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Abstract. Gravity waves (GWs) transport momentum and

energy in the atmosphere, exerting a profound influence on

the global circulation. Accurately measuring them is thus

vital both for understanding the atmosphere and for devel-

oping the next generation of weather forecasting and cli-

mate prediction models. However, it has proven very diffi-

cult to measure the full set of GW parameters from satellite

measurements, which are the only suitable observations with

global coverage. This is particularly critical at latitudes close

to 60◦ S, where climate models significantly under-represent

wave momentum fluxes. Here, we present a novel fully 3-D

method for detecting and characterising GWs in the strato-

sphere. This method is based around a 3-D Stockwell trans-

form, and can be applied retrospectively to existing observed

data. This is the first scientific use of this spectral analy-

sis technique. We apply our method to high-resolution 3-

D atmospheric temperature data from AIRS/Aqua over the

altitude range 20–60 km. Our method allows us to deter-

mine a wide range of parameters for each wave detected.

These include amplitude, propagation direction, horizon-

tal/vertical wavelength, height/direction-resolved momen-

tum fluxes (MFs), and phase and group velocity vectors. The

latter three have not previously been measured from an indi-

vidual satellite instrument. We demonstrate this method over

the region around the Southern Andes and Antarctic Penin-

sula, the largest known sources of GW MFs near the 60◦ S

belt. Our analyses reveal the presence of strongly intermit-

tent highly directionally focused GWs with very high mo-

mentum fluxes (∼ 80–100 mPa or more at 30 km altitude).

These waves are closely associated with the mountains rather

than the open ocean of the Drake Passage. Measured fluxes

are directed orthogonal to both mountain ranges, consistent

with an orographic source mechanism, and are largest in win-

ter. Further, our measurements of wave group velocity vec-

tors show clear observational evidence that these waves are

strongly focused into the polar night wind jet, and thus may

contribute significantly to the “missing momentum” at these

latitudes. These results demonstrate the capabilities of our

new method, which provides a powerful tool for delivering

the observations required for the next generation of weather

and climate models.

1 Introduction

Atmospheric gravity waves (GWs) are propagating distur-

bances which transport energy and momentum, coupling and

connecting the atmospheric layers. They are generated by

processes including wind flow over mountains, jet stream

instabilities, and meteorological sources including weather

systems and convection (e.g. Fritts and Alexander, 2003;

Alexander et al., 2010).

GWs are ubiquitous in and vital to the Earth’s atmo-

sphere. They contribute significantly to driving the strato-
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spheric winds (Alexander and Rosenlof, 1996), the meso-

spheric Equator-to-pole and pole-to-pole circulations (An-

drews et al., 1987), and dynamical processes as diverse as

the tropical quasi-biennial oscillation (Baldwin et al., 2001)

and by preconditioning the polar vortex for sudden strato-

spheric warmings (Wright et al., 2010). They affect ozone de-

pletion (Carslaw et al., 1998) and stratospheric water vapour

(Kim and Alexander, 2013), and cause clear air turbulence

affecting aircraft (Williams and Joshi, 2013). They also cou-

ple into the electrically charged ionosphere (Hooke, 1968),

where they can generate disturbances which disrupt commu-

nication and navigation systems (MacDougall et al., 2009).

Characterising their distribution and behaviour is thus vi-

tal to understanding the atmospheric system and to advanc-

ing weather and climate modelling, for both weather fore-

casting and longer-term climate change predictions. In par-

ticular, models are believed to significantly under-represent

waves fluxes near the 60◦ S latitude band (McLandress et al.,

2012), which is in turn believed to contribute to the “cold

pole problem”, arguably the most significant bias in existing

models (Butchart et al., 2011).

GWs can be observed using a wide range of techniques

(e.g. Fritts and Alexander, 2003; Alexander et al., 2010).

These include ground-based methods such as radars, lidars

and imagers and in situ methods such as tracer balloons and

radiosondes. However, such techniques are intrinsically re-

stricted to specific locations, leading to biases in our mea-

surements, and to limited coverage over remote regions such

as the open ocean and deserts. Only satellites have the ge-

ographic coverage and consistency needed to constrain GW

effects in global models.

Since the mid-1990s, advances in satellite technology and

methods have let us begin to characterise the global GW dis-

tribution (e.g. Fetzer and Gille, 1994; Wu and Waters, 1996;

Preusse et al., 1999; Eckermann and Preusse, 1999; Hoff-

mann and Alexander, 2009). In particular, more recent meth-

ods have been able to provide first-order estimates of the

absolute (i.e. non-directional) momentum flux (MF) trans-

ported by GWs (e.g. Ern et al., 2004; Alexander et al., 2008;

Wright and Gille, 2013). This MF, which transfers to the

background wind when the wave breaks, is arguably the main

way GWs act upon the dynamics of the atmosphere, and is

thus of fundamental geophysical importance.

However, until very recently, satellite GW measurements

have been restricted to 1-D and 2-D by the scanning patterns

that the instruments use. This is a critical issue, because the

high travel speed of satellites in low Earth orbit prevents us

from monitoring the time-evolution of observed GWs. As

a result, the only way to measure the directions that GWs

travel is by measuring their 3-D structure and hence their

wavenumber vector. Directional information is key to under-

standing how the MF associated with GWs acts upon the at-

mosphere – without it, for example, we usually cannot even

determine if a particular wave will accelerate or decelerate

the local winds when it breaks. Three-dimensional measure-

ments can also give us access to many other GW properties,

including their phase speeds, group velocities and frequen-

cies. These properties are fundamental to how models sim-

ulate waves, and are extremely poorly observationally con-

strained at the global scale.

Since 2015, two new techniques (Alexander, 2015;

Schmidt et al., 2016; Wright et al., 2016a) have been pro-

posed partially addressing this problem. These techniques

overlap 1-D and 2-D observations from multiple satellite in-

struments to produce pseudo-3-D observations, allowing the

measurement of 3-D wave structure in restricted planes. This

has allowed preliminary climatologies of GW direction to

be produced. However, these methods are heavily restricted

in spatiotemporal coverage, require major assumptions to be

made about the intercomparability of the datasets used, and

are either vulnerable to significant aliasing issues (Alexan-

der, 2015, due to the issues described by, for example, Faber

et al. (2013)) or very significantly underestimate wave am-

plitudes relative to other observations and to theory (Wright

et al., 2016a).

Since these studies, computational developments have fi-

nally made available high-resolution 3-D satellite measure-

ments of atmospheric temperature. Hoffmann and Alexan-

der (2009) demonstrated that radiance measurements from

the nadir-sounding Atmospheric Infrared Sounder (AIRS)

on NASA’s Aqua satellite could be used to produce 3-D at-

mospheric temperature measurements capable of resolving

GWs. However, the high computational cost of their analysis

(∼ 2000–4000 core hours per retrieved day on 2008 hard-

ware) made retrieval of the extended measurement periods

necessary for climatological GW studies prohibitive at the

time. With improved hardware performance per unit price,

this level of computational investment has become feasible

for large volumes of data, making available 3-D AIRS tem-

perature estimates with global stratospheric coverage.

Ern et al. (2017) were the first to exploit these data for

3-D GW measurements. They used the existing S3-D wave-

characterisation method (Lehmann et al., 2012) to produce

a global directional GW MF climatology. The S3-D analysis

method is relatively computationally cheap and has been pre-

viously tested extensively on model data (e.g. Preusse et al.,

2014). However, it does not fully exploit the capabilities of

the AIRS data. In particular, (i) the spatial scales of measured

waves are dependent on the spatial scales of the analysis

cubes which must be defined before the analysis, and (ii) the

method assumes spatial homogeneity of the wave field over

these cubes, which becomes increasingly unlikely as cube

size increases.

Here, we develop and apply a new 3-D spectral analy-

sis method, exploiting the AIRS data to a much fuller ex-

tent. Our technique is based around a generalised multi-

dimensional extension of the existing 1-D and 2-D S-

transforms (STs; Stockwell et al., 1996; Hindley et al., 2016).

The use of an ST allows us to systematically analyse the

data across the full range of length scales within the AIRS-
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resolvable wavelength spectrum, while simultaneously es-

timating wave amplitudes as they vary across individual

wavepackets. Our method is capable of automatically detect-

ing and characterising GWs and their associated properties,

including their amplitudes, frequencies, directional MFs, and

phase and group velocities. Using the single assumption, in

common with previous studies, that the waves resolved by

our data propagate upwards (Wright et al., 2016a; Ern et al.,

2017), we are then able to unambiguously identify the prop-

agation direction of all vector quantities to within measure-

ment uncertainties.

Our measured properties can be geolocated to the voxel

level, allowing us to study spatial resolutions finer than ∼ 1◦

of latitude or longitude and allowing us to study individual

GW packets in 3-D. We believe our results to be both the first

height-resolved directional GW MFs measured by a single

satellite, and also the first satellite measurements of 3-D GW

phase and group velocity.

Our analysis method has several other benefits. It allows

for extension to higher dimensions, for example in the anal-

ysis of time-varying model or ground-based datasets. It also

includes a correction ameliorating the amplitude loss associ-

ated with standard ST methods. Finally, although we do not

do so due to computational constraints, our implementation

can be easily extended to measure an arbitrary number of

multiple overlapping wave modes in an analogous way to the

2-D study of Wright and Gille (2013).

Section 2 describes the geography of the Andes/Drake

Passage region, where we test our analysis. Section 3 then

describes the 3-D AIRS temperature data we use. We next

introduce our 3-D ST analysis (Sect. 4), and discuss some

implementation choices that may affect our results. We then

describe a case study of a single pass of AIRS data known

from previous work to contain GW signatures in Sect. 5,

then extend our analysis to produce a regional climatology of

two winters (2014 and 2015) in Sect. 6, including estimates

of MF, wave direction and short-timescale wave variability.

Section 7 then uses our new data to demonstrate observation-

ally that GWs generated over the Andes are focused into the

zonal wind jet in this region, an example of a result which

could not be achieved with previous satellite observations.

Finally, we draw brief conclusions in Sect. 8.

2 Gravity waves and the Drake Passage region

To demonstrate our method, we study the geographic region

around the Drake Passage, 80–50◦ W, 70–35◦ S. This region

is a major wave source region, and GWs have been observed

here using a vast range of methods including ground-based

radar (e.g. Fritts et al., 2010, 2012; Wright et al., 2016b),

in situ super-pressure balloons (e.g. Hertzog et al., 2008;

Plougonven et al., 2013), and satellite limb (e.g. Eckermann

and Preusse, 1999; Jiang, 2002; Alexander and Teitelbaum,

2011) and nadir sounders (e.g. Alexander and Barnet, 2007;

Hindley et al., 2016; Hoffmann et al., 2016). These results

strongly suggest that the region is the most significant GW

source worldwide, with peak GW amplitudes (Yan et al.,

2010) and MFs (Geller et al., 2013) at least a factor of 2

and potentially an order of magnitude greater than any other

known source.

We consider here the consecutive autumns and winters

(May to September) of 2014 and 2015. This portion of the

year is the main period for GW activity in this region, with

previous studies using a range of instruments measuring neg-

ligible GW activity during the rest of the year above 30 km

altitude (e.g. Wright et al., 2016b).

Figure 1 shows the geography of the region. The area has a

mix of flat open ocean and a variety of land regions, including

both the high orography of major mountain ranges and broad

lowlands such as the Pampas. Two mountain ranges domi-

nate the region topographically: (1) the Antarctic Peninsula

mountains, which lie along a NE–SW axis in the southern

part of the region and (2) the Southern Andes, which form a

N–S barrier along the western edge of mainland South Amer-

ica shifting to a NW–SE barrier along the southern coast

of Tierra del Fuego. This southern extension of the Andes,

while much lower in altitude than the main part, can still form

a significant barrier to surface winds.

GWs in the region are believed to be primarily oro-

graphic in source, arising from fast zonal surface winds flow-

ing across mountain ranges lying near-perpendicular to the

prevailing wind. Once generated, the waves can propagate

downstream across the Southern Ocean, where they con-

tribute strongly to a leeward “tail” of GW activity (e.g. Sato

et al., 2012; Hindley et al., 2015). This tail is believed to con-

tribute very large quantities of MF to the climate system, and

is thus of great geophysical significance.

3 Data

We use data from the Atmospheric InfraRed Sounder (AIRS)

on NASA’s Aqua satellite (Aumann et al., 2003; Chahine

et al., 2006; Olsen et al., 2007). Launched on 4 May 2002,

Aqua flies in a Sun-synchronous near-polar orbit as part of

the A-Train satellite constellation, with an ascending-node

Equator-crossing local solar time of 13:30. Aqua completes

14.55 orbits per day, with a 16-day repeat cycle.

AIRS scans across-track from +49.5 to −49.5◦ off-

nadir axis, measuring a continuous swath of radiances over

2378 spectral channels. The data are processed as 90 par-

allel scan tracks, with horizontal resolution varying from

∼ 13.5 km × 13.5 km at nadir to 41 km × 21.4 km at track

edge.

The scan track is split into arbitrary 135 along-track el-

ement sections, referred to as granules, which provide the

basic unit of data storage. These correspond to 6 min of data

collection. Approximately 650 AIRS measurement granules
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Figure 1. Map of region examined in this study, defining geographic terms used. Inset shows subregions examined in Sect. 6: “Andes”

(purple), “Peninsula” (orange), and “Southern Ocean” (red).

overlap our analysis region each month, providing sufficient

data for statistical analysis of our results.

We specifically analyse 3-D stratospheric temperatures

derived from AIRS radiance measurements in the 4.3 and

15 µm CO2 wavebands, using the retrieval scheme developed

by Hoffmann and Alexander (2009). Retrievals are carried

out for each satellite footprint independently, at the full hor-

izontal sampling capacity of the instrument. The horizontal

resolution of the retrieval is enhanced by a factor of 3 × 3

in the along- and across-track directions compared with the

AIRS operational data, which is an important asset for GW

analyses. The total retrieval error of the individual tempera-

ture measurements varies between 1.6 and 3.0 K in the alti-

tude range from 20 to 60 km. Retrieval noise is the leading

error and varies between 1.4 and 2.1 K in the same vertical

range. The vertical resolution of the temperature retrievals is

7 to 15 km. Further validation of the retrievals is discussed

by Hoffmann and Alexander (2009) and Meyer and Hoff-

mann (2014). We note that the retrieval method uses different

channels for daytime and nighttime; we combine both peri-

ods here.

Temperature fluctuations due to GWs are derived from the

3-D AIRS dataset by subtracting a 4th-order polynomial fit

for each across-track scan (Wu, 2004; Alexander and Bar-

net, 2007; Hoffmann et al., 2014). This detrending method

effectively removes slowly varying background signals due

to large-scale temperature gradients or planetary wave ac-

tivity. The AIRS sensitivity function to GWs is defined by

both the averaging kernels of the temperature retrieval and

the detrending method. The dataset discussed in our study is

sensitive to GWs with vertical wavelengths larger than about

15 km. The sensitivity cutoff at short horizontal wavelengths

depends on the footprint size and varies between 30 km at

nadir and 80 km for the outermost tracks. For long horizon-

tal wavelengths, sensitivity drops below 90 % at horizontal

wavelengths of 730 km and below 10 % at 1400 km; thus,

longer horizontal wavelengths will be more strongly atten-

uated than short ones, modifying the observed spectrum. For

a more detailed discussion see Hoffmann et al. (2014) and

Ern et al. (2017).

4 Methods

4.1 The 3-D S-transform

The ST (Stockwell et al., 1996) is a widely used tool for lo-

calised time–frequency (or distance–wavenumber) data anal-

ysis. In particular, the 1-D ST has been extensively used in

recent years for GW detection and characterisation in atmo-

spheric datasets (e.g. Alexander et al., 2008; Fritts et al.,

2010; Hertzog et al., 2012; Wright and Gille, 2013). More

recently, the 2-D extension of the ST has been similarly ap-

plied to atmospheric datasets including single-altitude strato-

spheric AIRS retrievals (Hindley et al., 2016) and meso-

spheric airglow measurements (Stockwell et al., 2011). Here,

we introduce a new three-dimensional implementation of the

ST for full 3-D GW analysis of our AIRS measurements,

Atmos. Chem. Phys., 17, 8553–8575, 2017 www.atmos-chem-phys.net/17/8553/2017/
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which we generalise to N dimensions for future use in other

contexts.

For a smoothly varying, continuous and one-dimensional

function of time h(t), the 1-D ST S(τ,f ) is defined as

S(τ,f ) = |f |
c
√

2π

∞
∫

−∞

h(t)e
− (t−τ)2f 2

2c2 e−i2πf tdt, (1)

where τ represents translation in the time (or spatial) domain

and f frequency. Here, c is a scaling parameter which is usu-

ally set to 1, but which can be adjusted to improve temporal

localisation at the expense of frequency localisation or vice

versa (Mansinha et al., 1997; Fritts et al., 1998; Pinnegar and

Mansinha, 2003; Hindley et al., 2016). Equation (1) uses as

an apodising function a Gaussian window whose standard

deviation is scaled as the inverse of frequency, although we

note for completeness that any suitable such function may be

used as long as it has a spatial integral equal to unity (Hindley

et al., 2016).

The ST in Eq. (1) can easily be extended to higher dimen-

sions. However, such an extension becomes quite unwieldy

beyond the 2-D case. We therefore use a more compact vec-

tor notation to define an N -dimensional ST. Specifically, for

any function h(x), where x = (x1,x2, . . .,xN ) is a column

vector describing an N -dimensional coordinate system, we

can write the ST S(τ ,f ) as

S(τ ,f ) = 1

(2π)N/2

∞
∫

−∞

h(x)

[

N
∏

n=1

|fn|
cn

e

−(xn−τn)2f 2
n

2c2
n

]

e−i2πf ⊤x dx. (2)

Here, τ = (τ1,τ2, . . ., τN ) and f = (f1,f2, . . .,fN ) are col-

umn vectors denoting translations and spatial frequencies

(inverse of wavelength) in the x1,x2, . . .,xN directions, and

f ⊤ denotes the transpose of f . The scaling parameter cn

is a scalar quantity in each dimension n that can be ad-

justed in order to spatially/spectrally tune the localisation ca-

pabilities of the N -dimensional ST for each dimension in-

dependently (Fritts et al., 1998; Hindley et al., 2016), and

hence represents a tunable parameter set which could be

used in future work to emphasise different wave properties.

In the 3-D AIRS analyses presented here, we have empiri-

cally selected cn = (cx,cy,cz) = (0.25, 0.25, 0.1); this pro-

duces physically plausible results in tests, and is justifiable

on the basis that GWs at the length scales visible to AIRS

typically occupy a much larger fraction of the granule in the

vertical than in the horizontal, allowing us to boost spectral

localisation in this direction at a cost of less-critical spatial

localisation.

4.2 Methodological outline

Our 3-D ST-based GW analysis involves seven key steps.

These steps are outlined in Sects. 4.2–4.6. We then discuss

some possible methodological restrictions and how we ex-

pect them to affect our results in Sect. 4.7.

1. Firstly, we detrend the raw temperature using a fourth-

order cross-track polynomial, as described in Sect. 3

above. This leaves us a three-dimensional temperature

perturbation field T ′(x,y,z).

2. We next interpolate T ′(x,y,z) onto a regular spatial

grid. While in principle the resolution of this grid is

arbitrary, our computational implementation of the 3-

D ST makes heavy use of the fast Fourier transform,

which requires regularly spaced data and which is most

efficient if the number of elements in input dimen-

sions are powers of 2. We thus interpolate the origi-

nal 90 × 135 × 21 element data grid for each granule

to a grid of 64 × 128 × 16 elements in the (cross-track,

along-track, vertical) directions.

3. We then temporarily remove the exponential increase of

wave amplitude with height, arising from the decline of

atmospheric density with height. This was done to mit-

igate the effect of much larger wave amplitudes at the

top of the granule unfairly dominating the S-transform

spectrum via spectral leakage. We define a reference

height level z0 = 41 km, representing approximately the

centre altitude of the original data, and apply a scal-

ing factor exp(−(z − z0)/2H) to all other height lev-

els. Here, H is the atmospheric scale height, which we

define as 7 km.

4. Next, we compute the 3-D ST. We then project

the measured wavenumbers from the along-

track/across-track/vertical frame of reference into

the zonal/meridional/vertical wavenumbers k, l and m

to provide a consistent geometric basis for our results.

Section 4.3 below describes these steps.

5. The wave amplitudes estimated by the 3-D ST analysis

exhibit significant amplitude reduction. This is due to

fundamental limitations arising from the finite number

of wave cycles present in any real wavepacket. While

this problem is minor enough to be neglected for the 1-

D ST (Wright, 2010), in the 3-D case it can reduce mea-

sured amplitudes by as much as 70 % of their true value.

Accordingly, we next apply an empirically derived cor-

rection to restore the measured wave amplitudes to val-

ues close to their initial values in the AIRS retrieval.

This is discussed in Sect. 4.4 below.

6. We next reverse the amplitude scaling with height we

applied above. This restores the true height-scaling of

the measured wave amplitudes, typically exponentially

increasing with height.

www.atmos-chem-phys.net/17/8553/2017/ Atmos. Chem. Phys., 17, 8553–8575, 2017
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7. Finally, we use the wave amplitudes, wavenumbers

and geolocations provided by the above steps to com-

pute additional wave properties, including their phase

speeds, group velocities and momentum fluxes. Sec-

tions 4.5–4.6 describe this step.

4.3 Computing the 3-D ST

For each granule of 3-D AIRS data analysed, we ap-

ply the vectorised ST S(τ ,f ), Eq. (2), producing a

six-dimensional complex-valued object, i.e. S (τ ,f ) ≡
S(τx,τy,τz,fx,fy,fz). Following Hindley et al. (2016), we

then collapse this 6-D object into a more computationally

manageable 3-D object by considering only the spectral peak

for each location in the localised ST spectrum. This peak

corresponds physically to the single wave with the largest

spectral amplitude at that location in (τx,τy,τz). Figure 1 of

Hindley et al. (2016) visualises this for the 2-D case.

Once we have identified the spectral peak of the localised

(fx,fy,fz) spectrum for each location in (τx,τy,τz), we

record the values of the complex coefficients at these spec-

tral peaks in a 3-D object A(τx,τy,τz). The magnitude of the

complex coefficients of A correspond to the underlying wave

amplitude of the largest-amplitude (i.e. most dominant) wave

at each location in (τx,τy,τz). As described by Hindley et al.

(2016), taking the real part R(τx,τy,τz) = Re
[

A(τx,τy,τz)
]

also provides a useful “reconstruction” of the input granule

using only the dominant wave at each location. This recon-

struction can be used to visually assess the effectiveness of

our 3-D ST analysis, and is also used for our amplitude cor-

rection in Sect. 4.4 below.

The exact location of the spectral peak in each localised

(fx,fy,fz) spectrum is also recorded. This denotes the fx ,

fy and fz frequencies that correspond to the dominant wave

at that location in (τx,τy,τz). We record each of these in the

3-D objects Fx(τx,τy,τz), Fx(τx,τy,τz) and Fz(τx,τy,τz)

respectively.

Conveniently, in our application the (τx,τy,τz) do-

main corresponds exactly to locations in the regular grid

onto which we interpolated each granule of our in-

put AIRS data, i.e. (τx,τy,τz) = (x,y,z). This effectively

gives us A(x,y,z), Fx(x,y,z), Fy(x,y,z), R(x,y,z) and

Fz(x,y,z) relative to each granule. Thus, we measure and

record the underlying amplitude and frequency of the dom-

inant wave at every location in our interpolated 3-D granule

of AIRS measurements.

We then follow the method of Hindley et al. (2016)

to project the spatial wavenumbers fx ≡ Fx(x,y,z),fy ≡
Fy(x,y,z),fz ≡ Fz(x,y,z) into zonal, meridonal and ver-

tical wavenumbers k, l and m, by considering the geographic

azimuths of the along-track and cross-track directions at each

location on the granule.

4.4 3-D ST amplitude restoration

The N -dimensional ST analysis has many advantages. How-

ever, one major drawback arises which we must correct for.

In the real atmosphere, GWs typically exist as wavepackets,

i.e. a finite number of wavecycles contained within an ampli-

tude envelope. Analytically, if we consider the wave inside

the packet to be a perfect sinusoid with wavenumber k, the

presence of a packet-like windowing function in the spatial

domain effectively applies numerical prefactors to wavenum-

ber voices in the spectral domain. This means that, when the

ST is evaluated at the “correct” wavenumber k, the measured

spectral amplitude at that wavenumber is reduced. Since the

spectral power is not really lost, merely spread across other

wavenumber voices and not attributed to the true wavenum-

ber k, this effect is similar to spectral leakage.

For waves with a large number of wavecycles within the

wavepacket, this effect is negligible, as shown by, for exam-

ple, Wright (2010) for the 1-D ST. However, for higher di-

mensions and for waves with only a few wavecycles, this am-

plitude reduction can be significant. Stockwell et al. (2011)

and Hindley et al. (2016) observed wave amplitudes reduced

by 40–60 % of their initial values using the 2-D ST, and our

investigations suggest 3-D ST-measured wave amplitudes

can be reduced by as much as ∼ 70 % of their initial values.

Here we apply a simple correction to restore our 3-D ST-

measured amplitude values to close to their initial values in

the AIRS measurements. To do this, we make use of the ini-

tial interpolated 3-D AIRS measurements T ′(x,y,z) (after

removal of their exponential amplitude trend with height) and

the 3-D ST reconstruction R(x,y,z) of these measurements,

which is found by taking the real part of the complex-valued

object A(x,y,z) as described above.

These reconstructed wave amplitudes R(x,y,z) are re-

duced by a factor dependent on how many wave cycles were

present in each wavepacket. Since complete knowledge of

the wave field, specifically the number of wave cycles present

in each wavepacket, is fundamentally very challenging, it is

thus difficult to correct for each and every wave exactly and

independently.

Our approach is to first take the 3-D Fourier transform of

both the AIRS measurements and the reconstruction. We take

the median of the linearised quotients of all the absolute val-

ues of the complex spectral coefficients, i.e.

ξ = median

[

|FT
[

T ′(x,y,z)
]

|
|FT

[

R(x,y,z)
]

|

]

. (3)

This gives us a scalar value ξ for the general amplitude re-

duction factor of the dominant waves in the granule. We then

multiply the complex-valued object A(x,y,z) by ξ in order

to get a new, restored underlying wave amplitude and recon-

struction for each location in the granule, by taking the mag-

nitude and real parts of ξA(x,y,z) respectively.

Atmos. Chem. Phys., 17, 8553–8575, 2017 www.atmos-chem-phys.net/17/8553/2017/



C. J. Wright et al.: 3-D AIRS/Aqua gravity wave characteristics 8559

Although this is a relatively simplistic approach, it typi-

cally restores wave amplitudes of the dominant waves in the

granule to within ∼ 10 % of their original values. It should

be noted, however, that the use of a single scalar factor for

the whole granule could introduce errors, where some less

dominant wave features are rescaled by an incorrect amount.

As a precaution, we only apply factors between 1 and 5. Fu-

ture work will refine this correction by estimating the spatial

extent of observed wavepackets in the granule, allowing us

to measure the number of wave cycles present in the packet.

This will allow us to better constrain the attenuation and sep-

arately apply the correct scaling factor for every wave in the

granule independently.

4.5 Frequencies, phase speeds and group velocities

By simultaneously characterising k, l and m, our data allow

us to estimate GW intrinsic (i.e. wind-relative) frequencies

ω̂, phase speeds ĉp and group velocities ĉg. Further, by using

ancillary background wind data, we can convert these prop-

erties to their ground-relative values ω, cg and cp.

Following Fritts and Alexander (2003), we calculate the

GW intrinsic frequency ω̂ from the GW dispersion relation

ω̂ ≡ ω − ku − lv =

√

N2
B(k2 + l2) + f 2

(

m2 + 1/4H 2
)

k2 + l2 + m2 + 1/4H 2
, (4)

where u and v are the background zonal and meridional wind

speeds respectively, NB is the Brunt–Väisäla (buoyancy) fre-

quency, H is the atmospheric scale height, (∼ 7 km for the

stratosphere), and f = 2�sin(φ) is the Coriolis parameter

for the Earth’s rotation rate � at a latitude of φ. This in turn

allows us to compute the GW group velocity

(

cgx,cgy,cgz

)

≡
(

∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)

= (u,v,0) (5)

+
[

k(N2
B − ω̂2), l(N2

B − ω̂2),−m(ω̂2 − f 2)
]

ω̂(k2 + l2 + m2 + 1/4H 2)
,

where
(

cgx,cgy,cgz

)

are the components of group velocity in

the zonal, meridional and vertical directions.

Finally, GW intrinsic phase speed ĉp is given by

ĉp = ω̂

k2 + l2 + m2
(k, l,m), (6)

and is defined in the direction of phase propagation (k, l,m).

4.6 Momentum flux

We can also compute the MF associated with an observed

wave. Under the midfrequency approximation, which is valid

for our data, MF can be computed as (Ern et al., 2004)

[Mz,Mm] = ρ

2

(k, l)

|m|

(

g

NB

)2(
T ′

T

)2

(7)

where Mz and Mm are the zonal and meridional projections

respectively of the MF, ρ, and T are the local atmospheric

density and background temperature, and g is the accelera-

tion due to gravity.

Equation (7) neglects several terms in the full treatment of

Ern et al. (2004) involving quantities AIRS does not mea-

sure. Ern et al. (2017) show that, for these data, neglecting

these terms typically leads to errors < 30 % provided the

ratio m/k > 1.5. The range of observable wavelengths im-

posed by the resampling step in our analysis, described be-

low, means that our measured m/k never falls below ∼ 2.5

in the worst case, and is typically much greater than this.

Note that our values of k and l are estimates of true values

rather than lower bounds arising from 2-D projections of the

wave field. Our estimate of MF is thus an estimate of the true

value rather than a lower bound as in most previous satellite

studies.

4.7 Assumptions and limitations

4.7.1 Assumption of upward propagation

Since the satellite measurements are instantaneous, there is

a 180◦ ambiguity in the wavevector (k, l,m) which can-

not be directly broken from the observations. As in Wright

et al. (2016a), we break this ambiguity by assuming that the

GWs propagate vertically upwards, thus requiring that the

vertical wavenumber m be negative. In order for the data

to remain internally consistent, this implicitly constrains the

other two components of the wavevector, providing a full-3-

D wavevector at each point in the data.

Upwards propagation is very likely to be the case for the

great majority of GWs in this region. In particular, the as-

sumption is consistent with the model study of Sato et al.

(2012), where GW energy flux across the entire region was

upwards, with the exception of an area immediately down-

wind of Tierra del Fuego and below 30 km altitude. This as-

sumption may lead to the misclassification of some GWs in

our sample, especially any generated by high-altitude sources

such as the edge of the polar vortex.

4.7.2 Handling of along-track granule-edge waves

From Sect. 6 onwards, we consider bulk averages of many

AIRS granules. The arbitrary boundaries between these gran-

ules can cause GWs near the boundaries to be poorly re-

solved. For example, the GW studied by Fig. 6 of Hindley

et al. (2016) and Fig. 7 of Hoffmann et al. (2014) transports

significant MF, but is almost exactly split in half by a granule

boundary. It is thus not properly resolved in either individual

granule spanning the GW.

To accommodate this issue, we process the data in two

distinct passes, (i) as each granule individually and (ii) as the

merged second half of each granule and the first half of the

next, i.e. the original granule boundaries stepped along-track
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Figure 2. (a) Map of the region covered by AIRS granules 56–58

on 6 May 2008. Red solid lines indicate the AIRS scan track out-

line, and red arrows indicate the direction of satellite travel. (b–e) T ′

measured by AIRS at four height levels above this region. The expo-

nential increase in wave amplitude with altitude has been removed

in (b–e) for consistency with Fig. 3.

by 1/2 granule. The results of both passes are then stored

independently and treated as separate observations. This en-

sures that all GWs will be measured as accurately as the data

permit in at least one of the two passes.

Since every point in the input data is considered twice,

such partially truncated waves may have a very small value

in one pass and an accurate value in the other pass. Thus,

the wave may contribute less to bulk averages than it would

if fully resolved in both individual processing passes. This

may affect our results slightly.

4.7.3 Computational limitations

Unlike the temperature retrieval, we implement our 3-D ST

analysis on desktop hardware. Runtime in this context is rea-

sonable (∼ 2 min per granule, equating to a total runtime

∼ 8 days for the period and region considered), but memory

restrictions impose some limitations on our analysis. Specifi-

cally, we (1) use unsigned 8 bit integers, scaling all T ′ values

into this range; (2) interpolate the data to a spatial resolution

of (128 × 64 × 16) points in the (along-track × across-track

× vertical) direction, chosen as powers of 2 to optimise dis-

crete FFT performance; and (3) do not consider spatial fre-

quencies above P/15 in the horizontal, where P is the num-

ber of points in that direction after interpolation.

We do not expect these choices to affect our results signif-

icantly, for the following reasons:

1. An 8 bit integer allows 256 discrete values to be stored.

Once the background is removed, our range of retrieved

temperatures is around ±40 K, though many granules

do not nearly have as large a range as this, particularly

as we remove the exponential increase in wave ampli-

tude for this step. Converting to 8 bit integers means our

precision is at worst reduced to around 0.3125 K for this

range, whereas retrieval noise can vary from around 1.4

to 2–3 K (Sect. 3). Thus, any introduced noise from con-

verting to 8 bit integers does not significantly contribute

to further uncertainty.

2. The spatial resolution values used are similar to those

of the original data – 128 vs. 135 points along-track,

64 vs. 90 points across-track, and 16 vs. 13 points in the

vertical.

3. The frequencies we discard correspond to signals span-

ning only low-single-digit numbers of points, and are

thus potentially vulnerable to noise – in previous work

using AIRS data (Wright et al., 2016a, b), we have pre-

smoothed the input fields to remove these frequencies.

Nevertheless, it is important to note that these choices may

affect our results, particularly across-track where we dis-

card ∼ 1/3 of the input resolution. We therefore expect fu-

ture work to be capable of better wave characterisation, even

without changes in the analysis technique or the input data. In

particular, our current analysis will discard very small GWs

near the Nyquist limit of the original data, as observed by, for

example, Alexander et al. (2009).

Furthermore, as described above and in common with

Hindley et al. (2016), we discard all signatures in the data

associated with frequencies other than the signature corre-

sponding to the largest-amplitude wave at each spatial grid-

point. While this is necessary to implement the 3-D ST on

our current hardware, we expect that future implementations

will be able to use this discarded data to measure distinct

overlapping wave signatures, as done in the 2-D case using

HIRDLS data by Wright et al. (2015).
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Figure 3. 3-D plot of the AIRS-derived T ′ measurements shown

in Fig. 2, plotted as semi-transparent nested surfaces of constant

T ′. Viewing perspective has been rotated relative to Fig. 2 to better

highlight 3-D T ′ phase fronts present in the signal, and the expo-

nential increase in wave amplitude with altitude has been removed

in order to highlight the vertical structure.

5 Case study – 6 May 2008

5.1 AIRS temperature observations

Figures 2 and 3 show T ′ as measured over the Southern Cone

(i.e. the region of South America poleward of ∼ 40◦ S)1 on

6 May 2008. This example is chosen to allow direct compar-

ison with GW measurements from combined AIRS bright-

ness temperatures and MLS kinetic temperatures studied by

Wright et al. (2016a).

Figure 2a shows a map of the region, with the AIRS scan

track indicated by the red outline. AIRS is travelling from

NE to SW, as indicated by the red arrows at track centre. Fig-

ure 2b–e then show T ′ measured by AIRS at four height lev-

els. We see distinct phase fronts of hot (red) and cold (blue)

air tightly localised over Patagonia, changing with height in

a manner consistent with vertically stacked phase fronts. The

spatial distribution of this T ′ is very similar to Fig. 1b of

Wright et al. (2016a). This is unsurprising since the data

share a common source, but it provides a useful cross-check

on the accuracy of the 3-D temperature retrieval. T ′ ampli-

tudes are, however, much larger here, due to our use of re-

trieved kinetic temperature rather than brightness tempera-

ture. Temperature amplitudes are reduced at the highest level

plotted (55 km), perhaps due to the reduced vertical resolu-

tion of the retrieval at these altitudes.

1Strictly, this name usually refers to the region of South America

poleward of ∼ 25◦ S, but is used throughout this study to mean only

the subset poleward of ∼ 40◦ S to simplify textual references.

Figure 3 shows the same data, as a 3-D view from the

northwest. This viewing angle has been chosen empirically

as that from which the distinct GW phase fronts are visually

clearest. T ′ is plotted as 3-D semi-transparent nested sur-

faces of constant T ′. We see that the phase-front volumes

are mostly continuous in 3-D. Assuming that the GW prop-

agates from an orographic source in the Southern Andes, we

also see the phase fronts tilt with height, shifting from a near-

horizontal alignment for the earliest phase fronts (at low al-

titude) of the wave to a near-vertical alignment for later ones

(at high altitude).

5.2 Wave amplitudes and wavelengths

Figure 4a–e show the direct output of our 3-D ST analysis for

this GW. We show the 30 km altitude level only, but similar

diagnostics are computed by our analysis at all other heights

within the measurement volume.

Figure 4a shows T ′ and Fig. 4b T̂ . Several wide phase

fronts are visible over the Southern Cone, overlaid by a very

fine set of narrow phase fronts centred at (50◦ S, 74◦ W). In

what follows, we assume these two features represent two

distinct GW signatures. We then define the large-amplitude

region of the larger-area GW centred at (50◦ S, 70◦ W) as

“Wave A” (outlined approximately by the thick dotted line)

and the tightly defined narrower feature at (50◦ S, 74◦ W) as

“Wave B” (outlined approximately by the thin solid line). We

note, however, that other wave features exist in the same data,

and that Wave A extends over most of the granule to some

degree.

Wave B is very close to the data’s horizontal resolution

limit and could conceivably be spurious. However, the signal

is visible across a range of heights, and analysis gives physi-

cally plausible results for most metrics (with the possible ex-

ception of phase speed and temporal frequency, for reasons

discussed below). We thus believe it to be a real GW signal.

GWs at similarly small scales in 2-D AIRS data have been

studied by, for example, Alexander et al. (2009) and, while

small in area, can dominate the MF distribution of a granule

due to the strong inverse dependence of MF on λh (see Eq. 7,

below). This feature was invisible to Wright et al. (2016a)

due both to the coarseness and relative spatial location of the

MLS scan track, and is very close to the resolution limit of

our 3-D AIRS data.

Figure 4c and d show λh and wave propagation directions

θ . λh is consistent with the phase fronts seen in Fig. 4a. Prop-

agation is mostly southwestwards. This is consistent with

orographic waves generated by surface wind flow over the lo-

cal NW-SE topographic orientation, which must be directed

upwind in order to maintain a constant ground-based loca-

tion. An exception is a region centred at (47◦ S, 78◦ W) where

the waves propagate in a near-westward direction. This is due

to the mountain ridge here being nearer to a N–S alignment.

Figure 4e shows measured λz. Due to the small number of

vertical levels used, the number of distinct λz values measur-
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Figure 4. Estimated (a) temperature perturbations T ′ (see text for details of annotations), (b) wave amplitude T̂ , (c) horizontal wavelength λh,

(d) horizontal propagation angle θ , (e) vertical wavelength λz, (f) intrinsic frequency ω̂, (g) intrinsic horizontal group speed ĉgh, (h) intrinsic

horizontal phase speed ĉph, (i) ground-based frequency ω, (j) ground-based horizontal group speed cgh, (k) vertical group speed |cgz|,
(l) ground-based horizontal phase speed cph, and (m) vertical phase speed |cpz| at 30 km altitude for the AIRS data shown in Fig. 2. Regions

with T̂ < 5 K have been masked from (c–m). Black dotted lines indicate the edge of the AIRS measurement granule; some data extend

slightly beyond this region due to the data being interpolated onto a regular grid. Intrinsic vertical group and phase speeds are not shown

separately, since they are equal to the ground-based values (see Eqs. 5 and 6). Panels (g) and (j) share a colour bar, as do (h) and (l). The

exponential increase in wave amplitude with altitude has been removed in (a) for consistency with Fig. 3.

able is restricted (e.g. Wright et al., 2015), and thus we see

a “speckled” pattern of only two values over the great ma-

jority of the region, λz ∼ 14 km and λz ∼ 18 km. For an oro-

graphic GW under the hydrostatic relation (e.g. Eckermann

and Preusse, 1999), λz ∼ 2πuh/NB, where uh is the back-

ground horizontal wind speed. Taking NB = 0.02 s−1 and

uh = 50 ms−1, the latter derived from ECMWF operational

analyses for this day, this predicts λz ∼ 16 km. Given our re-

stricted height resolution prevents the measurement of λz val-

ues between 14 and 18 km, this prediction is fully consistent

with our observations across the region, and the true value al-

most certainly lies somewhere between these two. The values

are also consistent with visual inspection of vertical sections

through the region (Figs. 5d, g, discussed below).

5.3 Frequencies, phase speeds and group velocities

To compute ω, cp and cg, we first pre-smooth the λz field

using a 3 × 3 voxel boxcar smoother in the horizontal plane

only before calculating these properties. This is due to the

“speckled” nature of the λz distribution (Fig. 4e), which

transfers directly through to all subsequent figures. Given we

suspect the true value to lie between the values observed, this

smoothing represents a better estimate of the true λz value,

and thus of derived quantities. No similar smoothing is ap-

plied to λh.

Figure 4f–h show maps of intrinsic ω̂, ĉgh and ĉph, cal-

culated after this smoothing. These values do not require us

to use ancillary background wind data. They are shown for

completeness only, and we do not discuss them further. Cor-

responding vertical speed maps are not shown since they are
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by definition identical to the ground-based maps on the bot-

tom row of the figure.

Figure 4i–m then show ground-based properties. These are

calculated using u and v values derived from ECMWF oper-

ational analyses. These estimates are typically insufficiently

accurate for use at the level of localised wind perturbations

u′, v′, but are well-suited to characterising the bulk behaviour

of the local atmosphere u, v. Our ground-based values will,

however, exhibit additional uncertainty due to the use of re-

analysis data to derive them. In particular, in the region cen-

tred on 47◦ S, 76◦ W a large angle exists between the mea-

sured wave fronts and reanalysis winds, leading to an equiv-

alent region of very large values in Figs. 4j, l induced by the

projection of the wave into the wind frame which may be

unphysical.

Figure 4i shows measured ω. ω = 0.5×10−3 s−1 for Wave

A and ω = 2 × 10−3 s−1 for Wave B. Both of these features

are consistent with midfrequency GWs f = 2 ×10−4 ≪
ω ≪ NB = 0.02 s−1. Testing of a range of similar 3-D AIRS

granules (not shown) indicates that this is usually the case for

GWs detected in these data using this method.

Figure 4j and k show horizontal group speed cgh =
√

c2
gx + c2

gy and vertical group speed cgz. Directionality is

omitted in the horizontal plane for brevity, but is gener-

ally southeastwards across the region, consistent with group

velocity perpendicular to the GW phase fronts. cgh ∼ 0–

10 ms−1 for the majority of the region, again consistent with

midfrequency waves (e.g. Wright et al., 2011). cgz is 1 ms−1

for Wave A and 3 ms−1 for Wave B. Values of cgh increase

over the Drake Passage; this is consistent with focusing of

the waves into the centre of the southern zonal wind jet in

this region (Sato et al., 2009, 2012; Hindley et al., 2015), and

is discussed further in Sect. 7.

Finally, Fig. 4l and m show horizontal phase speed cph =
√

c2
px + c2

py and vertical phase speed cpz. Horizontal direc-

tions are primarily southwestwards (not shown). This is the-

oretically consistent with the observed group velocities and

with the phase fronts depicted in Fig. 3f: the phase speed is

directed across the phase fronts and downwards, while the

group velocity is directed along the phase fronts and up-

wards. cph ∼ 0 ms−1 for Wave B, consistent with orographic

wave generation. Values vary across Wave A, but are typi-

cally low, consistent again with uncertainties in u. cpz is near-

zero for Wave A, but ∼ 3 ms−1 for Wave B.

The relatively large values of ω and cpz for Wave B are

somewhat surprising. Given the close spatial correspondence

between this wave and the significant topography around Mt

San Valentin, we would assume this wave to be orographic

in source and thus to have near-zero values for both these

quantities, as with Wave A. Accordingly, we suspect that this

wave is indeed orographic in source, and thus that the non-

zero magnitudes of these quantities arise from measurement

uncertainties associated with our coarse-grained input ver-

tical structure. While the same problem nominally exists for

the larger Wave A, the much larger spatial extent of this wave

provides more data to constrain our analysis, allowing more

accurate determination of all quantities.

5.4 Momentum fluxes

Figures 5 and 6 shows the MF associated with our exam-

ple wave, split into zonal Mz and meridional Mm compo-

nents. Figure 5a–c show maps at 30 km altitude, Fig. 5d, e, f

show height–longitude sections at 50◦ S, and Fig. 5g–i show

height–latitude sections at 70◦ W. Black shading indicates to-

pography for that section, scaled by 5 for ease of comparison.

T ′, shown previously, is reproduced in Fig. 5a, d, g for ease of

spatial comparison. Zonal MFs Mz are shown in Fig. 5b, e, h

and meridional MFs Mm are shown in Fig. 5c, f, i. Figure 6a

and b show the 3-D structure of Mz and Mm, from the same

perspective as Fig. 2f. All plots are signed, i.e. show both

positive and negative-valued data. Regions with T ′ < 3 K in

panel (a) and T̂ < 3 K in panels (b) and (c) have been set to

zero.

As with Fig. 4, the dominant features in Figs. 5 and 6 are

Waves A and B. Wave A has a peak MF of 50 mPa, and Wave

B 230 mPa (saturating the Mz colour scale used in Fig. 5).

Note that, while we believe our measurements of Wave B to

be more uncertain than those of Wave A due to the limited

vertical resolution of our measurements, even a halving of

measured λz would still cause the measured MF to saturate

this colour scale. Wave B is thus clearly the largest MF sig-

nal in the region regardless of this uncertainty. Both waves

extend in height over the majority of the stratosphere.

MF for Wave B is very tightly localised directly over the

region around Mt San Valentin at (73◦ S, 50◦ W), with the

flux forming a narrow column directly above the region.

Wave A is much more spatially diffuse, leading to heightened

MF values across the entire Southern Cone and out over the

Drake Passage and Atlantic Ocean. Note, however, that the

much larger volume of this wave allows the transport of more

total MF than Wave B.

MF is seen to decline at both low and (particularly) high

altitudes. While at high altitudes this is consistent with

wave dissipation, we cannot decouple this effect easily from

data limitations. At both the highest and lowest altitudes,

(i) temperature retrieval accuracy is significantly reduced,

(ii) the vertical resolution of the retrieval is also reduced, and

(iii) long vertical wavelengths unavoidably experience some

edge-truncation due to the limited vertical height window in

our analysis (e.g. Wright et al., 2015), with effect (iii) being

particularly important. In particular, small regions of north-

eastwards flux are seen at high and low altitudes at (50◦ S,

75◦ W); these may be due to (i) limited data quality (ii) our

assumption of upward ascent being invalid or (iii) they may

genuinely be GWs propagating in a northeastward direction.
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Figure 5. (a, d, g) T ′, (b, e, h) zonal MF and (c, f, i) meridional MF associated with the waves shown in Fig. 2. Panels (a–c) show maps

at 30 km altitude. (d–f) show data at 50◦ S, and (g–i) 70◦ W, both against height. Black shading in panels (d–i) shows surface topography,

scaled by 5 for clarity. As in previous figures, the exponential increase in wave amplitude with altitude has been removed in (a, d, g) in order

to highlight the vertical structure.

6 Climatological MF

Having demonstrated our method on the above example, we

now move on to produce a climatology of directional MF

in the region. Only MF is considered for brevity; however,

similar climatologies can be produced for all the variables

discussed. For reference, amplitude, frequency, wavelength

and group velocity distributions are typically smooth, while

phase speed distributions exhibit significant noise. We as-

sume this noise is due to the direct k−1 dependence of phase

speed, which makes measurements of this extremely sensi-

tive to any measurement accuracies.
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Figure 6. (a) Zonal and (b) meridional MF associated with the waves shown in Fig. 2.

Figure 7. Zonal MF monthly means at three height levels.

6.1 Regional maps

Figures 7 and 8 show monthly mean directional MF from

May to September, averaged over both 2014 and 2015. The

original voxel-level data have been averaged onto a grid 1◦

in each direction, and are plotted at three height levels: 30,

40 and 50 km. Regions where absolute monthly mean MF in

the direction plotted (i.e. zonal for Fig. 7 and meridional for

8) is less than 5 mPa have been omitted from the figure to

highlight the structure of the higher-MF regions.

We see two dominant regions of high flux: the Southern

Cone and the Antarctic Peninsula. Consistent with theory and

with previous work, zonal MF in both of these regions is pri-

marily negative (i.e. directed in an eastward direction), while

meridional MF is negative (i.e. southward) over the South-

ern Cone and positive (i.e. northwards) over the Antarctic
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Figure 8. Meridional MF monthly means at three height levels.

Peninsula. Measured MFs in both regions are largest in July,

with the Southern Cone region showing activity across all

five months considered and the peninsula primarily active in

July and August only. In July we also see enhanced MF east

(downstream) of the Southern Cone, consistent with GWs

being advected downstream by the background winds.

In no month and at no height do we observe significant

quantities of MF over the Drake Passage itself, with the ex-

ception of small regions close to coastlines. This observation

is consistent with Wright et al. (2016a), who also observed

high-horizontal resolution GWs in this region using a 3-D

approach, and lends further credence to the hypothesis that

the vast majority of MF in this region during autumn and

winter is orographically generated rather than arising from

non-orographic storm activity. However, we note that our ob-

servational filter preferentially selects for waves with long

vertical wavelengths (>∼ 7 km), which are less likely to be

observed over the Drake Passage if generated in the Andes

due to their propagation characteristics.

Finally, Fig. 9 shows an example 3-D plot of |MF|, in this

case for August 2014. Consistent with the maps above, we

see two major |MF| peaks, one over the Southern Cone and

one over the peninsula. Certain features are, however, clearer

in this format. We see that the |MF| peak over the peninsula

is extremely spatially well defined, forming a very narrow

spike directly over the mountains. We also see that the en-

Figure 9. Mean 3-D |MF| for August 2015.

hanced region over the Southern Cone has significant internal

structure.

6.2 Time variation and direction

We now define three subregions for detailed analysis, indi-

cated by coloured boxes on Fig. 1. Two of these subregions,

the Southern Andes (purple) and the Antarctic Peninsula (or-
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ange), are chosen as the regions of highest GW activity over

the period studied. The third, upstream in the open Southern

Ocean (red), is a background region chosen for comparison.

Figure 10 shows time series of observed MF averaged

over these three geographic regions. Data are shown as 7-day

rolling means. Note that there is very significant variability

at timescales shorter than this, which we quantify in Sect. 6.3

below.

Figure 11, meanwhile, shows the direction of observed MF

for our subregions as rose plots. Each row shows three height

levels for each subregion, with the shaded boxes showing

the proportion of measured MF in each direction. The data

are binned into 30◦ bins, with different altitude levels offset

slightly to enhance legibility. Each height level distribution

sums to 100 %, and each column shows a specific month,

with the final column showing the combined results for all

5 months. Both 2014 and 2015 have been averaged together.

At the seasonal scale, the three regions exhibit very dif-

ferent MF magnitudes. Zonal (meridional) MF values over

the Andes peak at ∼ 30 mPa (10 mPa), over the peninsula at

∼ 8 mPa (5 mPa), and over the Southern Ocean at ∼ 2 mPa

(2 mPa). There are also significant differences in the relative

directionality of the three regions; when considered at the

seasonal scale (i.e. Fig. 11f, l, r) both the Andes and Penin-

sula regions at all heights exhibit stronger directional prefer-

ences, with ∼ 30 % of MF in this regions directed into a spe-

cific 30◦ arc compared to a peak of ∼ 15 % over the Southern

Ocean

Over the Andes, MF peaks from late June to mid-August

(between days 180 and 230); this continues into Septem-

ber for 2015. Values are consistently higher in 2015 than

2014, demonstrating significant interannual variability. An-

dean MFs are primarily westward at the 30 km level, shifting

towards the southwest at the 40 km level before becoming

more generally westward again at the 50 km level. The de-

gree of directionality here is strongest in July, when 45 % of

MF at 30 km is directed southwestwards, and weakest in May

when no direction exceeds 30 % of observed MF.

Peninsula MFs peak over a much narrower window. In

2014, this is from day 180–210, and in 2015 from day 200

to 250. MFs are strongly northwestward at low altitude, be-

coming more variable in direction at higher altitudes.

Finally, over the Southern Ocean, MFs are much less

tightly directional. With the exception of the very lowest

height levels, which as described above are less reliable than

others, a strong northwestwards spike is seen in the direction-

ality distribution for July (Fig. 11o), but investigation shows

this peak to be primarily due to a single large-amplitude wave

in July 2014, visible in the time-smoothed Fig. 10i as a small

region of enhanced MF around day 200. This single observa-

tion dominates the directional distribution for both Julys due

to the very low levels seen at all other times.

In no region is a significant quantity of eastward MF seen.

6.3 Intermittency

A fundamental property of the GW field is its intermit-

tency, or short-timescale variability. This variability is signif-

icant, with diurnal variations in MF of hundreds of percent

not atypical (Hertzog et al., 2012; Plougonven et al., 2013;

Wright et al., 2013).

This has major implications on the background atmo-

sphere. An MF of > 100 mPa at 35 km altitude, as seen in

Fig. 5, would produce a net short-term acceleration of order

hundreds of m s−1 day−1 if dissipated by a critical level near

this height level, dramatically altering local atmospheric dy-

namics. On many other days, however, the same region of

atmosphere is devoid of waves. Further, since the height at

which GWs break is determined by their structure and am-

plitude, the driving induced by an intermittent GW field can

be dramatically different to that induced by a uniformly dis-

tributed wave field.

Previous studies (Plougonven et al., 2013; Wright et al.,

2013) have proposed the use of Gini’s coefficient of concen-

tration G (Gini, 1912) as a metric for this intermittency. G

provides a single-number estimate of the evenness of a distri-

bution, with 0 representing a perfectly even distribution (i.e.

all wavepackets carry equal MF) and 1 representing a per-

fectly uneven distribution (i.e. a single wavepacket carries

all MF observed). Values of G nearer to 1 thus represent re-

gions where the total measured MF is dominated by a small

number of large-magnitude wavepackets, and vice versa for

values nearer 0. While G can be deficient when character-

ising unusual distributions, the GW MF distribution of our

observations is near-lognormal in form, and thus use is ro-

bust in this context. Accordingly, we characterise the inter-

mittency of our data in this manner, with G calculated using

the method of Glasser (1962).

Figure 12a–o shows the results of this analysis as maps

for each calendar month at three height levels from May

to September, with the Gini coefficient calculated indepen-

dently for each gridbox on a 1◦ × 1◦ spatial grid. We again

show combined data from both 2014 and 2015.

We first observe the very high degree of spatial correspon-

dence between Fig. 12 and Figs. 7 and 8. This indicates that

the large time-mean values of MF we see across the region

are associated not with continuously high values of MF, but

instead with large-magnitude individual wavepackets over-

laid on a relatively flat background. This has previously been

observed, but the very fine spatial resolution of our results at

the upper height levels in our analysis reinforces this finding

strongly.

Our tight spatial localisation also allows us to observe

clearly that high-intermittency regions spread with height.

We note, however, that the variable height discrimination of

our results may introduce small biases when different height

levels are compared, and such comparisons should be treated

with caution at the very top and bottom of the analysed range.

In particular, while the relative spatial distribution of G at
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Figure 10. Time variability and directionality of measured MF for three geographic subregions and 2 years. Data are daily means boxcar-

smoothed by 7 days. Note different scales for each row.
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Figure 11. MF directional distribution by height and month for three geographic subregions.

Figure 12. Gini coefficient G over the region of interest. (a–o) Maps of measured monthly G at (a–e) 50 km (f–j) 40 km (k–o) 30 km altitude.

(p) Height series of G for each month over the three regions defined in Fig. 2.

any individual height is internally consistent, precise numer-

ical variation with height may be suspect at the very top and

bottom.

At the 30 km level, regions where G > 0.5 are very tightly

localised over the Southern Cone, particularly the South-

ern Andes, and (between June and September) the Antarctic
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Peninsula. At the 40 km level, these regions become much

more diffuse, spreading out both zonally and meridionally.

At the 50 km level, the geographic spread of regions with

G > 0.5 is similar to the 40 km level, but with reduced G

over the peak regions.

Figure 12p shows the same data as height series for each

month, averaged over our three defined subregions. Two

main clusters are seen, one at high G made up of the Andes

region in all 5 months and the peninsula in July and August,

and the other at low G representing the Southern Ocean in all

months except July and the peninsula in May and June. A de-

cline in G is seen at the top and bottom of the analysed range,

but while this may be geophysical it may also be due to our

varying height resolution and/or edge truncation effects, as

discussed above, and thus it is difficult to draw conclusions

based on this.

The series for August over the Southern Ocean and the

peninsula in September lie between these clusters. The

Peninsula series lies in this region due to the decline in GW

activity in this region in September. The distribution for the

Southern Ocean July is more surprising, but on detailed in-

vestigation is again due to the single large GW packet in July

2015 mentioned above, which skews the combined distribu-

tion for both Julys. This thus illustrates again the extreme

intermittency of GW activity, and reinforces that while G is

useful in the general case, no composite metric can fully de-

scribe the unevenness of the distribution in all cases.

7 Wave focusing into the stratospheric jet

As GWs propagate, they are refracted by wind shear. This re-

fraction can very significantly change where the waves prop-

agate and eventually break.

Previous studies using both ray-tracing (e.g Dunkerton,

1984; Eckermann, 1992) and fully GW-resolving model

studies (Sato et al., 2009, 2012) suggest that the atmospheric

wind jets are a major cause of such refraction. An especially

strong example is believed to be the polar night jet in our

region of study, which interacts with the large orographic

sources below to redirect very significant wave fluxes. In par-

ticular, Sato et al. (2012) showed that, in the GW-resolving

Kanto climate model, northward GW fluxes over the Antarc-

tic Peninsula and southward GW fluxes over the Southern

Andes were consistent with latitudinal wave focusing into the

polar night jet, using both ray tracing and calculated energy

flux vectors.

Hindley et al. (2015), meanwhile, measured GW potential

energy using the COSMIC GPS-RO constellation. By careful

analysis, they were able to identify a 3-D column of poten-

tial energy corresponding to the path such propagation would

take. However, due to the lack of GW directional information

they were unable to confirm directly that this column corre-

sponded to the refraction seen in models.

Our measurements of full 3-D GW group velocity allow us

to directly observe this refraction in observational data. This

is illustrated by Fig. 13, which shows zonal wind speeds

(shading, derived from ERA-Interim) and GW group veloc-

ity vectors (arrows, derived from AIRS data as described

above) for two selected months, August 2014 and July 2015.

These months are chosen as different wind jets are dominant

in each case; the effect is, however, clearly visible throughout

our dataset.

All data are averaged onto a 2◦ × 2◦ grid in latitude and

longitude. Vertically, winds are shown on the standard ERA-

Interim 60 Sigma-level grid and GWs on the 16 levels of our

analysis. Data are shown as monthly means, but the effect is

also seen at shorter timescales.

Considering first wind, we see clear zonal jets in both

months. In August 2014, the main polar jet is centred at

approximately 60◦ S and 40 km altitude, with the higher-

altitude midlatitude jet maximum visible at 37◦ S and 60 km

altitude. In July 2015, the midlatitude jet dominates, centred

at 45◦ S, 55 km altitude, with a very weak polar jet visible

at 40 km altitude and 60◦ S. Wind speeds are positive (i.e.

eastward) throughout the region at all heights, falling away

from their maximum towards the Equator and the pole. In

both months, the jets are slightly faster on the eastern side

of the region, increasing in speed by ∼ 10 ms−1 across the

meridional width of the region at the peak latitude.

The first column, Figs. 13a, d, shows sections along the

70◦ W meridian. This longitude is chosen for consistency

with Fig. 5, but is geographically close enough to the 55◦ W

meridian studied by Sato et al. (2012) and the 65◦ W merid-

ian studied by Hindley et al. (2015) in their equivalent fig-

ures to allow comparison. It is also close to the latitude of

the 60◦ S “gap” in GW MF noted by, for example, McLan-

dress et al. (2012), and thus results here are of geophysical

significance. The second column (Figs. 13b, e) shows maps

at the 40 km altitude level and the third column (Figs. 13c, f)

a 60◦ S section along the Drake Passage. The 40 km height

level is again chosen for consistency with Fig. 5, while the

zonal section is selected as being close to the polar jet centre

latitude.

In both months we see low vertical GW group speeds at the

very lowest altitudes in both the zonal and meridional sec-

tions. We presume this to be due to the issues with resolution

and edge-truncation described above. Above ∼ 30 km, verti-

cal group velocities increase sharply in both months shown,

maximising at the highest altitudes.

In August 2014, our results are strikingly similar to those

of both Sato et al. (2012) and Hindley et al. (2015). We see

a clear path in cg upwards, southwards and eastwards from

the region over the Southern Andes directly into the polar jet

core. This pathway is consistent with the waves being verti-

cally refracted by the positive wind shear into the jet core

while being advected downwind in the eastward direction

(Dunkerton, 1984). In July 2015, the waves are instead pri-

marily directed into the now-dominant midlatitude jet core,
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Figure 13. Filled contours: monthly mean ECMWF-derived zonal wind (black arrows) observed GW ground-based group velocity for (a, b,

c) August 2014; (d, e, f) July 2015 at (a, d) 70◦ W against height and latitude; (b, e) 40 km altitude, mapped; (c, f) 50◦ S against height and

longitude. Length of arrows is proportional to group velocity magnitude in that direction.

but otherwise behave in a similar fashion. In the south of the

region in both months, cg vectors are directed weakly north-

wards at altitudes below the jet core, but are travelling al-

most entirely upwards and eastwards by the time they pass

the 40 km level.

The maps show a similar result. This is most clear in Au-

gust 2014, where we see cg vectors directed from the An-

dean regions directly into the 60◦ core, but is also visible in

the north of the region in July 2015. This is visually weaker,

however, since the dominant jet core here is at a much higher

altitude.

Finally, in the meridional sections, we again see refraction

into regions of higher wind speed. This is again best visible

in August 2015, but is a much weaker effect since the merid-

ional variation of the jet speed is much smaller than the zonal

or vertical.

8 Summary and conclusions

In this study, we develop and describe a new analysis method

for detecting and characterising atmospheric gravity waves

using a 3-D S-transform. We apply this method to 3-D atmo-

spheric temperature measurements from the AIRS satellite

instrument. We use these data to study in detail wave activ-

ity over the Andes/Drake Passage GW “hot spot” region, ar-

guably the largest GW source in the world.

Our method exploits the available data to a much more

complete extent than any previous technique. This lets us

characterise GWs across the full range of length scales

present in the input data. The method includes a correction

significantly ameliorating the amplitude suppression inher-

ent to ST methods, allowing us to estimate true wave ampli-

tudes rather than lower bounds. The method is also extensi-

ble to higher dimensions, of use for example in the analysis

of time-varying model or ground-based data. Additionally,

while in this study we consider only the largest-amplitude

wave at each point, the method can be easily extended to the

study of multiple overlapping GWs.

Using our method, we are able to derive a full range of GW

properties, including their wavevectors, amplitudes, phase

and group velocities, temporal frequencies and momentum

fluxes. We can associate these properties spatially with wave

variations at the voxel level, i.e. ∼ tens of kilometres in the

horizontal, at the time resolution of a single measurement

swath rather than statistically over a period of time. Aside

from a single tie-breaking assumption on the vertical propa-
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gation direction of waves, we are able to measure the wave-

intrinsic-frame values of these properties from AIRS data

alone, i.e. without ancillary information. Some limitations re-

main in the edge-truncated regions at the very top and bottom

of the height range with regards to determining precise am-

plitudes and vertical wavelengths, but these issues are general

to the analysis of any height-restricted dataset.

Our observations show clearly that directional MF in this

region is primarily directed directly upwind and is greatest

above mountainous regions, consistent with previous stud-

ies (Plougonven et al., 2013; Wright et al., 2016a; Ern et al.,

2017). The spatial correspondence with topography at low

altitudes is extremely close, particularly over the Antarctic

Peninsula. The directions of these fluxes becomes less fo-

cused with increasing height. The MF is carried primarily

by a very small fraction of observed waves. Very little MF

is observed over the Drake Passage. This may suggest either

that non-orographic generation of waves is low in this season

and region, that what waves are present lie outside the obser-

vational filter of our dataset, or some combination of these

factors. We observe declining levels of |MF| above 50 km

altitude, consistent with wave dissipation, but due to falling

vertical resolution at these heights are unable to separate this

effect from a reduction in retrieval quality.

Finally, wave group velocity vectors observed over the re-

gion are highly consistent with wave focusing into the at-

mospheric jets. This strongly reinforces the results of previ-

ous model studies which suggest that GWs are refracted by

wind shear, and reinforces the suggestion that a large fraction

of the 60◦ S “wake” of strong GW activity observed down-

stream of the Andes in previous studies is orographic in ori-

gin (e.g. Hindley et al., 2015, and references therein).

Collectively, our results demonstrate the great potential of-

fered by 3-D analyses of GWs. This technique thus provides

a powerful tool for the study of GW physics at the global

scale, providing key information needed to constrain the next

generation of weather prediction and climate models.
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