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The functions of the medial geniculate body (MGB) in normal hearing still remain
somewhat enigmatic, in part due to the relatively unexplored properties of the non-
lemniscal MGB nuclei. Indeed, the canonical view of the thalamus as a simple
relay for transmitting ascending information to the cortex belies a role in higher-
order forebrain processes. However, recent anatomical and physiological findings now
suggest important information and affective processing roles for the non-primary auditory
thalamic nuclei. The non-lemniscal nuclei send and receive feedforward and feedback
projections among a wide constellation of midbrain, cortical, and limbic-related sites,
which support potential conduits for auditory information flow to higher auditory cortical
areas, mediators for transitioning among arousal states, and synchronizers of activity
across expansive cortical territories. Considered here is a perspective on the putative
and unresolved functional roles of the non-lemniscal nuclei of the MGB.
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INTRODUCTION

Themedial geniculate body (MGB) is the main thalamic nucleus associated with audition, receiving
direct synaptic inputs from the inferior colliculus (IC; Calford and Aitkin, 1983; Peruzzi et al., 1997;
Crabtree, 1998; Wenstrup, 2005), thalamic reticular nucleus (TRN; Crabtree, 1998), and cerebral
cortex (Winer et al., 1999, 2001), among other sources (Winer, 1992). Its projections target the
cerebral cortex primarily, but also extend to subcortical sites, such as the amygdala (LeDoux et al.,
1991; Bordi and LeDoux, 1994) and TRN (Crabtree, 1998; Lee and Imaizumi, 2013). Classically,
the MGB can be divided into three main divisions based on cytoarchitectural, connectional, and
physiological criteria (Calford and Aitkin, 1983; Calford, 1983; Imig and Morel, 1985; Clerci and
Coleman, 1990; Hashikawa et al., 1991; Smith et al., 2012; Imaizumi and Lee, 2015): the ventral
(MGBv), dorsal (MGBd), and medial (MGBm) divisions (Winer, 1984; Rouiller et al., 1989);
although, further subdivisions are proposed in some species, particularly within the dorsal division
(Jones, 2007; Lee and Winer, 2011b).

Among these MGB divisions, the principal, or lemniscal nucleus, the ventral division (MGBv)
receives topographically organized projections from the central nucleus of the IC and projects to
tonotopically-organized areas of the auditory cortex (AI; McMullen and de Venecia, 1993; Lee
et al., 2004a; de la Mothe et al., 2006b; Lee and Winer, 2008a; Llano and Sherman, 2008; Razak
and Fuzessery, 2010; Hackett et al., 2011; Smith et al., 2012). In contrast, the dorsal division
nuclei are non-tonotopically organized and are connectionally affiliated with corresponding
non-tonotopically organized regions of the midbrain (dorsal division of the IC; ICd) and
auditory cortex (e.g., secondary auditory cortex (AII); Huang and Winer, 2000; Smith et al.,
2012). Finally, and perhaps most enigmatic, the medial division of the MGB receives polymodal
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inputs from the IC and projects broadly across many tonotopic,
non-tonotopic, multimodal and limbic cortical areas (Lee and
Winer, 2008a; Imaizumi and Lee, 2015), terminating notably in
cortical layers 1 and 6 (Huang and Winer, 2000) and also in the
amygdala (LeDoux et al., 1991).

While the physiological properties of the tonotopic ventral
division of the MGB have been intensively investigated (Aitkin
and Webster, 1972; Calford and Webster, 1981; Imig and Morel,
1985; Morel and Imig, 1987; Miller et al., 2001, 2002), similar
studies of the non-lemniscal MGB nuclei in relation to the
ventral division are ongoing (Aitkin, 1973; Calford and Aitkin,
1983; Calford, 1983; Rouiller et al., 1989; Bordi and LeDoux,
1994; Bartlett and Smith, 1999; Edeline et al., 1999; Wenstrup,
1999; He and Hu, 2002; He, 2002; Anderson et al., 2007;
Anderson and Linden, 2011; Bartlett and Wang, 2011). Indeed,
this is not unique to the auditory system, as the roles of non-
primary thalamic nuclei in other systems have generally not
been well defined (Sherman and Guillery, 2006; Jones, 2007;
Cruikshank et al., 2012). However, we have suggested that some
of these non-primary nuclei likely have important roles in the
transfer of information to higher auditory cortical centers (Lee
and Sherman, 2010a, 2011), while others likely are involved in
emotive and affective processing of auditory information (Iwata
et al., 1986;Weinberger, 2011).Modern experimental approaches
will likely shed light on those thalamic nuclei whose functions
have yet to be defined (Cruikshank et al., 2012).

NON-LEMNISCAL AUDITORY THALAMIC
NUCLEI AS INFORMATION-BEARING
CONDUITS

Many thalamic and cortical projections converge in each
auditory cortical area, with the most numerous extrinsic inputs
arising from other ipsilateral cortical areas (∼80% of the total
extrinsic input to each auditory area in the cat, Figure 1; Lee and
Winer, 2011a). Similar connectional patterns organize auditory
regions in many mammalian species, including the monkey
(Hackett et al., 1998; de la Mothe et al., 2006a,b), cat (Lee
and Winer, 2008a,b,c), bat (Fitzpatrick et al., 1998), rat (Roger
and Arnault, 1990; Shi and Cassell, 1997), mouse (Llano and
Sherman, 2008; Oh et al., 2014; Takemoto et al., 2014), ferret
(Bizley et al., 2005), and gerbil (Budinger et al., 2000; Takesian
et al., 2012). Due to the preponderance of such corticocortical
convergence, hierarchical cortical models form the basis for
many connectional frameworks linking these auditory areas
(Figure 1; Rouiller et al., 1991; Kaas and Hackett, 2000; Hackett,
2011; Lee and Winer, 2011a,b), similar to those proposed for
the visual and somatosensory systems (Felleman and Van Essen,
1991).

The role of the thalamus has generally been disregarded
in these hierarchical cortical models beyond that of the
primary thalamic nuclei and instead the non-primary nuclei
are often assigned a modulatory role (Olshausen et al., 1993).
Canonically then, auditory information is often viewed as
ascending through the central auditory lemniscal pathway
from the cochlea through the brainstem, midbrain (IC), and

thalamus (MGBv) until it reaches the primary auditory area and
is subsequently processed through the copious corticocortical
network (Figure 1). However, as we have noted above,
every auditory cortical area receives some fraction of its
convergent input from the thalamus (∼10% of the total
extrinsic input, Figure 1; Lee and Winer, 2008a, 2011a,b).
Why then should these non-lemniscal thalamic inputs to higher
auditory cortical areas have no role in auditory information
processing?

Indeed, we have previously argued that, despite their
relative minority, these higher-order auditory thalamocortical
connections provide an important alternate conduit
for conveying information between cortical areas via a
corticothalamocortical route (Figure 2: red pathway; Lee
and Sherman, 2010a, 2011). This route originates from layer 5
of a lower-order auditory cortical area (e.g., AI) and terminates
non-reciprocally in a higher-order thalamic nucleus (e.g., MGBd;
Bartlett et al., 2000; Huang andWiner, 2000; Llano and Sherman,
2008). These layer 5 neurons potentially may branch to innervate
motor centers, serving as an efference copy of motor signals
to higher auditory centers, as has been similarly suggested for
the visual and somatosensory systems (Guillery, 2003; Sherman
and Guillery, 2011). The superior colliculus may be the most
likely target for such an auditory efference copy (Harting et al.,
1992; Chabot et al., 2013), as similar branching of layer 5 CT
neurons appears absent to the IC (Wong and Kelly, 1981; Lee
et al., 2011).

Completing this circuit, the higher-order thalamic nucleus
then projects to a higher order auditory cortical area (e.g.,
AII; Figure 2: red pathway; Lee and Sherman, 2008; Llano
and Sherman, 2008). Neuronal projections along this alternate
corticothalamocortical route have anatomical and physiological
properties suited for high-fidelity neuronal conduits for
information processing in the nervous system, which we have
previously termed ‘‘driver’’ or ‘‘class-1’’ pathways (Lee and
Sherman, 2010a, 2011). The driver-like projections typically
exhibit thick axons with giant terminal endings and depressing
synapses that activate only ionotropic glutamate receptors
(iGluRs; Lee and Sherman, 2010a, 2011). Thus, for example,
the layer 5 corticothalamic pathway from AI exhibits thick
axons that end in giant terminals in the dorsal division of the
MGB (Ojima, 1994; Winer et al., 1999; Llano and Sherman,
2008). Such synapses then, despite their numerical minority,
can exert a potent influence on their postsynaptic targets,
much like the numerically sparse retinogeniculate projection
(Sherman and Guillery, 1998; Winer et al., 1999; Bartlett
et al., 2000; Llano and Sherman, 2008). In addition, the
thalamocortical pathways from MGBv and MGBd to AI and
AII, respectively, both exhibit driver-like, high-probability
of release synapses, characterized by a depressing response
to paired stimulation that activates only iGluRs, that while
weak individually, are highly-reliable and can synchronize
to drive receptive field formation in the cortex (Rose and
Metherate, 2005; Bruno and Sakmann, 2006; Lee and Sherman,
2008). As such, in this framework, higher-order auditory
thalamic nuclei, like the MGBd, are proposed as driver-
like conduits for information flowing from lower auditory
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FIGURE 1 | Schematic summary of convergent projections from thalamic and cortical sources to the thirteen areas of the cat auditory cortex (AI). Left
panel depicts a simplified schematic of the relative input arising from each thalamic and cortical source based on the percent input to each area. Right panel depicts
a serial hierarchical ordering of auditory cortical areas in the cat based on the laminar origins of cortical projections. Such a cortical hierarchy (right panel) reflects the
notion that the numerous corticocortical projections (left panel) are the main determinants of information processing in higher cortical areas. Neglected in this view
are roles for the several non-primary thalamocortical (as well as the commissural cortical) inputs to each auditory area, which also contribute fewer, yet potentially
salient convergent information to each area. Shading intensity on left panel depicts relative strength of inputs (heavy, medium, weak). Area box shading in right panel
indicates type of auditory area (black = tonotopic, dark gray = non-tonotopic, medium gray = polymodal association, light gray = limbic) and line weights reflect
average connectional strength indicated in left panel. Figure adapted from Lee and Winer (2011a). Abbreviations: AAF, anterior auditory field; AES, anterior
ectolsylvian sulcal area; AI, primary auditory area; AII, second auditory cortex; D, dorsal division of the medial geniculate body (MGB); DCa, dorsal caudal nucleus of
the MGB; DD, deep dorsal nucleus of the MGB; DS, dorsal superficial division of the MGB; DZ, dorsal auditory zone; ED, dorsal posterior ectosylvian area; EI,
intermediate posterior ectosylvian area; EV, ventral posterior ectosylvian area; In, insular cortical area; M, medial division of the MGB; MGB, medial geniculate body;
P, posterior auditory area; RP, rostral pole of the MGB; Sl, lateral suprageniculate nucleus; Sm, medial suprageniculate nucleus; Te, temporal auditory area; V, ventral
division of the MGB; Ve, ventral auditory area; Vl, vetrolateral nucleus of the MGB; VP, ventroposterior auditory area.

cortical areas to higher auditory cortical areas (Figure 2: red
pathway).

We have demonstrated the plausibility of such a
corticothalamocortical conduit, both anatomically and
physiologically, for very early stages of the auditory cortical
pathway in mice (i.e., AI-MGBd-AII; Lee and Sherman, 2008,
2009, 2010b); however, it is still unknown the extent to which
these corticothalamocortical pathways are linked beyond these
areas (Lee and Sherman, 2011). Still, it appears likely that the
anatomical substrates exist for corticothalamocortical pathways
to link all auditory cortical areas (Winer et al., 1999, 2001;
Huang and Winer, 2000; Smith et al., 2012). In particular in the
cat, the giant, driver-like corticothalamic terminals originate
from all auditory cortical areas and target various nuclei in the
dorsal MGB (e.g., dorsal nucleus, dorsal superficial nucleus, deep
dorsal, etc.; Winer et al., 1999), which in turn project to layer 4 of

several auditory cortical areas (Huang and Winer, 2000; Lee and
Winer, 2008a). Interestingly, giant corticothalamic projections
originating from different areas may target the same thalamic
nucleus, such as the projections to MGBd from areas AI, AAF,
Ins, and AII in the cat (Winer et al., 1999) or areas AI and AAF
in the mouse (Llano and Sherman, 2008), establishing potential
hubs for convergent information processing in the thalamus.
Indeed, such convergent corticothalamic geometries are perhaps
more parsimonious with the notion of each thalamic nucleus and
cortical area forming units of degenerate, web-like, processing
ensembles (Lee and Winer, 2011a,b), rather than strictly limited
by serial hierarchical processing networks (Felleman and Van
Essen, 1991). However, defining the precise nature of these
corticothalamocortical routes through each thalamic nucleus
and auditory cortical area will require further neuroanatomical
and physiological studies.

Frontiers in Neural Circuits | www.frontiersin.org 3 November 2015 | Volume 9 | Article 69

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Lee Non-lemniscal medial geniculate body

FIGURE 2 | Schematic summary of some connections of the
non-lemniscal auditory thalamus. The red pathway depicts a potential
information-bearing route linking cortical areas via a corticothalamocortical
pathway originating in layer 5 of a lower cortical area (AI), synapsing in a
higher-order thalamic nucleus (D), and projecting to layer 4 of a higher cortical
area (AII). The same layer 5 CT neurons may also branch to innervate lower
motor centers. This pathway is distinct from the more numerous direct
corticocortical connections that link many auditory areas, such as AI and the
posterior auditory field (PAF), depicted by the orange pathway. A
complementary system, putatively involved in affective processing of auditory
information and synchronizing activity across cortical territories, is depicted by
the blue pathway, which has widespread terminations in layer 1 of multiple
areas and the amygdala (Amy). Omitted from the figure for simplicity are the
projections of the medial division to layer 6 and also feedback CT projections
originating in layer 6 of each area.

CORTICOCORTICAL vs.
CORTICOTHALAMOCORTICAL

An open question here is the manner in which different auditory
areas interact, whether via the direct corticocortical route, the
indirect corticothalamocortical route, or a combination of both
routes (Figure 2: red vs. orange pathways; Felleman and Van
Essen, 1991; Rouiller et al., 1991; Lee and Winer, 2011b).
Although we have previously posited that this alternate route
exists between AI and AII (Lee and Sherman, 2008, 2010b,
2011), it remains unclear the extent to which these alternate
corticothalamocortical pathways prevail throughout the auditory
forebrain. That is, are certain cortical areas preferentially linked
via corticocortical or corticothalamocortical connections? What
benefits accrue to information processing via these types of
pathways? How are these routes organized globally across all

auditory areas? Of course, these issues are unresolved, but
some connectional observations may be pertinent to deciphering
them.

In general, groups of physiologically similar areas are related
by their forebrain connections. This principle is particularly
evident in the monkey (Hackett et al., 1998; Kaas and Hackett,
2000), where auditory areas are grouped into core, belt and
parabelt regions based on connectivity and physiology (de
la Mothe et al., 2006a,b). In the cat, tonotopic areas are
preferentially linked by their cortical and thalamic inputs, while
the non-tonotopic, association and limbic areas likewise each
have distinct connectional affiliations (Lee et al., 2004a,b, 2011;
Lee and Winer, 2005, 2008a,b,c, 2011a,b; Lee, 2013).

However, physiologically different areas generally have much
sparser direct corticocortical connections (Fitzpatrick et al., 1998;
Budinger et al., 2000; Bizley et al., 2005; de la Mothe et al.,
2006a; Lee and Winer, 2008c). For example, in the cat, similar
areas, such as AI and posterior auditory field (PAF), are linked
via numerous corticocortical and thalamocortical connections
(Figure 1; Lee et al., 2004a; Lee and Winer, 2008c). Both
of these areas receive direct inputs from the ventral division
of the MGB (MGBv) to which they send feedback reciprocal
corticothalamic projections that originate in layer 6 (Winer et al.,
2001; Lee andWiner, 2008a). But, in comparison, physiologically
dissimilar areas, the primary (AI) and secondary auditory
cortices (AII), are weakly interconnected by corticocortical and
thalamocortical connections (Figure 1; Lee and Winer, 2008c,
2011a).

How then might information be transferred between
these auditory cortical areas in the cat: AI, P, and AII?
Conjecturing based on the connectivity in the cat, we would
suggest that the alternate corticothalamocortical route may
preferentially transfer information between the physiologically
dissimilar areas (tonotopic and non-tonotopic), AI and AII,
via layer 5 of AI to MGBd and then to layer 4 of AII
(Figure 2: red pathway; Lee and Sherman, 2008, 2010a,
2011). On the other hand, the corticocortical route might
be utilized preferentially for transferring information between
physiologically similar (tonotopic) areas, such as AI and PAF
(Figure 2: orange pathway;Morel and Imig, 1987; Lee andWiner,
2008a).

By comparison, in primates, connections among areas with
similar physiological properties (e.g., core area connections)
also tend to be greater than inter-group connections (e.g., core
to belt area connections), although the magnitude of these
inter-group connections seems greater in primates compared
with cats (Hackett et al., 1998; Kaas and Hackett, 1998;
de la Mothe et al., 2006a, 2012). It is plausible, therefore,
that species-specific constraints govern the degree to which
corticocortical and corticothalmocortical pathways are utilized,
perhaps akin to the species-specific evolutionary trade-offs
in the MGB that differ in their utilization of interneuronal
or reticulothalamic inhibitory inputs (Winer and Larue,
1996).

However, rather than forming the basis of a strict prediction,
one might better approach these conjectures as a framework for
deciphering future physiological investigations to consider both
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the corticocortical and corticothalamocortical routes as potential
neural substrates in auditory forebrain operations. The question
then of utility of these two pathways in auditory forebrain
operations might be better construed as one of degree, rather
than that of hegemony.

THE MEDIAL DIVISION OF THE MGB

A caveat to this notion of the non-lemniscal MGB nuclei as
conduits for information flow to higher auditory cortical areas
is the medial division of the MGB. Unlike the nuclei of the
dorsal division, the medial division does not appear to be a major
nuclear target of the giant, driver-like corticothalamic projections
that establish the first leg of the corticothalamocortical pathway
(Figure 2; Winer et al., 1999; Llano and Sherman, 2008).
Furthermore, unlike both the ventral and dorsal divisions, the
medial division does not project specifically to one or a few
cortical areas, but rather projects broadly across nearly all
auditory cortical regions, terminating prominently in cortical
layer 1, rather than the classical thalamic input layer 4 (Huang
and Winer, 2000; Jones, 2003; Lee and Winer, 2008a; Llano and
Sherman, 2008; Smith et al., 2012). As such, the neuroanatomical
substrates supporting the corticothalamocortical pathway, as
initially formulated, appear to be lacking for the medial
division of the MGB, but see Cruikshank et al. (2012) for a
consideration of similar thalamic projections in the prefrontal
cortex.

Instead then, the prevailing notion for the medial division of
the MGB considers it to be part of the matrix system of thalamic
nuclei, proposed by Jones (2001) in his core-matrix model of
thalamic organization. In this framework, thalamic nuclei are
distinguished on the basis of the expression of different calcium
binding proteins, i.e., parvalbumin is highly expressed in the
core thalamic cells, as in the ventral division of the MGB, while
calbindin is expressed strongly in thematrix cells, as in themedial
division of the MGB (Hashikawa et al., 1991; Molinari et al.,
1995; Jones, 2001, 2003; Lu et al., 2009). The thalamocortical
projection patterns of these cell types are similarly distinct, with
the core thalamic neurons projecting to layer 4 in specific areas,
while the matrix neurons project diffusely across the cortex,
targeting layer 1 and potentially different classes of excitatory
projection neurons (Figure 2: blue lines; Hashikawa et al., 1991;
Molinari et al., 1995; Jones, 2001; Harris and Shepherd, 2015).
Likewise, the functions for these two systems are proposed to
be distinct, with the core thalamocortical system analogous to
the first and higher-order pathways discussed above, while the

matrix thalamocortical system, of which the medial division is a
part, likely exerts control over broad cortical territories, possibly
regulating excitability and synchronizing activity in response
to different behavioral arousal states (Mitani and Shimokouchi,
1985; Hipp et al., 2011). Yet, this parcellation alone does not
capture the full complexity of the auditory thalamus, since the
dorsal division, in part, may also be considered part of the matrix
system (Hashikawa et al., 1991; Molinari et al., 1995; Jones,
2001, 2003; Lu et al., 2009). Thus, additional neuroanatomical
and physiological features must further distinguish the unique
roles of the medial division from those of the dorsal and ventral
division (LeDoux et al., 1985, 1991; Iwata et al., 1986; Cruikshank
et al., 1992).

In this regard, the connections of the medial division
of the MGB with the limbic-related nuclei in the amygdala
position it uniquely to alter auditory forebrain networks in
affective and emotional responses to aversive stimuli (Figure 2:
blue line; LeDoux et al., 1985, 1991; Iwata et al., 1986;
Cruikshank et al., 1992). The same regions of the amygdala also
receive descending convergent inputs from the AI (Romanski
et al., 1993), which may in turn affect other auditory cortical
areas (McDonald and Jackson, 1987; Miyashita et al., 2007),
perhaps establishing essential circuits for synchronizing and
coalescing auditory forebrain ensembles in response to salient
affective stimuli (Winer, 2006; Weinberger, 2011). Moreover,
due to its central position in the distribution of afferent
information to both the amygdala and cortex, the medial
division of the MGB may act as the central hub for
auditory fear conditioning (Weinberger et al., 1995; Weinberger,
2011).

Overall though, it is clear that the operations of the non-
lemniscal medial and dorsal division nuclei of the MGB extend
and enhance the operations of the auditory thalamus beyond that
of a simple relay for acoustic information entering the auditory
cortical network. The ultimate challenge for future investigations
will be to specifically parse their interrelated roles in global
auditory forebrain processes and the emergent construction of
holistic auditory percepts.
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