1 shows a overview over the bulk material instances

and annotation error conditions. The resulting training and

testing datasets therefore contained some of these inconsis-

tencies.

2.3.2 Manual Segmented Ground Truth

For the XXL-CT dataset ground truth data was generated

through manual annotation of individual segments using 3D

Slicer [27]. For that task, two neighboring 5123 voxel sub-

volumes have been extracted (see Fig. 4c). The lower block

was used for the training process of the FFNs and was hence

fully manually segmented. This process took about 350 hours

for the segmentation of 7.2 million voxels into to 96 seg-

ments. The volume itself consists of approximately 18.5%

object voxels, while remaining 81,5% of the voxels relate to

background (air). Due to resource constraints only a subset of

the test volume containing 62 segments have been manually

segmented yet.

The actual training dataset used for the training of the

flood filling network had a slightly higher segment count

than the 96 annotated segments. This is based on the fact that

not all components are fully embedded into the 5123 voxel

sub-volume. Some components leave the field of view of the

current sub-volume and reappear as disconnected segment

at an different position (see Fig. 7). Semantic information

is needed to establish that these segments belong in fact to

the same object at a different position. This might possibly

have confused the training process if it was presented with

the request to connect multiple seemingly not connected seg-

ments. Therefore we stored the correct manually segmented

training set with its 96 segments, but used a slightly modified

version for the training, in which we compute a connected

component analysis on the manually segmented data to rela-

bel contacting components.

The manual annotation process also incorporates a man-

ual bandpass filter. The bandpass filter was iteratively set to

highlight and select common grey values of the current tar-

get segment. Then a stylus was used to manually ‘paint in’

the segment. This step was repeated for multiple grey val-

ues and slices until the whole segment has been annotated.

The use of a bandpass filter to select the segments by their

grey values sometimes leads to grainy textures inside the

segments (see Fig. 8). These grainy and splattered textures of

the bandpass-threshold supported annotation might represent

the visual representation of the raw input data, but the actual

Table 1 Overview over the

instances and annotation error

conditions in the bulk material

training and test datasets

Dataset Instances Merges (not intersecting) Splits (corrected) Boundary errors

Marble training 39 1 (0) 1 (1) 3

Marble test 37 2 (0) 2 (2) 1

Corn training 457 18 (2) 1 (0) 0

Corn test 461 21 (2) 2 (0) 0

The corn dataset contained more instances than the marble datasets. Due to image processing artefacts most

of the merged instanced occurred on the intersection with the sub-volume border. All three boundary errors

of the marble training dataset are tightly grouped and visible in Fig. 6f
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Fig. 7 Example of one object not fully contained in the current

sub-volume. The object, in this case a helical wire support structure

(probably for a suction hose), is located in the corner of a sub-volume

(see a for overview and b for closeup). Without semantic information

the individual coils appear to be separate segments. c Show the result

of human semantic segmentation. d Depicts the annotation which was

used as training data for the neural network after applying a connected

component analysis

Fig. 8 Multiple metal sheets to be annotated (a). The grainy texture

is due to the low data quality and is therefore not included in the real

sample. Result of bandpass annotation (b). Segment used for training

after closing with an 3 × 3 × 3 box mask (c)

measured specimen does not reveal these textures. With the

aim to achieve reasonable and visual pleasing segmentation

results we opted for a postprocessing of these annotation with

an 3 × 3 × 3 box mask morphological closing (see Fig. 8c).

In our annotation guidelines, we stipulated that the ‘human

interpreted reality’ of the data set and not the ‘perceived

visual representation’ should be segmented. For example,

if we encountered scattered radiation artefacts, represented

through bright or dark streaks through the volume or cupping

artefacts from beam hardening, we tried to annotate the real

specimen and not the distorted image.

Furthermore, we annotated each segment individually.

This resulted in some cases where one voxel was annotated

as belonging to multiple segments. For example, if the res-

olution of the reconstruction (approx. 0.33 mm3 per voxel)

was not high enough to represent a thin sheet of metal, it was

not possible to represent this reality in an annotation dataset

Fig. 9 Axial slice of the XXL-CT dataset (a) and correlated fully anno-

tated dataset (b) as example of the training data after manual annotation

and preprocessing

with only voxel resolution. In such cases, the corresponding

voxels were annotated as belonging to several segments. To

create adequate training data for the FFN, we had to combine

all annotated segments into one single volume which did not

allow voxels to belonging to multiple segments.

Therefore, we manually sorted the annotated segments in

a preprocessing step in such a way that we could just apply a

voxelwise ‘greater than’ operation for each added segment to

achieve a reasonable result. Other mechanisms to approach

this issue shall be evaluated in the future. Figure 9 shows a

slice of the fully segmented training dataset.

3 Results and Discussion

Within this work we trained three different FFN models,

namely one for each of the corn and the marbles bulk datasets,

and one of the XXL-CT dataset. For the training process the

earlier described ground truth data was used. The training

for the XXL-CT dataset was stopped after approximately 13

million iterations, which took about 30 days on one NVIDIA

Tesla V100-SXM2-32GB GPU. The bulk material datasets

have been trained for approximately 11 million iterations

(or about 20 days) on the same hardware. Due to time and

resource constraints the training was stopped.

3.1 Bulk Material

Figures 10 and 11 are showing the results of the segmentation

of the corn and marbles bulk material datasets, respectively.

Most of the instances are reasonably well segmented. Next

to some slight oversegmentation two typical error cases can

be observed.

The visible black horizontal and vertical stripes are likely

an artefact of the FoV movement of the FFN segmentation

process. These stripes are important in voxel wise instance

segmentation, but have no influences to the original applica-
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Fig. 10 Example result of FFN segmentation of the corn dataset. a

Shows an axial slice of the input data. The result of the corresponding

segmentation is depicted in b. c provides the result after a morphological

closing step. d shows the corresponding ground truth

Fig. 11 Example result of FFN segmentation of the marble dataset. a

shows an axial slice of the input data. The result of the corresponding

segmentation is depicted in b. c Provides the result after a morphological

closing step. d Shows the corresponding ground truth

tion of FFNs, where the connection of neuron was researched.

A post-processing step based on morphological closing using

a 3×3×3 box mask was used to remove these segmentation

artefacts.

The second observed error relates to the existence of com-

pletely missing segments in the result. Their absence can be

explained by the yet usage of the default unmodified FFN

seeding algorithm which does not always create a seed for all

instances connected to the sub-volume border. Also segments

which have less than 1000 voxels are currently automatically

discarded, which results in losing small objects at the bound-

ary of the dataset.

As mentioned in Sect. 2.3.1 the usage of a classical image-

processing pipeline for annotation leads to inconsistencies in

some edge cases. A visual inspection of the FFN segmen-

tation results did not provide evidence to assume that the

network was strongly influenced by these incorrect anno-

tations and tried to recreate them. The proportion of these

inconsistencies in the training data was too low. However, an

improvement in the annotation quality for subsequent inves-

tigations would certainly be advisable in order to minimize

this influence and analyse its scope on the result.

3.1.1 Correlation Matrix

The ‘segment correlation figures’ (see Fig. 12) shows how

well the results of two different segmentation algorithms

match. In this case the ground truth data was generated by

the classical image processing algorithm described in Sect.

2.3.1. It is depicted on the vertical axis and the result of the

FFN segmentation is depicted on the horizontal axis.

Each row is assigned to one ‘reference segment’ SR(i)

and each column is assigned to a ‘detected segment’ SD( j).

Where ‘reference segment’ refers to the manually annotated

segments of the ground truth and ‘detected segment’ refers to

the resulting segmentation of the FFN algorithm. The value

of each cell corresponds to the well-known “ Intersection

over Union’ (IoU) score of two segments SR(i) and SD( j).

If these two segments yield a complete overlap (meaning that

their segmentations match completely) the value is equal to

1.0, otherwise if two compared segments do not share at least

one common voxel the value will be 0.0.

The rows were sorted in descending order by the count

of voxels of their corresponding segments. Consequently the

top rows correspond to the largest segments. The columns

have been sorted by searching for the best match for each

reference row, i.e. the segment with the highest IoU value

in this row which was not already assigned to a different

reference segment. Detected segments unmatched to a ref-

erence segment have been sorted by their voxel count. We

excluded segments with an voxel count of less than 100 vox-

els to reduce the size of the matrix.

Hence, a perfect segmentation in relation to the reference

segmentation should be reflected by a quadratic correlation

matrix which contains the same count of rows and columns,

and thus the same amount of reference segments and detected

segments. In addition, all correlation value outside the main

diagonal should contain IoU values of 0.0. Values on the main

diagonal should have IoU values of 1.0.

However, in realistic application examples investigated

here the row and column count will differ. An over-

segmentation will result in more columns than rows. Bound-

ary errors will result in suboptimal correlation values.

Rows with multiple horizontal values either denote an

over-segmentation of the respective detected segment or a

reference segment which has accidently been split into mul-

tiple segments. In contrast, vertical lines indicate segments

spanning multiple reference or merged segments. Breaks in

the diagonal line indicate reference segments without a good

match in the segmentation result.

Figure 12b shows an example result of the segmentation

of a marble test dataset compared with the model trained

on the marble training dataset. The desired bright diagonal

line is clearly visible, indicating that most of the reference

segments have been well detected. The missing breaks and

the premature ending of the diagonal line indicate that some

tiny reference segments have not been detected at all.

It can also be seen that the reference segments are

either almost completely segmented or remain completely

undetected. The splitting of a reference segment by over-

segmentation into areas of approximately the same size

hardly occurs. This can be observed from the fact that there

are little pronounced horizontal lines corresponding to a weak

reference segment. This behavior can also be observed in the
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Fig. 12 Correlation matrix of

the segmentation results for corn

(a) and marbles (b) bulk

datasets. The rows correspond to

‘reference segments’ sorted top

to bottom by increasing voxel

count of the segmentation. The

columns correspond to ‘detected

segments’ and are sorted by the

maximum IoU

other measurements, as for example with the corn dataset

(see Fig. 12a). The results are comparable in this regard.

3.1.2 Transferability of Models Trained on Bulk Material

As already mentioned, one of the beneficial properties of

the investigated FFNs is that they do not explicitly contain

any knowledge about the different classes of the elements

to be segmented. Hence, we want to test this hypothesis by

applying the models that have been trained on one dataset

(e.g. the corn data) to another dataset (e.g. the marble data).

In the case of simple transferability, the results should be of

comparable quality. Thus, the FFN model previously trained

on the corn examples and applied to the marble data yields

acceptable segmentation results, as can exemplarily be seen

in Fig. 13 (see Fig. 14 for corresponding correlation matrix).

Nevertheless, a transferability in the other direction,

meaning to apply a model trained on the marble data used

to segment corn, was not yet feasible for the current state of

training (see Fig. 13d).

Another experiment (see Fig. 15) shows a similar result.

Here we tried to segment the bulk material dataset of buttons

(see Fig. 3d) with the FFN model trained on corn and mar-

bles respectively. As can be seen, the resulting segmentation

using the FFN model trained on corn (Fig. 15b) seems to be

reasonable (as it is the case in the example of Fig. 13b using

the same model). The segmentation result of the FFN model

trained on the marble dataset (see Fig. 15c) lacks again with

respect to transferability, an essential property that we origi-

nally expected from the FFN segmentation approaches. This

should be taken into account when transferring pre-trained

models for the segmentation of unrelated object types with

different physical and geometrical properties.

However, our experiments were carried out on small

datasets with varying feature shapes and instance counts. A

fact which certainly had an influence on the segmentation

quality, which we want to investigate in future experiments.

Fig. 13 Segmentation results of FFN models trained on images of one

dataset and then applied to images of another dataset. b shows rea-

sonable results for the segmentation of the marble data using the corn

model. On the other side the corn segmentation performed by a model

trained on the marble dataset lacks in quality (d)

Fig. 14 Correlation matrix of the segmentation result for the marble

data run on a model trained with the corn training dataset (see Fig. 13b).

The rows correspond to ‘reference segments’ sorted top to bottom by

increasing voxel count of the segmentation. The columns correspond to

‘detected segments’ and are sorted by the maximum IoU
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3.2 XXL-CT

Figures 16a to f exemplarily depict the results of the FFN

segmentation of the XXL-CT data based on the training man-

ually annotated dataset, whereas Fig. 17a to h show results for

the testing dataset (for which is no full manual segmentation

available yet). As can be seen in Fig. 16h, in some regions the

segmentation results mimics the manually segmented ground

truth quite well, as especially in some tricky parts in which

even a human expert needs semantic references to distinguish

between different segments.

Fig. 15 Segmentation of bulk material button dataset without annotated

training data. b Shows the FFN segmentation of buttons using a pre-

trained model based on the corn dataset. c Shows the FFN segmentation

using a model trained with marble dataset

Figure 17g shows examples of over-segmentation in the

testing dataset. The long streaks of segments have been also

observed in segmentations of earlier training stages of the

training dataset and are known faults from the original FFN

implementation [12], but have not been relevant in that appli-

cation. Some segments of visible objects are missing due to

bad or missing seeds, or parameter settings which only keep

segments with a minimum of 1000 voxels. Other segments,

such as the bright circular pressure vessel on the border of

the training and testing data (see Fig. 17d, bottom ) are over-

segmented at the current state of training.

As can be seen in Fig. 17c, some of the thicker parts of

the connecting struts have not been segmented by the FFN.

This might be due to the fact that these kind of struts are

either not included in the training dataset, or they have not

been segmented due to missing or bad seed values. But as

our transferability experiments suggest (see Sect. 3.1.2 and

Fig. 15), the training process might interoperate some object

structures implicitly into the network model, as it is common

for convolution network layers which are the core of FFNs.

Figure 18a shows the correlation matrix of the results of

the FFN based segmentation of the human annotated train-

ing dataset using the FFN model trained on the same dataset.

In addition to a weakly pronounced main diagonal, indi-

Fig. 16 Results of FFN segmentation of the XXL-CT training dataset.

a and e show orthogonal slices of the training dataset. The first layer in

XY-orientation view provide a rough overview of the dataset, while

the second view shows a particularly challenging layer in the YZ-

orientation. The green lines mark the positions of the corresponding

slice in the other orientation. b and f depict the annotation provided

by a human. The result of the related FFN segmentation is shown in c

and g. Finally, d and h show the segmented slices after a morphological

closing step
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Fig. 17 Result of FFN segmentation of the XXL-CT testing dataset. a

and e show slices of the training dataset. The first layer in XY-orientation

gives a rough overview of the dataset, while the second view shows a

particularly challenging layer in the YZ-orientation. The green lines

mark the position of the slices in the other orientations. b and f depict

the annotation provided by a human. The result of the FFN-based seg-

mentation is shown in c and g. Finally, d and h show the segmented

slices after a morphological closing step

cating a lower segmentation quality, the horizontal bands

on the left edge are particularly noticeable. These are rela-

tively large reference segments which are broken down into

smaller segments by over-segmentation. Examples of this

over-segmentation can be seen in Fig. 16c in the pressure

tank located at the top of the picture.

Figure 18b shows the correlation matrix of the testing

dataset with the corresponding ground truth. Because the yet

unfinished state of the testing dataset ground truth (currently

there are only 62 segments annotated, see Sect. 2.3.2) many

segments could not be related to a reference segment.

3.2.1 Transferability of XXL-CT Trained Model

Similar to the bulk material experiments (see Sect. 3.1.2) we

performed some transferability experiments with the XXL-

CT trained model. As can be seen in Fig. 19, the XXL-CT

trained FFN-model struggles with the complete different task

to segment the bulk material datasets. Beside the earlier men-

tioned reasons for the bulk material datasets another difficulty

was observed in this experiment, namely the bulk material

datasets and the XXL-CT datasets have been acquired on

different CT systems. Thus, the corresponding differences in

signal to noise ratio, the used reconstruction algorithm (cone

beam filtered back-projection vs. stacked fan beam algebraic

reconstruction), or the grey-value conversion might already

be sufficient enough to disturb a successful segmentation.

The most challenging bulk material dataset consisting of

extruded pasta depicting dinosaurs (see Fig. 3c) was used

for this experiments. This dataset has proven to be quite

challenging regarding the segmentation by the conventional

image processing pipeline (see Sect. 2.3.1), thus it was not

possible to generate training or ground truth data. In contrast

to the other bulk material datasets, the pasta dataset depicts

branching segments which are quite similar to the thin walled

riveted metal sheets of the XXL-CT dataset. As can be seen

in Fig. 19l, the segmentation quality of the pasta data set is

quite insufficient. But compared to the other bulk material

datasets it is the most plausible result. This supports the our

assumption that the so-far trained FFN model somewhere

implicitly contains the actual object structure.

4 Conclusions

The following conclusions can be drawn from the experi-

ments and results described in the previous sections: Flood

filling networks (FFNs) are generally suitable for the seg-
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Fig. 18 Correlation matrix of

the segmentation result for the

XXL-CT training (a) and testing

(b) datasets. The rows

correspond to ‘reference

segments’ sorted top to bottom

by increasing voxel count of the

segmentation. The columns

correspond to ‘detected

segments’ and are sorted by the

maximum IoU

Fig. 19 Segmentation result of the corn, marbles, buttons and pasta

bulk material, using a FFN-model trained on XXL-CT data. a, d, g

and j Depict the achieved segmentation of corn, marbles buttons and

pasta. b, e, h and k depict the input data. c, f, i and l Show the achieved

segmentation overlayed onto input data in order to enhance the spatial

findability

mentation of CT datasets, for both bulk material as well

as ‘one-lot’ data, such as the parts of the airplane. Due to

its architecture and structure of the underlaying convolu-

tional neural networks, only minor modifications need to be

addressed in order to segment large scale XXL-CT volume

datasets. As it is common with most neural networks, FFNs

also need a large count of ground truth records of suitable

quality and quantity. The experiments we carried out with

different types of bulk material data (corn, glass marbles,

plastic buttons, pasta) and XXL-CT data indicate that for

NDT a direct transfer from one type of test object to the next

is possible in some cases, but not guaranteed.

Further tests and training with mixed data sets must prove

this robustness. FFNs have a tendency to over-segment on

small or unknown data sets. To join the resulting segments,

suitable, possibly interactive, mechanisms must therefore be

developed.
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