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Abstract 

Chemotherapy combined with or without targeted therapy is the fundamental treatment for metastatic colorectal 
cancer (mCRC). Due to the adverse effects of chemotherapeutic drugs and the biological characteristics of the tumor 
cells, it is difficult to make breakthroughs in traditional strategies. The immune checkpoint blockades (ICB) therapy 
has made significant progress in the treatment of advanced malignant tumors, and patients who benefit from this 
therapy may obtain a long-lasting response. Unfortunately, immunotherapy is only effective in a limited number 
of patients with microsatellite instability—high (MSI-H), and segment initial responders can subsequently develop 
acquired resistance. From September 4, 2014, the first anti-PD-1/PD-L1 drug Pembrolizumab was approved by the 
FDA for the second-line treatment of advanced malignant melanoma. Subsequently, it was approved for mCRC 
second-line treatment in 2017. Immunotherapy has rapidly developed in the past 7 years. The in-depth research of 
the ICB treatment indicated that the mechanism of colorectal cancer immune-resistance has become gradually clear, 
and new predictive biomarkers are constantly emerging. Clinical trials examining the effect of immune checkpoints 
are actively carried out, in order to produce long-lasting effects for mCRC patients. This review summarizes the treat-
ment strategies for mCRC patients, discusses the mechanism and application of ICB in mCRC treatment, outlines the 
potential markers of the ICB efficacy, lists the key results of the clinical trials, and collects the recent basic research 
results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.
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Introduction
Colorectal cancer currently ranks third in cancer inci-
dence and second in cancer-related death globally. In 
2020, there were 1,931,590 new cases of colorectal can-
cer worldwide and 935,173 deaths, accounting for 10.0% 
and 9.4% of the total number of cancer incidences and 
deaths, respectively [1]. In recent years, the research on 
the comprehensive treatment of colorectal cancer has 
continued to increase, and combination therapy with a 

targeted agent is the main treatment method for meta-
static colorectal cancer (mCRC) patients [2, 3]. Whereas 
medication regimen is developing continually, it is diffi-
cult to make breakthroughs in mCRC therapy, prognosis 
remaining poor with a median overall survival (mOS) of 
only 25–30 months [4, 5]. Immunotherapy has achieved 
significant curative effects in the treatment of solid 
tumors, notably in melanoma and non-small cell lung 
cancer (NSCLC) [6, 7]. Immune checkpoint blockade 
(ICB) has enabled certain patients to obtain long-lasting 
benefits and have significantly improved disease progno-
sis. According to the latest follow-up data, the mOS of 
advanced melanoma was 72.1  months with Nivolumab 
plus Ipilimumab [8].These agents are used as the first-
line treatment for patients with advanced solid tumor [9, 
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10]. However, inhibition of programmed death-1 (PD-
1) or programmed cell death-ligand 1 (PD-L1) therapy 
has limited effects in the treatment of colorectal cancer. 
Until 2017, the first anti-PD-1 drug Pembrolizumab was 
approved by the Food and Drug Administration (FDA) as 
a second-line treatment for mCRC patients with micro-
satellite instability—high (MSI-H). However, there are 
only a few patients with dMMR/MSH-H (about 15% of 
colorectal cancer patients, 4% of patients with mCRC), 
and part of them enter into the stage of immune resist-
ance soon [11–13].

Mutations in the DNA mismatch repair (MMR) genes 
can cause defects in the repair function during DNA 
replication, which leads to the occurrence of MSI. Both 
DNA deficient mismatch repair (dMMR) and MSI-H can 
lead to the accumulation of DNA mutations in tumor 
cells and results in generation of sufficient tumor neo-
antigens to enhance tumor immunogenicity, which can 
induce strong T cell and tumor immune response [14–
16]. By contrast, mismatch repair-proficient (pMMR) 
colorectal tumor cells express weak immunogenicity and 
infiltrate a limited number immune cells, which makes it 
difficult to induce an adequate immune response [17, 18]. 
Therefore, ICB therapy is ineffective in such patients. In 
order to increase immunotherapy sensitivity, combined 
treatments are required to enhance tumor immunogenic-
ity. With the development of research, the mechanism 
of immunotherapy resistance has been studied more 
thoroughly in mCRC. In addition to MSI, numerous bio-
markers have been discovered and have been used to 
guide tumor immunotherapy, such as tumor mutation 
burden (TMB) [19, 20] and PD-L1 expression [21, 22]. 
However, due to the heterogeneity of the tumors, these 
markers are commonly used in other solid tumors and 
exhibit limited value in mCRC. It has been shown that 
MSS mCRC patients with POLE mutations can achieve 
an ideal immunotherapeutic effect [23]. More effective 
biomarkers are required for clinical use. The theory of 
tumor immunotherapy is complex, which is the result 
of multiple factors, temporal and spatial heterogeneity, 
and network co-regulation. A single theory or a single 
indicator cannot adequately explain the mechanism of 
immunotherapy. According to the genetic background, 
tumor microenvironment (TME), and the cell metabo-
lism of mCRC patients, various models including CMS 
and CIRC subtypes have been proposed to guide the 
immunotherapy and comprehensive treatment of mCRC 
patients [24, 25].

Differences in the TME and in individual gene expres-
sion lead to diverse effects of immunotherapy. To date, 
a significant number of immunotherapy-related clinical 
trials have produced satisfying results which have led 
to the approval of Pembrolizumab and Nivolumab for 

mCRC treatment by the FDA [10, 26–30]. Other clinical 
trials, either ongoing or scheduled to initiate, are explor-
ing the potential of activating inactive tumors [(“cold”) 
into (“hot”) tumors]. The clarification of the immune 
resistant mechanism is the premise to design innovative 
immunotherapeutic strategies. The present study focused 
on the following aspects: the current treatment opinions 
of mCRC, the mechanism of resistance ICB, the identifi-
cation of potential biomarkers of the immune response, 
the key achievements of the latest clinical trials, and 
the breakthrough results of the preclinical studies. The 
analysis of this information aimed to demonstrate the 
application and treatment potential of the ICB therapy in 
mCRC.

Treatment opinions of advanced colorectal cancer
Surgery is the primary treatment used for the majority of 
CRC patients. The majority of CRC patients with distant 
metastasis or recurrence do not receive radical resec-
tion. Surgery can only solve the tumor complications, 
such as intestinal obstruction, perforation, and bleed-
ing, but it is not helpful for improving the survival of the 
patients. Comprehensive therapy, including chemother-
apy, radiotherapy, immunotherapy, and targeted ther-
apy, has become the main treatment opinion for these 
patients. Experts generally advise CRC patients to detect 
the mutations of KRAS and NRAS and guide targeted 
tumor therapy. They are also advised to assess the BRAF 
V600E status so as to stratify disease prognosis. In addi-
tion, MMR/MSI is recommended for all CRC patients to 
stratify prognosis and guide immunotherapy [2, 3]. Until 
the 2000s, 5-fluorouracil (5-FU) was the only alternative 
drug for advanced CRC, and the median survival time 
was no more than 1  year. In 1998 and 2002, irinotecan 
and oxaliplatin were approved by FDA to combine fluo-
ropyrimidine for the treatment of advanced CRC, nearly 
doubling the survival. Then, combined with targeted 
drug (anti-VEGF, anti-EGFR or TKI), the median survival 
surpassed 2 years [5]. Regrettably, the large randomized 
phase III trial found that chemotherapy combined with 
two targeted drugs cannot further improve survival, but 
increase intolerable toxicity [31, 32]. Therefore, the tra-
ditional treatment of advanced CRC has entered the bot-
tleneck again and is difficult to break through. Of note, 
Nivolumab and Pembrolizumab have been approved by 
the FDA for the treatment of mCRC [33, 34], due to their 
excellent performance [27]. ICB therapy is recommended 
for mCRC patients with dMMR/MSI-H, but immuno-
therapy resistance is observed in patients with pMMR/
MSS [27]. According to previous studies, the propor-
tion of dMMR/MSI-H decreases with the increase in 
the tumor stage. MSI is noted in approximately 9–21% 
of stage II and 4.7–11% of stage III tumors [35]. Its 
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incidence is even lower in stage IV CRC (approximately 
2.1–4%) [12, 36–38] (Fig. 1). Therefore, the application of 
immunotherapy in mCRC is very limited.

The application of ICB therapy in CRC is limited
In Keynote-016, mCRC patients failed in prior stand-
ard treatment were divided into three cohorts based 
on their MMR status (MSI-H/dMMR CRC cohort, 
MSI-H/dMMR non-CRC cohort, and MSI-H/pMMR 
CRC cohort). Each cohort was provided with 10  mg/kg 
Pembrolizumab every 2  weeks, and the primary end-
point was objective response rate (ORR). The ORR was 
40% (MSI-H/dMMR CRC cohort), 71% (MSI-H/dMMR 
non-CRC cohort), and 0% (MSI-H/pMMR CRC cohort), 
respectively [27]. It is deduced that mCRC patients with 
dMMR can benefit from PD-1/PD-L1 inhibitor, while the 
ICB therapy is ineffective in patients with pMMR.

ICB therapy can activate the immune response of 
tumor lesions and repair the existing immune response 
by targeting the tumor-induced immune deficiency 
[39, 40]. It has been approved for the use in melanoma, 
NSCLC, head and neck squamous cell carcinoma and 
other malignant tumors and results in optimal clini-
cal effects [22, 41–43]. Currently, the majority of mCRC 
patients are considered to be resistant to ICB therapy. 
The induction of tumor immune response involves omni-
farious aspects, including tumor antigen presentation, T 
cell activation, T cell infiltration, and T cell recognition, 
which ultimately activate tumor cell killing. Any defect in 
these processes can lead to primary or acquired immune 
resistance [44]. The resistance mechanism of immuno-
therapy is extremely complex and is related to genetic 
factors and previous treatment of the patients. It is gener-
ally believed that immunotherapy resistance of CRC may 

be related to the following reasons: insufficient tumor 
antigen presentation, tumor antigen presentation dam-
age, T cell exclusion, and immunosuppressive signaling 
in the TME (summarized in Fig. 2).

Absence or loss of tumor antigens
Neoantigen is a new antigen encoded by mutated genes 
of tumor cells, which is an abnormal peptide mainly 
generated by gene point mutations, deletion mutations, 
and gene fusions. Its structure is different from that 
expressed by normal cells [45, 46]. The tumor antigen 
is the target of the immune system and aims to recog-
nize cancer cells. It is the starting step of the antitumor 
immune response, which is notably important for the 
antitumor effect of ICB. Tumor-associated antigens 
(TAAs) are specific proteins that are overexpressed in 
tumor cells. They are also expressed in normal cells and 
can be detected by immune cells in order to trigger an 
immune response [47]. TAAs limit the ability of immune 
cells to recognize and induce relative weak specific 
immune response. CEA is an important TAA of CRC and 
is frequently expressed on the surface of the majority of 
mCRC cells. It induces immune tolerance owing to its 
occurrence in the embryonic stage [48]. To address this 
disadvantage, the T cell bispecific antibody (TCB) has 
been employed to strengthen T cell engagement in TME. 
CEA-TCB induces an interaction of cancer cells with 
T cells via binding to CEA and CD3. In a phase I trial 
(NCT02650713), combination of CEA-TCB with ICB in 
CEA-positive solid tumors indicated a partial response 
(PR) of 20% (MSS status) and a stable disease (SD) of 50% 
[49]. In addition, under the pressure of antitumor immu-
nity, the tumor antigens are reduced or lost. This process 
is termed antigenic modulation and enables tumor cells 
to escape immune recognition and killing. There is insuf-
ficient mutant load to express tumor antigens that pro-
duce focused  CD8+ T cell responses. These tumors do 
not respond to ICB therapy due to a lack of T cells spe-
cific for distinct tumor antigens [46]. In fact, tumors with 
a high mutational load and overexpression of tumor neo-
antigens, such as melanoma, head and neck, NSCLC and 
MSI tumors, are generally more sensitive to ICB therapy. 
The majority of the CRC patients exhibited a relatively 
low mutational load. In order to solve the problem of 
tumor antigen deficiency or defect, tumor vaccines have 
become a major focus of investigation. The purpose is to 
introduce tumor antigens (including tumor cells, tumor-
related proteins or peptides, and genes expressing tumor 
antigens) into patients, enhance immunogenicity, acti-
vate the patient’s own immune system, and induce the 
body’s immune response, so as to control or eliminate the 
tumors [50]. In April 2010, the FDA approved the can-
cer vaccine PROVENGE® for the treatment of metastatic Fig. 1 Proportion of dMMR/MSI-H in different tumor stages
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Fig. 2 Mechanism of therapeutic resistance in ICB treatment. The reasons can be summarized as follows: insufficient tumor antigen presentation, 
tumor antigen presentation damage, T cell exclusion, and immunosuppressive signaling in the TME. The corresponding clinical trials are also 
marked in the figure
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castration-resistant prostate cancer. PROVENGE® 
became the first and, to date, the only therapeutic can-
cer vaccine [51]. From October 20, 2021, 2,119 tumor 
vaccine-related clinical trials have been registered on the 
clinicaltrials.gov Web site. However, the majority of the 
phase III clinical trials ended in failure due to nonsignifi-
cant improvement in the OS of the patients [52]. How-
ever, the development of tumor vaccines is still one of the 
major breakthroughs to improve immunotherapy, along 
the whole omics development path, gradually from cell to 
protein and then specific to gene, and now it has entered 
into the stage of nucleic acid vaccine. It is also a transition 
from a general tumor vaccine to a tumor personalized 
vaccine for precise treatment, as well as the transition 
from TAA to tumor-specific antigens (TSAs) [53].

Tumor antigen presentation damage
Tumor antigens are displayed on the cell surface through 
major histocompatibility complex class I (MHC-I) mol-
ecules. Lack of antigen presentation causes tumor cells to 
induce tolerance toward T cells, which includes the two 
following parts: a. Tumor antigen is absorbed by den-
dritic cells (DCs) and cross-presented to initiate  CD8+ T 
cell activation; b. the antigen is directly presented by the 
tumor cells so that the activated  CD8+ T cells can rec-
ognize and kill them [54]. Tumor cells can use diverse 
escape mechanisms to evade the immune recognition 
from these two steps. Lost or low expression of MHC-I 
molecules has been reported on the surface of tumor 
cells, which results in the obstacle of tumor antigen pres-
entation and the inability to provide the first signal for T 
cell activation [55]. Previous studies have shown that an 
antigen-specific T cell level close to 1% is only likely to 
initiate an effective antitumor response. However, cur-
rent studies have shown that the antigen presentation 
level of the majority of cancer cells is very low or even 
absent, resulting in a weak immune response.

Various mechanisms have been proposed that disrupt 
antigen presentation in CRC, including interference with 
the process of proteasome processing of antigens, regula-
tion of the function of transporter associated with anti-
gen processing (TAPs), and obstruction of the expression 
of MHC structural components through gene mutations, 
which are notably found in MSI-H tumors [56, 57]. CRC 
patients with TAPs and MHC-I positive expression were 
accompanied by increased infiltration of CTLs, leading 
to subsequent tumor response [58]. β-2-microglobulin 
(β2M) plays a role in MHC transportation and stable 
expression on the cell surface. The loss of heterozygosity 
of β2M can affect the antigen presentation of MHC-I, 
which leads to melanoma resistance to T cell infiltration 
and induces primary and acquired ICB resistance [59, 
60]. A MSI-H mCRC patient who possessed typical 

MSI-H molecular characteristics including high muta-
tion load demonstrated disease progression during ICB 
therapy. Dung et  al. surprisingly found that this patient 
had a loss of β2M biallelic genes, which may be an impor-
tant reason for his primary resistance to ICB treatment 
[10]. In addition, the EZH2 inhibitor can overcome ICB 
treatment resistance by reducing the histone H3K27me3 
modification on the β2M promoter [61, 62]. Methyla-
tion and histone acetylation can significantly affect the 
antigen processing and surface presentation of MHC. 
In lymphoma and melanoma models, both demethylat-
ing agents and histone deacetylating agents can increase 
MHC expression, resulting in increased infiltration of 
 CD8+ T cells and subsequent induction of the antitumor 
response [63, 64].

T lymphocyte exclusion
T cells are the central link of the immune response, and 
the lack of T lymphocytes in the TME is a direct and 
fundamental cause of immunotherapy failure. The lack 
of tumor antigen or impairment of tumor antigen pres-
entation described above can both affect the recognition 
of tumor cells by CD  8+ T lymphocytes and indirectly 
affect T lymphocytes infiltration into TME. Of note, a 
deficiency in T lymphocytes has been noted in the TME, 
which is termed T lymphocyte exclusion [65]. Differen-
tial expression of chemokine receptors is required for 
efficient T cell homing and recruitment in the TME [66]. 
In particular, CXCR3 has been identified as a chemokine 
receptor critical for T cell infiltration [67]. It has been 
shown that the Wnt/β-catenin signaling is frequently 
activated and associated with T cell exclusion in CRC, 
which is the major obstacle for immunotherapy [68]. Pre-
vious studies have shown that activation of the Wnt path-
way and expression of nuclear β-catenin are inversely 
correlated with the infiltration of T cells in CRC tissues. 
ICRT14 is an inhibitor of β-catenin/T cell factor (TCF), 
which potently enhances T cell and natural killer cell (NK 
cell) infiltration. The expression of chemokine (C-X-C 
motif ) ligand 9/10/11 (CXCL9/10/11) was inhibited by 
activation of the Wnt/β-catenin signaling, suggesting that 
suppression of β-catenin is expected to shift the colorec-
tal cancer microenvironment into a T cell inflammatory 
phenotype and enhance the efficacy of immunotherapy 
[69–71]. Clinically, melanoma tumors with Wnt/β-
catenin activation respond poorly to ICB, whereas they 
produce a strong response without Wnt/β-catenin muta-
tions. Inhibitors of the Wnt/β-catenin pathway are inten-
sively investigated in clinical trials and can be combined 
with ICB to overcome this pattern of primary resistance 
[72].

Furthermore, signal transducer and activator of tran-
scription 3 (STAT3) can decrease the ability of  CD8+ T 
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cells to produce interferon in tumors-γ (IFN-γ). This in 
turn inhibits CXCL10 secretion by tumor-associated 
myeloid cells and prevents T cell recruitment. The mito-
gen-activated protein kinase (MAPK) signaling cascades 
upregulate the expression levels of the immunosuppres-
sive cytokines vascular endothelial growth factor (VEGF) 
and interleukin 8 (IL-8), which inhibit T cell function 
and recruitment into the tumors [73, 74]. Inhibition of 
the MAPK cascade improves  CD8+ T cell infiltration 
and may also sensitize tumors to ICB therapy [75]. This 
provides a strong rationale for combination therapy of 
multi-kinase inhibition and ICB. Similarly, loss of phos-
phatase and tensin homologue (PTEN) leads to activa-
tion of phosphatidylinositol 3-kinase (PI3K) signaling, 
associated with an increase in the expression of VEGF 
and reduction in  CD8+ T cell infiltration [75]. Epige-
netic alterations including DNA methylation and histone 
modifications have also been considered as an important 
mechanism of chemokine inhibition and tumor progres-
sion. Therefore, treatment with epigenetic modulators 
can increase chemokine expression and T cell infiltration 
in the TME.

T cell suppression in TME
CRC development is a complex multifactorial process, 
during which CRC cells and their surroundings consti-
tute a specific TME. Cancer cells interact and co-evolve 
with TME, thereby promoting tumor initiation and 
progression. Several factors in the TME act to suppress 
immune function, including regulatory T cells (Tregs), 
IL-10, tumor-associated macrophages (TAMs), myeloid-
derived suppressor cells (MDSCs), and related cytokines, 
which can affect ICB therapy and lead to drug resistance 
[76].

Previous studies have shown that resistance in ICB 
therapy can occur even with  CD8+ T cell infiltration in 
the TME, which may be due to the lack of the IFN- γ 
response. It is known that, during antigen-specific immu-
nity, IFN-γ is mainly secreted by  CD8+ cytotoxic T cells 
and by CD4 Th1. The IFN- γ binding with the IFN-γ 
receptor (IFNGR) leads to Janus kinase 1 (JAK1) and 
Janus kinase 2 (JAK2) activation and subsequent recruit-
ment and phosphorylation of STAT1 [77]. This complex 
translocates to the nucleus, where it activates interferon 
regulatory factor 1 (IRF1). The transcriptional activ-
ity of this factor ultimately leads to an IFN-γ-mediated 
antitumor effect, as well as increased PD-L1 expression 
[78–81]. Tumors that have a high mutational load are 
more likely to respond to ICB therapy. However, certain 
patients who do not respond despite a high mutational 
load can present with JAK1/JAK2 mutations. Similarly, 
functional loss of JAK1/JAK 2 mutations has been found 
in melanoma samples and melanoma cell lines, which 

fail to respond to IFN-γ signaling and result in lack of 
PD-L1 expression. Moreover, a CRISPR screen assay 
found that apelin receptor interacted with JAK1 and 
regulated IFN-γ response [82]. It was further suggested 
that activating mutations were present in protein tyrosine 
phosphatase non-receptor type 2 (PTPN2), which nega-
tively regulated JAK1 and STAT1 signaling. These were 
both associated with resistance to ICB therapy caused 
by the reduced response to IFN-γ. Conversely, CRISPR-
Cas9 genome editing can restore melanoma resistance 
to IFN-γ sensitivity owing to PTPN2 loss [83]. PD-L1 
expression may reflect the IFN-γ response, and conse-
quently PD-L1 expression can predict to some extent the 
clinical efficacy of ICB therapy. However, genetic muta-
tions in IFN-γ signaling genes are uncommon in CRC 
patients and occur in less than 10% of patients with colo-
rectal adenocarcinoma [84]. Loss of function alteration 
including JAK1 frameshift is noted in lower than 3% in 
MSS colon adenocarcinoma samples [85].

Therapy resistance of ICB occurs despite adequate 
 CD8+ T cell infiltration and IFN-γ response when some 
certain non-tumor cells (NTCs) existed in TME. Tregs 
and MDSCs with the ability to modulate local immune 
functions are considered the representative of NTCs. 
When Tregs or MDSCs are present in the TME, they 
lead to a reduced immune response against tumor cells. 
Several studies have shown that depletion of MDSCs or 
Tregs in the TME can reverse ICB therapy resistance 
[86–88]. Tumor cells and their surrounding stroma 
can co-regulate the immunosuppressive microenviron-
ment, which leads to resistance to ICB therapy. There-
fore, journal of Cell has profiled the transcriptomic and 
genomic features of metastatic melanoma patients dur-
ing their treatment with ICB [89]. During the enrich-
ment of BRCA2 mutations, high expression levels of 
the DNA repair genes were observed in the respond-
ing patients. By contrast, tumors with the innate PD-1 
resistance (IPRES) signature demonstrate upregulation 
of genes involved in the regulation of multiple bio-
logical processes, including local immunosuppressive 
genes (VEGF, IL-10), and genes involved in monocyte/
macrophage/MDSC chemotaxis, angiogenesis, mesen-
chymal transition, and wound healing. It is important 
to note that MAPK-targeted therapies can induce a 
similar emergence of transcriptional signatures in mel-
anoma, implying that mitogen-activated protein kinase 
kinase (MEK) inhibitor therapies may be cross-resistant 
with ICB therapies. IPRES signature is a transcriptomic 
representative of TME existing in various cancer types, 
including melanoma, renal clear cell carcinoma, and 
colon adenocarcinoma. The relevance between this pat-
tern with CRC may provide a unique method to predict 
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the ICB response. Interestingly, the intestinal flora 
microenvironment is associated with ICB treatment. 
There are more than 100 trillion bacteria in the human 
intestine, which form a complex microflora microen-
vironment that can regulate metabolism and immune 
function. Since 2011, one after another researches 
reported that the intestine microflora can function in 
immune modulation. In 2015, two articles were simul-
taneously published in the journal Science to discuss 
the use of ICB in melanoma [90, 91]. Two distinct 
groups reached the following similar conclusions: Anti-
biotics can disrupt the antitumor effects of ICB. Spe-
cifically, antibiotic-treated mice that were administered 
with deficient intestinal microflora could restore the 
ICB’ anticancer effects; patients with specific microbi-
ota, such as Bacteroides and Bifidobacterium, exhibited 
improved outcomes in immunotherapy. This is the first 
time that the intestinal microflora was linked with the 
efficacy of ICB. Subsequently, significant research find-
ings were published validating this theory. Routy et al. 
demonstrated that Akkermansia muciniphila existed 
in the majority of patients who were treated with ICB 
and could achieve remission [92]. Gopalakrishnan et al. 
demonstrated that the profile of intestinal microflora 
was associated with the efficacy of ICB therapy. Their 
study showed that the 30 patients who responded 
to ICB treatment exhibited a significantly different 
microflora from the 13 patients who did not respond, 
and the two specific bacteria, faecalibacterium and 
clostridiales, were prevalent in progression-free sur-
vival (PFS) patients [93, 94]. Recently, a phase I clinical 
trial (NCT03353402) examining the fecal microbiota 
transplantation (FMT) was performed in 10 ICB refrac-
tory metastatic melanoma patients. Two patients with a 
partial response (PR) and one patient with a complete 
response (CR, near complete disappearance of tumor 
cells) were observed. PFS crossed the 6-month mile-
stone in all responders [95]. For mCRC, a clinical trial 
in MSS patients demonstrated that patients with high 
abundance of fusobacterium had significantly shorter 
PFS (median PFS = 2.0 versus 5.2  months; p = 0.002) 
[96]. A recent study indicated that fusobacterium was 
present in both primary tumors and liver metasta-
ses in mCRC. Its presence was significantly associated 
with poor prognosis [97]. Viaud et  al. suggested that 
the metabolic functions of bacteria present in tumor 
cells may be responsible for the immune resistance of 
mice with colon cancer [98]. The aforementioned stud-
ies indicated that the disturbance of the intestinal flora 
microenvironment could promote the immune escape 
of tumor cells, leading to immunotherapy resistance. 
Therefore, the gut microbiota may be one potential 

factor influencing the response to immunotherapy in 
CRC.

Predictive biomarkers of response in ICB therapy
The reduced efficacy of ICB therapy in mCRC patients 
led to the subsequent investigation of this pathway and 
its contribution in the response to cancer therapy. Colo-
rectal tumorigenesis is a multistage, multistep, and 
multigenetic process, with high degrees of genetic het-
erogeneity. During CRC progression, different key genes 
and different signaling pathways act at different stages. 
The current consensus molecular classification (CMS) of 
CRC approved by the academic community consists of 
the following five types (Fig. 3): CMS1 is an immune-acti-
vated type with MSI-H, which presents with mutations in 
mismatch repair genes and accounts for approximately 
14%. CMS2 is a classical type with aberrant activation of 
the Wnt and Myc signaling pathways, which harbors sig-
nificant somatic copy number variation and accounts for 
37% of cases. CMS3 is a metabotropic type with a high 
rate of KRAS mutations, accounting for approximately 
13%. CMS4 is the mesenchymal type with abnormal 
activation of the transforming growth factor β (TGF- β) 
signaling pathway, noted in approximately 23% of cases. 
Finally, 13% of the cases cannot be classified alone into 
any of the aforementioned categories and are classified as 
mixed type [24].

The majority of the CMS1 tumors are located in the 
right colon, with deep local invasion and poor differen-
tiation, while a limited number of cases develop distant 
metastasis. CMS1 has a low frequency of KRAS muta-
tions, whereas BRAF is mutated at a high frequency. Its 
OS and PFS are poor. BRAF mutations represent poor 
responsiveness to standard chemotherapy and EGFR tar-
geted therapy, and they are considered as a major reason 
for the poor prognosis of patients with this type. Differ-
ent CMS subtypes of CRC exhibit different character-
istics in their TME, which is important for developing 
treatment strategies. CMS1 TME exhibits abundant infil-
tration of  CD8+ lymphocytes,  CD68+ macrophages, and 
adequate expression of PD-1 and PD-L1. Optimal clini-
cal outcomes can be achieved from ICB therapy. CMS4 
is associated with an “immunosuppressive phenotype” 
and is presented in immune tolerance. CMS4 is infil-
trated by Tregs, MDSCs, monocyte-derived cells, and T 
helper 17 (Th17) cells and is associated with high expres-
sion of CXCL12 and TGF-β. In this type of cells, TGF-β 
and angiogenesis-related factors play important roles 
in immune evasion. Preclinical and clinical studies have 
demonstrated that TGF-β inhibitors can reverse immune 
tolerance into immune sensitization [99]. The CMS2 and 
CMS3 CRC cells are described as “immune desert” and 
“cold” tumors, which are noted during primary resistance 
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to immunotherapy [100]. Based on this evidence, differ-
ent types of CMS patients require continued in-depth 
exploration of their mechanisms of immune tolerance in 
the search for more effective immunotherapeutic strate-
gies [101–103].

Another molecular type used to describe the immu-
notherapy response in a population of CRC is the coor-
dinate immune response cluster (CIRC) typing (Fig.  3), 
which primarily divides CRC patients into four groups, 
including groups A, B, C, and D, based on cluster expres-
sion of a gene set (Table 1) [25]. Group A patients exhib-
its high expression of CIRC genes and were characterized 
by MSI-H, and upregulation of several immune check-
point genes, including CTLA4, PD-L1, LAG-3, and 
TIM3. In contrast to these observations, hypermutations 
in KRAS, BRAF, NRAS, TP53, PIK3CA, and PTEN, have 
been reported in the group of lower CIRC expression. 
This links the genetics and immunobiology of CRC car-
cinogenesis, providing a theoretical and practical basis 
for immune stratified therapy. The frequent mutations of 
MSI-H and POLE mutations were observed in Group A 

and were associated with high mutational load and high 
immune infiltration, which suggests that patients can 
benefit from ICB therapy. Although group D patients 
enriched in RAS mutations are resistant to ICB treat-
ment, novel strategies have to be developed to address 
potential resistance in this patient population.

The aforementioned molecular typing is of great sig-
nificance for the treatment of CRC patients. Recently, a 
clinical trial based on the CMS principle is ready to be 
performed for the assessment of the clinical application 
and prediction value [104, 105]. It is interesting to note 
that CMS1 and Group A are both immune-activated and 
respond well to ICB therapy. Moreover, BRAF mutation 
is frequently accompanied by MSI-H in these two types 
of CRCs [106]. BRAF mutation was found to be a nega-
tive prognostic marker in CRC, and it could promote 
the development of TME [107, 108]. Therefore, it was 
speculated that BRAF mutations may possess predic-
tive value in immunotherapy. A meta-analysis was per-
formed comparing the ORR of immunotherapy in MSI-H 
CRC patients with BRAF mutant and wild-type patients. 

Fig. 3 Consensus molecular classification (CMS) and the coordinate immune response cluster (CIRC) typing of CRC 

Table 1 Genes within the coordinate immune response cluster

Gene ID

HLA-DQA1 HLA-DQA2 HLA-DRB5 HLA-DMA PDCD1LG2 ICAM1 CD274

STAT1 IRF1 IFNG CTLA4 TBX21 CCL5 LAG-3

CD247 ICOS IL18RAP GNLY CXCL10 HLA-DPB1 HLA-DPA1

HLA-DMB HLA-DRA HLA-DMA CD80 HLA-DOA CD4 HAVCR2
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The results indicated no significant differences in ORR 
in response to immunotherapy between BRAF mutant 
and wild-type patients. The results suggested that BRAF 
mutation did not exhibit predictive value in MSI-H 
mCRC immunotherapy [109]. However, immunotherapy, 
as an important complementary method, is still ineffec-
tive in the treatment of the majority of CRC patients. Sig-
nificant investigations have been performed to address 
the ability of specific indicators to predict the efficacy of 
ICB therapy.

Microsatellite instability
The MMR genes encode the corresponding mismatch 
repair protein. Four principal genes are associated with 
genomic instability as follows: MLH1, MSH2, MSH6, and 
PMS2 [110]. Defects in DNA mismatch repair system 
can cause MSI [111]. Generally, the MSI-assay evaluates 
five selected microsatellite loci as follows: Bat-25, Bat-26, 
d5s346, d2s123, and d17s250. The MSI status was classi-
fied as high instability (MSI-H), low instability (MSI-L), 
and stability (MSS) [112]; MMR is divided into deficient 
mismatch repair and proficient mismatch repair. Clini-
cally, dMMR is equivalent to MSI-H, pMMR to MSI-L 
or MSS [113]. Accumulation of mutated and unrepaired 
genes will cause MSI-H and induction of carcinogenesis. 
Approximately 15% of CRCs are caused due to activation 
of the MSI pathway [38, 111, 114, 115]. MSI-H is associ-
ated with abundant neoantigen production, which causes 
higher immunogenicity and potent immune responses 
[27]. In CRC, MSI is an excellent predictive biomarker, 
and as a result, the FDA has approved Pembrolizumab in 
the treatment of MSI-H/dMMR mCRC patients [116].

Tumor mutational burden
TMB is the number of total mutations per megabase 
of tumor cells in the coding region, which is used as 
another predictor of ICB treatment efficacy [117]. The 
positive correlation between TMB and the efficacy of 
ICB in immunotherapy was reported for the first time in 
2014 [118]. The KEYNOTE-158 study demonstrated that 
high TMB was associated with better OS, and that TMB 
could be used as a potential pan-cancer biomarker [19]. 
In a prospective planned retrospective analysis of vari-
ous solid tumor patients treated with Pembrolizumab, 
the ORR was 29% in the TMB high (TMB-H) group 
compared with only 6% noted in the non-TMB-H group. 
However, colorectal cancer was not included [19]. Based 
on this evidence, FDA-approved Pembrolizumab on June 
16, 2020 for the treatment of refractory unresectable or 
metastatic solid tumors of TMB-H, defined by 10 muta-
tions/megabase (muts/MB) based on the FoundationOne 
CDx assay. However, a latest multicenter, open-label, 
phase 2a multiple basket study in pan-cancers [119], 

which accounts for the majority of CRC, reported the 
value of TMB as a predictor of atezolizumab treatment. 
The results exhibited that the ORR of MSI-H and MSI-L 
in patients with TMB ≥ 16 mut/MB was 54.5% and 31.0%, 
respectively. The median PFS (mPFS) was 8.3  months 
and 5.6 months, respectively; and the median OS was NE 
and 19.8 months, respectively. In MSI-L population, the 
PFS of patients with TMB ≥ 16mut/MB was significantly 
better than that of patients with 10 ≤ TMB < 16 mut/MB 
(HR = 0.33, P < 0.0001)). As shown from the data of Aaron 
et al., MSS/TMB-H accounted for 5.36% (7, 972/148, 803) 
of cancer cases, while MSI-H only accounted for 1.46% 
(2, 179/148, 803); thus, it was initially speculated that the 
use of TMB could make more potential mCRC patients 
benefit from immunotherapy [120]. David et  al. also 
found a similar phenomenon in patients with MSS [121]. 
Moreover, studies also found that TMB could be used 
as an independent biomarker for ORR, PFS, and OS in 
patients with MSI-H mCRC [122]. In general, the detec-
tion of TMB requires tumor specimens for sequencing, 
termed tTMB, while advanced-stage patients do not have 
conditional access to tissue samples. Therefore, various 
clinical centers have attempted to use blood samples to 
detect bTMB. Certain clinical trials demonstrated that 
bTMB was significantly associated with tTMB [123–
126]. In a clinical trial of Durvalumab in combination 
with Tremelimumab in refractory mCRC, it was found 
that the MSS mCRC patients with bTMB ≥ 28 muts/MB 
benefitted from ICB treatment [127]. This evidence sug-
gests that bTMB may be an efficacy predictor in the MSS 
mCRC population, although the specific cutoff value 
required further exploration and validation.

It is interesting to note that TMB metrics are also 
flawed, since certain patients with high TMB exist who 
do not respond to immunotherapy [128] or patients 
with low TMB who can also achieve optimal therapeutic 
responses [129–131]. This is due to the fact that a high 
TMB does not correspond to a high tumor neoantigen 
level. It is therefore clear that the mutation quality is 
much more important than the mutation quantity. How-
ever, tumor neoantigen burden (TNB) is an indicator 
that reflects the total neoantigen quantity in tumor cells, 
which can be used as an adjunct to the TMB indicator 
[132].

Expression levels of PD‑L1
The predictive role of PD-L1 in the immunotherapy 
of solid tumors has been affirmed by various studies. It 
is generally believed that high expression of PD-L1 is 
associated with sufficient immune response and clinical 
benefits from ICB treatment [133]. However, the conclu-
sions from multiple trials were not consistent. An addi-
tional study indicated no significant difference in the 
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immune response rate between the PD-L1-positive sub-
group (≥ 1%) and the negative subgroup (≤ 1%) [134]. 
Some researchers believe that PD-L1 expressing should 
be distinguished from different cells. In a 73 MSI CRC 
patients cohort, Overman et  al. evaluated the relation-
ship between the efficacy of Nivolumab and the expres-
sion of PD-L1 on tumor cells or immune cells. The results 
showed that there was no significant correlation between 
PD-L1 expression on tumor cells and immunotherapy 
response, but it was found that ORR with numerous 
expressions on immune cells was significantly improved 
[29]. Le et  al. reported that PD-L1 expression was only 
observed in MSI patients, while it was previously specu-
lated that MSS tumors with high PD-L1 expression may 
also respond to ICB treatment [27, 135]. Subsequently, 
138 CRC patients were recruited in O’Neil’s study to 
detect the expression levels of PD-L1. PD-L1-positive 
CRC patients received Pembrolizumab treatment, and 
only 4% (1/23) obtained PR. This was also noted in the 
MSI status [136]. Obviously, the real challenge of immu-
notherapy is to find biomarkers of MSS CRC, but the 
current research on PD-L1 has not broken through the 
dilemma [137]. The reason for this discrepancy among 
different clinical trials may be that immunohistochem-
istry was the most commonly used method to detect 
PD-L1. However, certain differences have been noted 
with regard to the immunohistochemical antibodies and 
the scoring systems adopted by different centers, which 
leads to the incompatibility of the results. The use of dif-
ferent antibodies resulted in significant differences in the 
evaluation of results [138]. In upper gastrointestinal can-
cer, the score of PD-L1 has been standardized, and the 
Combined Positive Score (CPS) > 1 is the critical value of 
pembrolizumab immune response [139]. It is worth men-
tioning that the standardized antibody (22C3 pharmDx 
IHC assay) is used in CPS [139]. Therefore, a unified 
standard should be formed for CRC so that the most suit-
able critical value can be determined. In addition, the 
uneven distribution of PD-L1 in tumors and stromal cells 
leads to the inconsistency between biopsy specimens 
and resected tissues [140]. Therefore, the lesions can-
not be completely removed, and simple biopsy increases 
the probability of false negative results. Compared with 
single-core biopsy, multi-core biopsy is more sensitive 
to the detection of PD-L1 [140]. The expression levels 
of PD-L1 were significantly altered in the initial stage of 

the disease, during its progression and following treat-
ment. Kelly et al. demonstrated that 50% of patients with 
advanced esophageal adenocarcinoma exhibited altered 
PD-L1 status (from negative to positive PD-L1 expres-
sion) following radiotherapy and chemotherapy [141]. In 
conclusion, additional prospective studies using unified 
standards to examine the tumor therapeutic response 
of CRC patients are required to explore and validate the 
efficacy of PD-L1.

IFN‑γ
In the TME of CRC, tumor-infiltrating  CD8+ T cells, 
NK cells, and NK T cells are the main producers of IFN-
γ. IFN-γ can in turn prompt more  CD8+ T cells and 
NK cells infiltration into TME [142]. IFN-γ promotes 
the MHC-I expression both in antigen-presenting cells 
(APCs) and in tumor cells, enhancing the antigen rec-
ognition function of CD  8+ T cells to kill tumor cells. 
Furthermore, IFN-γ boosts Th1 cells polarization and 
directly induces tumor cells apoptosis or non-apoptotic 
death [143, 144]. IFN-γ can also establish tumor cells 
dormancy and inhibit tumor cells proliferation by IFN-γ/
STAT1 pathway [145] or non-STAT1 signaling [146]. 
Nevertheless, IFN-γ may also promote tumor immune 
evasion by promoting tumor cell dormancy under certain 
condition. IFN-γ can induce tumor antigen loss, recruit 
MDSCs and TAMs into the TME, and induce tumor 
immunoediting which results in tumor progression and 
relapse [147]. In addition, IFN-γ facilitates the expression 
of immunosuppressive molecules PD-L1, indoleamine 
2,3-dioxygenase (IDO), and arginase in TME. Clini-
cally, a relatively high level of IFN-γ was associated with 
response of immunotherapy [148, 149]. However, short-
age or excess of IFN-γ signaling may also lead to immune 
resistance [81, 150].

Therefore, the role of IFN-γ in the TME is controver-
sial (summarized in Fig.  4). Recently, Joseph et  al. ana-
lyzed single-cell sequencing data of IFN-stimulated genes 
(ISGS) [151] in various cell populations in melanoma 
samples from the TCGA repository and the data demon-
strated that the ISGS resistance signature-related genes 
(ISGS. RS) were mainly expressed in cancer cells. By con-
trast, IFNG.GS was predominantly expressed by immune 
cells within the TME, such as T cells, NK cells, and mac-
rophages. Interestingly, a low IFNG.GS/ISG.RS ratio was 
associated with resistance to ICB treatment. However, 

Fig. 4 Controversial roles of IFN-γ in the TME of CRC. Antitumor: IFN-γ signaling from immune cells and a high IFNG.GS/ISG.RS ratio were 
associated with increased CD8+ T cells and NK cell activation, and high response to ICB immunotherapy. IFN-γ can prompt CD8+ T cells and NK 
cells infiltration into TME, promote the MHC-I expression, boost Th1 cells polarization, directly induce tumor cells apoptosis or non-apoptotic 
death, establish tumor cells dormancy and inhibit tumor cells proliferation by IFN-γ/STAT1 pathway or non-STAT1 signaling; immune evasion: IFN-γ 
signaling released by tumor cells and a low IFNG.GS/ISG.RS ratio were associated with resistance to ICB treatment. IFN-γ can induce tumor antigen 
loss, recruit MDSC and TAMs into the TME, induce tumor immunoediting, and facilitate the expression of PD-L1, IDO, and arginase in TME

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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a high IFNG.GS/ISG.RS ratio was associated with 
increased  CD8+ T cell and NK cell activation, and high 
response to ICB immunotherapy. Particularly, the immu-
notherapeutic response predicted by this ratio was inde-
pendent of TMB. Previous studies have shown that IFN-γ 
signaling released by tumor cells can limit the immune 
response. However, IFN-γ signaling from adaptive and 
innate immune cells can enhance immune responses. 
These two actions of the same process are completely 
opposite. This intriguing study may provide us with an 
explanation for the dual role of IFN-γ in tumor immunity. 
It also highlights the potential of administrating thera-
peutic strategies for patients with different IFN-γ status.

Tumor‑infiltrating lymphocytes (TILs)
TIL is an important component of the TME, and TILs 
have been associated with upregulation of PD-L1 expres-
sion and various clinical benefits. The antitumor effects 
of ICB require the participation of lymphocytes in the 
vicinity of the tumor. Therefore, the abundance of TILs 
can also be used as a marker to predict the efficacy of the 
ICB. Normally, immunohistochemical analysis is used to 
assess the infiltration of  CD8+ T cells in the tumor tis-
sues. As a co-stimulatory signal, a higher proportion of 
 CD28+ in TIL cells generally predicts a higher response 
to therapy, which can also be detected by immunohisto-
chemical analysis [152]. It was reported that only small 
fractions of the  CD8+ TILs were sensitized to tumor 
antigens, whereas the majority of them did not. Further 
investigations revealed that the differential CD39 expres-
sion was a key factor in discriminating the sensitivity 
of  CD8+ TILs [153]. CD39 is a molecule implicated in 
chronic immune cell stimulation and is often markedly 
upregulated in a variety of malignant solid tumors.  CD8+ 
 CD39+ TILs are consistent with the characteristics of 
chronic antigen persisting stimulation, indicating that 
the activity of this class of TILs is suppressed. They retain 
the antitumor capacity but require additional stimuli 
to uncouple suppression, while ICB can then serve this 
function. Therefore, the higher the proportion of  CD39+ 
in  CD8+ TILs, the more likely that the PD-1/PD-L1 sign-
aling axis will be effective. Hence,  CD39+ is also a poten-
tial marker [154]. In addition, tumor microenvironment 
immune types (TMITs) were constructed and classi-
fied into four groups to describe different TMEs, based 
on PD-L1 expression and TILs. TILs are characterized 
by CD8A mRNA expression and the cytolytic activity 
score (CYT, GZMA, according mRNA expression lev-
els of GZMA and PRF1). This stratification underscores 
the importance of PD-L1 expression and TIL recruit-
ment. PD-L1-positive TILs are classified as TMIT type 
I. ICB therapy can benefit patients with PD-L1-positive 
TILs [155]. Moreover, in CRC, the number of mutations 

or neoantigens was significantly higher in TIMT type I 
(high PD-L1 and CD8A/CYT) than in TIMT type II (low 
PD-L1 and CD8A/CYT) cancers [155]. TMIT stratifica-
tion may serve as a supplementary method to distinguish 
“cold” from “hot” tumors and to develop optimal immu-
notherapeutic strategies. The examination of TMIT may 
predict the therapeutic response of more diverse tumors 
to immune strategies on the basis of quantification of 
immune infiltration using mRNA-seq analysis.

Polymerase epsilon (POLE) mutations
POLE is the key enzyme involved in DNA synthesis and 
repair processes, and the proofreading role of POLE is 
essential for replication fidelity, ensuring the appropri-
ate replication of the genome during the cell cycle [156]. 
After POLE mutations, DNA repair defects and genetic 
material errors cannot be repaired. Over time, a large 
number of mutations have accumulated, even up to 10 
times that of MSI-H CRC [157]. A retrospective analy-
sis indicated that 66 (1.0%) of 6,517 CRC patients exhib-
ited somatic POLE mutations. The patients with POLE 
mutations were relatively young, mostly male, and exhib-
ited mainly lesions at the right side. They were also in 
the early stage of the disease (stage II–III) during initial 
diagnosis. Approximately 1–2% of MSS CRC exhibits a 
POLE mutation, while the frequency can range between 
5 and 7% in patients aged < 50 years. Previous study has 
pointed out that CRC patients with POLE mutations are 
often accompanied with high levels of TILs, upregulated 
PD-L1 expression, and increased expression of cyto-
toxic T cell markers and effector cytokines, suggesting 
enhanced tumor immunogenicity [158]. POLE muta-
tion seems to be a novel predictor of the response to ICB 
treatment. Wang et  al. demonstrated that POLE muta-
tions were independent biomarkers for determining the 
efficacy of immunotherapy across multiple cancer types 
[159]. Notably, MSS CRC patients with POLE mutations 
exhibit durable clinical responses from ICB therapy [23, 
160]. This suggested that POLE mutations were a promis-
ing indicator that can be used to improve the benefits of 
immunotherapy on MSS mCRC patients [161].

Neutrophil‑to‑lymphocyte ratio (NLR)
It is well established that tumor-related inflammation 
plays an important role in tumorigenesis, disease pro-
gression, and patient outcome. By contrast, systemic 
inflammation is associated with peripheral leukocyte 
alterations, which is manifested as alteration of the NLR. 
The NLR can predict the prognosis of patients with CRC 
and other solid tumors [162, 163]. Several retrospec-
tive studies have shown that high baseline NLR and an 
elevated NLR during treatment were significantly associ-
ated with poor outcomes, suggesting that NLR may be a 
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potential predictive factor in patients who received ICB 
therapy [164–168]. In metastatic NSCLC, high NLR was 
associated with low response to immunotherapy and 
was an independent risk factor for poor prognosis [169]. 
Nevertheless, Jong et al. also indicated that the immune 
response was associated with a lower NLR at week 6 fol-
lowing immunotherapy, and a reduction in NLR during 
treatment was associated with longer PFS. As shown 
in previous studies from different centers, the specific 
baseline and the change range of NLR have not been 
previously demonstrated by large prospective studies. 
In addition, a limited number of studies have examined 
CRC patients. However, compared with other predictors, 
NLR is convenient for acquisition and monitoring, which 
is a research direction worth exploring.

Certain factors are closely associated with immune 
cell infiltration and the TME. However, their clinical 
value has not been confirmed and their importance is 
uncertain. We have compiled and listed these factors in 
Table 2. Importantly, the hyperprogression is a malignant 
phenomenon during ICB therapy. The related genes are 
sorted into Table 2.

The exploration of clinical strategies for ICB 
therapy and resistance in mCRC (summarized 
in Additional file 1: Table 1)
The important role of ICB therapy in MSI-H/dMMR 
CRC has received increasing attention, and certain drugs 
have been gradually approved and used in routine clini-
cal practice (summarized in Fig. 5 and Table 3). However, 
95% of mCRC patients are classified as MSS/pMMR. 
Therefore, the strategy to overcome immunotherapy 
resistance has been continuously explored. With regard 
to the immune microenvironment, MSS mCRC mostly 
belongs to the “immune-excluded tumor” and “immune 
desert tumor” classifications. The majority of the 
immune resistance mechanisms summarized above were 
noted in MSS mCRC, and the expression levels of cyto-
toxic cells,  CD8+, Th1, Th2, follicular helper T cells, and 
T cell markers were significantly lower in MSS mCRC 
than those noted in MSI-H patients. Moreover, the 
TMB, percentage of missense or frameshift mutations, 
and the number of tumor neoepitopes were also signifi-
cantly lower in MSI patients than those noted in MSI-H 
patients. The Keynote 016 study also demonstrated that 
MSS patients were largely refractory to immune mono-
therapy. However, the transformation of the “cold” MSS 
tumor into the “hot” tumor is an exploratory hotspot. 
Previous studies indicated that immunotherapy com-
bined with MEK inhibitors or combined with anti-VEGF 
was not successful, whereas preliminary positive results 
have also been reported in MSS mCRC. (Selected results 
are summarized in Table 4.)

Immunotherapy combination with chemotherapy: issues 
that remain to be explored
The 2020 ESMO congress announced the progress of 
the Keynote-651 (NCT03374254) clinical trial, which 
is a multicenter, open-label, non-randomized phase Ib 
study aimed to assess the efficacy and toxicity of Pem-
brolizumab plus either mFOLFOX7 or FOLFIRI in 
mCRC [205, 206]. The results indicated an ORR of 58.1% 
in cohort B (Pembrolizumab plus mFOLFOX7) and an 
ORR of 15.6% in cohort D (Pembrolizumab plus FOL-
FIRI). Furthermore, a disease control rate (DCR) of 94% 
and 63% were noted, respectively. Pembrolizumab plus 
mFOLFOX7 or FOLFIRI demonstrated preliminary 
safety and efficacy in patients with MSS/pMMR mCRC. 
The METIMMOX study (NCT03388190) was reported 
at the ASCO congress, which compared the repeated 
sequential oxaliplatin-based chemotherapy (FLOX) com-
bined Nivolumab versus FLOX alone as a first-line treat-
ment of MSS mCRC. The results indicated that the mPFS 
of the FLOX plus Nivolumab group was 6.6  months 
(range, 0.5–20), whereas the ORR at 8  months reached 
46.3%. This study suggested that FLOX therapy could 
convert MSS to an immunogenic state, allowing unre-
sectable, previously untreated metastatic patients to 
achieve durable disease control following treatment with 
ICB [207]. The present study focused on the identifica-
tion of predictive biomarkers of ICB responsiveness. 
Chemotherapy combined with immunotherapy has been 
the exploratory direction and the common method used 
by clinicians. Nevertheless, the aforementioned studies 
did not exhibit clear benefits, and additional investiga-
tions are required.

Immune combination MEK inhibitors: changes to be made
Previous studies have shown that inhibition of MEK 
activity can induce a transcriptional signature similar to 
immune resistance in melanoma, suggesting that MEK 
inhibitor therapies may be cross-resistant to ICB thera-
pies. Recently, Obenauf et al. demonstrated that dendritic 
cells (DCs), which are the key cells of the immune sys-
tem, have lower activity and reduced cell number in a 
melanoma mouse model resistant to anti-MEK therapy. 
Moreover, stimulation of DCs restored the response to 
immunotherapy [208]. IMblaze370 (NCT02788279) is a 
multicenter, open-label, randomized controlled clinical 
trial exploring the efficacy of PD-L1 inhibitors in com-
bination with a MEK inhibitor regimen (Atezolizumab 
plus Cabozantinib). Phase Ib results indicated a modest 
response rate (8%) and disease control (31%). However, 
the final results indicated that the combination therapy 
exhibited a median OS (mOS) of 8.87  months (95% CI 
7.00 to 10.61) and a mPFS of 1.91 months (95% CI 1.87 
to 1.97), which was not significantly different compared 
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Table 2 Other predictive markers of immunotherapy efficacy

Positive Biomarkers

POLD1 mt POLD1 gene encodes p125, the catalytic subunit of DNA polymerase δ. The polymerase activity and exonu-
clease function of DNA polymerase δ are concentrated in the p125 subunit, so the POLD1 gene is significantly 
involved in cell cycle regulation and DNA damage repair [156, 170]. CRC patients with POLD1 mutation often 
have the characteristics of microsatellite instability, suggesting that patients with POLD1 mutation may benefit 
from immunotherapy [159]

CDK12-Deficiency CDK12 inactivation in prostate cancer is related to tandem genomic replication. CDK12 mutation may produce 
fusion related neoantigens and trigger an immune response, indicating that patients can benefit from ICB 
therapy [171, 172]

CDKN2A mt CDKN2A is a tumor suppressor gene that induces cell cycle arrest in the G1 and G2 phases; it also suppresses 
the oncogenic action of CDK4/6 and MDM2 [173]. Tumors with JAK2 mutations or homozygous JAK2 deletions 
demonstrate allelic losses covering both the CDKN2A and JAK2  genes. [174]

SERPINB3/4 mt SERPINB3/4 mutations are able to enhance tumor neoantigen presentation. The results of a clinical study sug-
gested that melanoma patients carrying SERPINB3/4 mutations could gain better benefit from treatment with 
CTLA4 antibodies [175]. In the clinical study with code number CA209-038, 68 patients with melanoma were 
enrolled who had progressed with or without prior to Ipilimumab therapy and received nivolumab. Five of six 
patients harboring SERPINB3/4 mutations had their disease controlled. However, due to the small sample size, 
no statistically significant associations between individual gene changes and treatment were found [176]

TP53/KRAS mt Previous studies have found that in tumors with KRAS/TP53 mutation, the expression levels of PD-L1 and the 
infiltration of T cells were significantly increased. Patients with TP53, TP53/KRAS and KRAS mutations can benefit 
from PD-1 inhibitors [177, 178]

DNA DDR Genes mt ATM, POLE, BRCA2, ERCC2/4, FANCA, CHEK1/2, MLH1/MSH2/MSH1, ATR, BAP1, and RAD belong to DDR genes, 
which have the function of DNA damage repair. Mutations in the DDR genes may increase the production of 
tumor neoantigens, resulting in higher tumor mutational burden [179, 180]

Fusobacterium nucleatum Increased levels of Fusobacterium nucleatum were associated with improved treatment response to PD-L1 
blockade [181]

CMTM6 A previous study suggested that CMTM6 expression in M2 macrophages may more accurately predict ICB 
response in CRC patients than the dMMR/MSI-H state. It can also identify pMMR CRC patients who may benefit 
from PD-1/PD-L1 inhibitors treatment [182]

NF1 mt As a GTPase-activating protein, NF1 can downregulate RAS activity, and NF1 mutation can activate the MAPK 
signaling pathway [183]. In a previous study, patients with NF1 mutations, harboring high mutational burdens 
and high response rates, could benefit from anti–PD-1 therapy [184]

Negative Biomarkers

MDM2/4 A previous study reported that MDM2/4 amplification could be used as an independent predictor of poor clini-
cal outcome (time-to-treatment failure < 2 months) with immunotherapies. All six (4%) patients with MDM2/
MDM4 amplifications indicated explosive progression of the disease. Notably, one of the patients exhibited a 
high TMB, which was considered as a responsive factor [185]

EGFR mt, ALK mt, MET rearrangement Several clinical studies have shown that immunotherapy does not perform well in patients with driver gene 
mutations, such as EGFR and ALK, or patients with MET gene rearrangement, irrespective of the expression level 
of PD-L1 [186]

STK11 mt STK11 is a tumor suppressor gene, and its mutations are related to the Peutz-Jeghers syndrome. Previous stud-
ies suggested that STK11 mutation can modify the “cold” TME, which was associated with decreased T cell infil-
tration, increased T cell exhaustion marker expression, and reduction in PD-L1 expression levels [187]. Moreover, 
the STK11 alteration was considered as a main driver of primary resistance to ICB therapy in KRAS-mutant lung 
adenocarcinoma samples [188, 189]; An additional study reported that the PFS and OS of the patients with 
KRAS/STK11 co-mutation who received ICB therapy were significantly lower than those in patients with KRAS 
mutation and STK11 wild-type patients. The concomitant present of KRAS and STK11 mutations was correlated 
with a greater risk of HPD following ICI monotherapy [190]

DNMT3A alteration A previous study reported that in 155 patients, 4 of 5 patients harboring DNMT3A alteration had a hyperpro-
gression (TTF < 2 months) with immunotherapies [185]

Loss of PTEN PTEN loss was associated with reduction in T cell infiltration in the tumor samples, increased VEGF expression, 
and inferior outcomes with anti-PD-1 therapy [191]

DKK1 DKK1 inhibits antitumor immune activity of CD8+ T cells through the GSK3β/E2F1/T-bet axis. The increase in the 
serum expression of DKK1 can predict the poor tumor response to PD-1 blockade in dMMR/MSI CRC, whereas 
reversal of DKK1 neutralization may restore the sensitivity to PD-1 blockade [192]

LAGE3 High LAGE3 expression is associated with poor prognosis and poor immune infiltration in CRC patients, which 
suggests a poor immune response in ICB therapy [193]

Circulation LDH Levels Previous studies have shown that baseline LDH alone or a combination of the LDH levels, performance status, 
and age were associated with response to ICIs in solid tumors. Another study indicated that LDH baseline 
levels were an independent indicator of PFS in melanoma patients treated with ICIs by Cox regression analysis 
[194–196]
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Table 2 (continued)

Increased circulation Tsens In a clinical study, the number of Tsens at baseline was detected, and patients with relatively high number of 
Tsens were prone to develop HPD. In contrast to those findings, the tumors subsided significantly in patients 
with lower Tsens. The results indicated that the number of Tsens in patients prior to immunotherapy could pre-
dict the risk of HPD. The baseline number of Tsens may represent the overall situation of a preexisting effector T 
cell with potential antitumor activity [197]

ILC3 ILC3 was specifically increased in HPD tumors [198]. Immunotherapy for Cancer ILC3s can respond to cytokine 
stimulation without specific antigen. ILC3 has been shown to produce IL-17 and IL-22, thereby promoting can-
cer progression [199]. This abnormal inflammatory environment may be related to the adverse efficacy of ICIS

T cell exhaustion T cell exhaustion is defined as T cell dysfunction, decreased ability to recognize and eliminate antigens, and up 
regulation the expression levels of the inhibitory receptors, including PD-1, TIM3, TIGIT and LAG-3 [200]. Overex-
pression of these inhibitory receptors may be the key mechanism of PD-1 treatment resistance. Following the 
overexpression of these inhibitory receptors, CD8+ T cells indicates serious dysfunction in cytokine production, 
proliferation and migration [201]

Liver metastasis Study demonstrated that melanoma patients with liver metastasis response worse than lung metastasis from 
ICB therapy [202]. MSS mCRC patients with liver metastasis also cannot benefit from the combination of TKI plus 
ICB [96, 203, 204]

POLD1 DNA Polymerase Delta 1, Catalytic Subunit, DDR: Damage Response and Repair, CDK12 Cyclin-Dependent Kinase 12, SERPINB3/4 Serpin Family B Member 3/4, 
CMTM6 CKLF like MARVEL Transmembrane Domain Containing 6, STK11 Serine/Threonine Kinase 11, ILC3 Group 3 Innate Lymphoid Cells, Tsens Senescent CD4 + T 
cells, LDH Lactate Dehydrogenase, NF1 Neurofibromin 1, MET MET Proto-oncogene, Receptor Tyrosine Kinase, DNMT3A DNA Methyltransferase 3 Alpha, DKK1 Dickkopf 
Wnt Signaling Pathway Inhibitor 1, LAGE3 L Antigen Family Member, 3MET MET Proto-oncogene, Receptor Tyrosine Kinase, DNMT3A DNA Methyltransferase 3 Alpha, 
DKK1 Dickkopf Wnt Signaling Pathway Inhibitor 1, LAGE3: L Antigen Family Member 3

Fig. 5 Timeline of ICB therapy in MSI-H/dMMR CRC 
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with other monotherapy groups. Additional adverse 
effects were also noted [209]. To date, several clinical tri-
als have produced invalid results from ICB combinations 
with MEK inhibitors in CRC. However, certain preclini-
cal studies have shown that a simple combination ther-
apy is a suboptimal approach, while rational dosing and 
sequencing administration contributes to improved sur-
vival in mouse models [210]. The regimen of short-term 
ICB treatment prior to administration of MEK inhibitors 
is suggested to reverse drug resistance, which is more 
effective in prolonging tumor shrinkage and preventing 
the development of drug resistance. Certainly, relevant 
therapeutic approaches await exploration in high-quality 
clinical trials.

Immunotherapy combined with anti‑epidermal growth 
factor receptor (EGFR) therapy: Worth trying
The prognosis in all types of CMS4 tumor, with high APC 
and low BRAF mutation rates, is considerably poor [211]. 
The angiogenesis-associated pathway is aberrantly acti-
vated in this cancer type, promoting the hyperplasia and 
growth of metastatic tumor cells. The antiangiogenic drug 
Bevacizumab can significantly improve patient survival. 
A previous study indicated that Cetuximab exhibited a 
direct tumor killing effect, acting as an IgG1 monoclo-
nal antibody that also exhibited antibody-dependent 
cell-mediated cytotoxicity (ADCC) effects. Cetuximab 
was also able to recruit anti-EGFR T cells as well as 
 CD8+and  CD3+ T cells. Moreover, this antibody can also 
increase PD-L1 expression and induce immunosuppres-
sion by possible synergism with ICB. The AVETUXIRI 
(NCT03608046) study investigated the combination of 
Bavencio with Cetuximab and Irinotecan in patients with 
refractory MSS mCRC who had failed prior standard 
therapy [212]. This study was stratified by the RAS muta-
tion status into cohort A (RAS wild type) and cohort B 
(RAS mutated type). Initial findings indicated an ORR 
of 30% in cohort A, reaching its primary efficacy end-
point and proceeding to the phase II study. No PR was 
observed in cohort B, while both RAS wt and RAS mt 
groups exhibited DCRs of 60% (6/10) and 61.5% (8/13), 
respectively, mPFS of 4.2 and 3.8  months, and mOS of 
12.7 and 14.0  months, respectively. The 6-month PFS 
rates were 40.0% and 38.5%, respectively. The 12-month 
OS rates were 53.3% and 57.7%, respectively. PR was 
not observed in the RAS mt cohort. However, optimal 
DCR, PFS, and OS data were also obtained in the RAS 
mt cohort, and the investigators established a RAS mt 
mCRC cohort with PFS as the primary endpoint in order 
to expand these research findings. In a single-arm, single-
institution, phase I/II clinical trial (NCT04017650) [213], 
26 patients with refractory MSS and  BRAFV600E meta-
static CRC were recruited and Encorafenib, Cetuximab, 

and Nivolumab were used in combination. The ORR of 
45% (95% CI 23 to 68) and DCR of 95% (95% CI 75% to 
100), the mPFS of 7.3 months (95% CI 5.5 to NA) and the 
mOS of 11.4 months (95%CI 7.6 to NA) were reported. 
This study reached the predetermined efficacy endpoint, 
indicating that this novel regimen is effective and well 
tolerated in the treatment of MSS,  BRAFV600E mCRC.

Immunotherapy combinations with tyrosine kinase 
inhibitors (TKIs) are anticipated to be scheduled 
in the future
Preclinical studies have shown that antiangiogenic ther-
apy may improve the TME, increase and activate effec-
tor immune cells, reduce immunosuppressive cells, 
and relieve immunosuppressive effects, which play a 
significant role in the synergism of immunotherapy. 
However, the clinical effects of immunotherapy com-
bined with anti-VEGF agents are not optimal. The 
BACCI (NCT02873195) study aimed to evaluate the 
efficacy of Capecitabine and Bevacizumab combined 
with Atezolizumab or placebo as the third-line treat-
ment for refractory mCRC patients. The mPFS and 
mOS in the experimental group were 4.37 (95%CI 4.07 
to 6.41), 10.55 (95%CI 8.21 to NA), and 3.32 (95%CI 
2.14 to 6.21) and 10.61 (95%CI 8.80 to NA) in the con-
trol group [214]. The difference was not statistically sig-
nificant in MSS patients, and the control group did not 
significantly improve OS. Inhibition of angiogenesis has 
long been considered as a potential approach to reverse 
immunotherapy resistance. However, immunization in 
combination with Bevacizumab has been shown to be 
unsuccessful. Despite these findings, immunotherapy 
combined with TKI has achieved promising results. TKIs, 
which also possess antiangiogenic effects, can block 
the three targets of VEGFR, notablyVEGFR3. Tyrosine 
kinases enzymes phosphorylate specific amino acids on 
substrate enzymes, which affect signal transduction path-
way. TKIs exhibit a wide range of target inhibition effects, 
and it has been recognized that they may also inhibit 
colony-stimulating factor-1 receptor (CSF-1R). Based on 
their antiangiogenic effects, they can reverse antitumor 
immune activity by blocking CSF-1R-mediated pathway 
to inhibit tumor immune-related macrophages. Multiple 
prospective studies have been conducted worldwide to 
explore the efficacy of ICB with TKI therapy in the treat-
ment of MSS mCRC.

The REGONIVO (NCT03406871) study in Japan was 
a phase Ib study using nivolumab plus regorafenib in 
refractory MSS CRC and gastric cancer. This study dem-
onstrated an ORR of 28% and a mPFS of 7.8 months (95% 
CI, 2.8 to NR) in mCRC, with a 1-year PFS rate of 41.7% 
and a 1-year OS rate of 68.0%, which were consider-
ably higher than the data from previous studies in MSS 
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CRC [215]. However, this study could not be repeated 
in the follow-up North American REGONIVO phase 
II study (NCT04126733), and an ORR of 7.1%, mPFS of 
8 weeks, and a mOS of 52 weeks were reported [204]. The 
REGOTORI (NCT03946917) study indicated that 5 out 
of 33 evaluable patients treated with 80  mg regorafenib 
achieved a tumor response with an ORR of 15.2% (95% 
CI, 5.7%–32.7%) and a DCR of 36.4% (95% CI, 21.0% 
to 54.9). The ORR was higher in patients without liver 
metastasis than that noted in those with liver metasta-
sis (30.0% vs. 8.7%). The ORR of patients with only lung 
metastasis (3/3, 100%) was considerably higher than 
that of those with liver metastasis alone (0/4, 0%), sug-
gesting that ICB combined with TKI is an option for 
refractory MSS mCRC, notably for patients without 
liver metastasis or lung metastasis alone [96]. A phase 
Ib study (NCT03903705) was performed to evaluate 
the safety and preliminary efficacy of Fruquintinib in 
combination with GB 226 for the treatment of mCRC. 
The data indicated favorable results. The ORR in 12 
patients with MSS mCRC was 25.0%, whereas the DCR 
was 75%, and the mPFS was 5.45  months (95% CI 1.84 
to 9.66) [216]. Recently, the largest trial of ICB com-
bined with regorafenib in the treatment of MSS CRC 
(NCT03657641) was reported [217]. The subjects were 
patients with chemotherapy failure, of which 78% of 
patients had liver metastasis. The mPFS was 2.0 (95% CI 
1.8 to 3.5) months and the mOS was 10.9 (95% CI 5.3 to 
NR) months. In 16 patients (23%) with non-hepatic met-
astatic disease, PFS was 4.3 (95% CI 1.9 to 8.4) months. 
Unfortunately, the trial did not reach its primary end-
point, and biomarker analysis is currently being con-
ducted to further explore the benefit population.

The efficacy of the dual immune checkpoint inhibitor 
combination therapy requires further validation
The CCTG CO.26 (NCT02870920) study evaluated 
the use of the dual ICB combination regimen as a post-
line treatment for refractory mCRC. The experimental 
group received Durvalumab + Tremelimumab compared 
with the best supportive care (BSC) group, which was 
used as a control [218]. Notably, OS was significantly 
longer in the dual immunization group (6.6  months vs 
4.1 months), whereas PFS was not prolonged (1.8 months 
vs. 1.9  months), and DCR was estimated to 22.6% and 
6.6%, respectively. Subsequent analysis (excluding 2 
patients with MSI-H) revealed that the median TMB 
was increased to 20.4, and the patients with a TMB > 28 
MTs/MB could benefit more from dual immunother-
apy, whereas high TMB in the BSC group was associ-
ated with a poor prognosis. The MEDITREME trial 
(NCT03202758) was a single-arm exploratory trial that 
enrolled 57 patients with RAS mutant, MSS, untreated 

mCRC, in which the investigators presumed that FOL-
FOX chemotherapy could induce immunogenic cell 
death and remove MDSCs, in order to potentiate the 
antitumor effects of immunotherapy. Enrolled patients 
received first-line therapy with FOLFOX in combination 
with Durvalumab and Tremelimumab, and the results 
indicated that the mPFS was not reached, with a 6-month 
PFS rate of 62.5% [219]. Another multicenter phase II 
study LCCC1632 (NCT03442569) met the primary study 
endpoint of a remission rate of 35% at 12  weeks [220]. 
The study was designed to evaluate the efficacy and safety 
of Ipilimumab and Nivolumab plus Panitumumab in 
patients with KRAS/NRAS/BRAF wild-type MSS mCRC. 
A total of 49 patients were evaluated with regard to the 
efficacy of treatment at 12  weeks, 34.7% of the patients 
(17/49) exhibited PR, 0 had CR, and 42.9% (21/49) exhib-
ited stable disease (SD). The mPFS was 5.7 months (95% 
CI, 5.5–7.9  months). This chemotherapy-free immune 
combination targeted therapy regimen offers first-line 
hope for the chemotherapy-resistant advanced RAS/
BRAF wild-type MSS mCRC patients. Of course, phase 
III studies are still required for confirmation. As an 
important new immune checkpoint, LAG-3 is struc-
turally similar to CD4. It has four extracellular regions 
that bind to ligands, thus inducing immune cell failure 
and reducing cytokine secretion. An increase in reli-
able clinical data on the double blocking of LAG-3 and 
PD-1 has prompted people to focus on this combination 
immunotherapy. A clinical trial (NCT02720068) [221] 
demonstrated that the combination of LAG-3 inhibitor 
(Favezelimab) and Pembrolizumab exhibits good antitu-
mor activity, especially in patients with PD-L1 CPS ≥ 1.

Future perspectives
Immune checkpoint inhibitor therapy is relatively less 
toxic than chemotherapy and targeted therapy. How-
ever, some of its unique adverse effects reduce its clini-
cal efficacy, and certain rare adverse effects could be 
life-threatening, which result in skin, endocrine, hepatic, 
gastrointestinal, pulmonary, and skeletal muscle toxicity. 
The related aspects of this topic will not be covered in 
this review.

ICBs have been successfully used in the MSI-H CRC 
population. Pembrolizumab, Nivolumab, and Ipilimumab 
have been approved to be used in MSI-H refractory 
mCRC, and Pembrolizumab has been recommended as 
first-line therapy of treatment. More recently, clinical tri-
als indicated that neoadjuvant immunotherapy may have 
the potential to become the standard therapy for CRC 
patients. In a stepwise exploration, ICBs hold promise as 
adjuvant therapies for patients with stage III CRC after 
resection. Moreover, the combination with specific drugs 
is expected to improve efficacy and attenuate associated 
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toxicity. The urgent task is to find multiple biomarkers 
and formulate standardized scoring standards in order 
to screen population and benefit more patients. For the 
MSS population, which constitutes the majority of CRC 
patients, ICB monotherapy was ineffective. In addition to 
the microsatellite status, other potential biomarkers can 
be developed that can aid the identification of potential 
populations. More importantly, it is significant to develop 
measures that can turn “cold tumor” into “hot tumor” so 
as to expand the application scope of immunotherapy. 
This scope of research may provide a milestone in CRC 
treatment.
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