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The secreted malarial protein, Cell-Traversal protein for Ookinetes and

Sporozoites (CelTOS), is highly conserved among Plasmodium species, and

plays a role in the invasion of mosquito midgut cells and hepatocytes in the

vertebrate host. CelTOS was identified as a potential protective antigen based

on a proteomic analysis, which showed that CelTOS stimulated significant

effector T cells producing IFN-g in peripheral bloodmononuclear cells (PBMCs)

from radiation attenuated sporozoite-immunized, malaria-naïve human

subjects. In a rodent malaria model, recombinant full-length CelTOS protein/

adjuvant combinations induced sterile protection, and in several studies,

functional antibodies were produced that had hepatocyte invasion inhibition

and transmission-blocking activities. Despite some encouraging results,

vaccine approaches using CelTOS will require improvement before it can be

considered as an effective vaccine candidate. Here, we report on the use of

mRNA vaccine technology to induce humoral and cell-mediated immune

responses using this antigen. Several pfceltos encoding mRNA transcripts

were assessed for the impact on protein translation levels in vitro. Protein

coding sequences included those to evaluate the effects of signal sequence, N-

glycosylation on translation, and of nucleoside substitutions. Using in vitro

transfection experiments as a pre-screen, we assessed the quality of the

expressed CelTOS target relative to the homogeneity, cellular localization,

and durability of expression levels. Optimized mRNA transcripts, which

demonstrated highest protein expression levels in vitro were selected for

encapsulation in lipid nanoparticles (LNP) and used to immunize mice to

assess for both humoral and cellular cytokine responses. Our findings

indicate that mRNA transcripts encoding pfceltos while potent for inducing
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antigen-specific cellular cytokine responses in mice, were less able to mount

PfCelTOS-specific antibody responses using a two-dose regimen. An

additional booster dose was needed to overcome low seroconversion rates

in mice. With respect to antibody fine specificities, N-glycosylation site

mutated immunogens yielded lower immune responses, particularly to the

N-terminus of the molecule. While it remains unclear the impact on CelTOS

antigen as immunogen, this study highlights the need to optimize antigen

design for vaccine development.
KEYWORDS
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Introduction

Malaria caused by Plasmodium parasites remains a major

life-threatening disease, resulting in a high burden on public

health and economic disruption in afflicted regions. The World

Health Organization estimated that 241 million malaria cases

occurred in 2020 alone, worldwide (1). A striking increase of 14

million more cases in 2020 compared to 2019 are likely linked to

disruptions in efforts to prevent and diagnosis of malaria during

the COVID-19 pandemic. Importantly, in 2020, mortality

caused by Plasmodium falciparum, compared to P. vivax and

to a lesser extent P. malariae, accounted for 96% of reported

cases in the WHO African region, a disproportionately high

share of the global malaria burden (1). Despite progress in the

prevention and control of malaria, emergence of drug and

pesticide resistance still poses the greatest challenge to malaria

control efforts.

The life cycle of Plasmodium parasites is complex with

significant antigenic diversity in the mammalian host. This

complexity makes it difficult to develop a vaccine against

parasite infection, since the immune response targeting one

stage may not be effective against a later stage in the life cycle

(2). The mode of transmission of malaria occurs during a

blood meal, when an infected female Anopheles mosquito

inoculates sporozoites into the skin of the human host. Once

sporozoites enter the host, they traverse through cells and

ultimately invade hepatocytes, where they undergo

maturation and replication followed by cell rupture and

release of merozoites into the bloodstream. There,

merozoites rapidly invade erythrocytes, transforming from

rings, trophozoites to schizonts and on red blood cell

rupture releasing merozoites back into the bloodstream thus

initiating the cyclic phase of erythrocytic infection (3, 4). An

effective pre-erythrocytic vaccine would avert transmission to

blood stages and progression to clinical disease (5, 6). Vaccine
02
candidates targeting the pre-erythrocytic stage have

demonstrated encouraging vaccine efficacy (7–9). The most

advanced of these i s based on the P. fa l c iparum

circumsporozoite protein (PfCSP), RTS,S/AS01, albeit

exhibiting partial vaccine efficacy in phase III clinical trials

(10). Despite the limited efficacy, in 2021, the WHO

recommended RTS,S/AS01 for prevention of P. falciparum

malaria in children residing in regions of moderate to high

malaria transmission (1). While the protection induced by this

vaccine is encouraging, the road to a durable and highly

effective vaccine against malaria remains to be determined.

The Cell-Traversal protein for Ookinetes and Sporozoites

(CelTOS) is a micronemal, secreted protein, which plays a role in

cell traversal of ookinetes in the mosquito midgut and

sporozoites in the human host (11, 12). Jimah et al.,

demonstrated that CelTOS has enhanced specificity for the

cytosolic face of host cell membranes by directly binding to

phosphatidic acid, a lipid found in the inner leaflet of plasma

membranes (11). In clinical studies of radiation-attenuated

sporozoite (RAS) vaccine (13) or from natural exposure (14),

CelTOS-specific peptides stimulated peripheral blood

mononuclear cells (PBMC’s) to recall significant levels of

antigen-specific CD8+ IFN-g responses. In preclinical studies,

adjuvanted, E. coli expressed PfCelTOS induced cellular and

humoral immune responses in mice and conferred sterile

protection against a heterologous rodent malaria challenge (14–

16). While replication-deficient pfceltos encoding, recombinant

chimpanzee adenoviral vector 63 and modified vaccinia virus

Ankara (ChAd63-MVA) delivered as a heterologous prime-boost

regimen, induced higher frequency of antigen-specific cellular

responses than was previously reported with a recombinant

PfCelTOS/Montanide ISA 720 (16, 17). While a recombinant

PfCelTOS produced in Pseudomonas fluorescens induced

antibodies that inhibited P. falciparum 3D7 parasites infection of
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hepatocytes and impaired parasites development within mosquito

cells in vitro (18). Immunization with plasmid DNA encoding

pfceltos, which was optimized for mRNA stability and human

codon usage, yielded modest humoral responses but significant

levels of cellular immunity, in both mice and non-human

primates (19).

Similar to DNA vaccines, messenger RNA (mRNA) enables

the encoded antigen to be directly expressed within cells,

however, without altering the host cell genome or requiring

access to the nucleus (20, 21). Lipid nanoparticles (LNP) serve to

protect mRNA against degradation, efficiently delivering the

cargo into cells, having the advantage of providing

immunostimulatory signals (22). Nominally, compared to

traditional approaches, an advantage of mRNA vaccine

technology is the facile design of constructs and the simplicity

of manufacture. This phenomenon was particularly evident in

the responsiveness to the coronavirus disease 2019 (COVID-19)

pandemic, where the mRNA platform was rapidly fielded against

SARS-CoV-2 virus clinical endpoints (23). Hence, we sought to

investigate factors which may influence translation and

translocation of expressed protein, such as signal sequence, an

essential feature of mRNA transcripts for protein functioning

(24), N-glycosylation of pfceltos mRNA from transfected

Chinese Hamster Ovary cells (CHO) and on in vivo immune

responses in mice, and finally non-modified (native) and

nucleoside-modified (base substitutions of pseudouridine and

5’-methylcytidine) mRNA transcripts on immunogenicity in

mice (25, 26).
Frontiers in Immunology 03
Materials and methods

mRNA transcripts

mRNA transcripts were based on the pfceltos coding

sequence of the P. falciparum 3D7 strain parasites and

transcripts were synthesized by TriLink Biotechnologies

including proprietary 5’ and 3’ UTRs, poly-A tail length. To

assess for effect of signal sequence on translation and

translocation, pfceltos mRNA transcripts included the P.

falciparum CelTOS wild type (Wt-SS) signal sequence, or the

mouse Ig light chain signal sequence (IgLC-SS), or the human

IgE signal sequence (IgE-SS). A pfceltos transcript lacking a

signal sequence (No-SS) was included for comparison. P.

falciparum CelTOS contains three putative N-glycosylation

motifs (http://www.cbs.dtu.dk/services/NetNGlyc /; NetNGlyc,

Glycosylation site prediction tool) (27). The three predicted N-

glycosylation sites (NxS/T motif) located in the N-terminus of

the protein were mutated to code for glutamine (N>Q) at the N

position and designated glycosylation site modified (GM).

Table 1 summarizes the TriLink pfceltos encoded mRNA

transcripts used to assess for signal sequence and the N-

glycosylation status of each transcript. These sequences were

codon harmonized for optimal expression in mice (28). In

addition, in some experiments, uridine and cytosine residues

were modified by y-pseudouridine and 5-methylcytosine

replacements, respectively, detailed in Figure Legends. Two

additional pfceltos mRNAs were obtained and assessed for
TABLE 1 pfceltos mRNAs translation products.

Sequence
Name

Signal Sequence Coding Sequence N-Glycosylation
Sites

Mouse CHa

PfCelTOS
Wt-SSb

AUGAACGCGCUGCGC
CGCCUGCCCGUGAUCUGCUCC
UUCCUGGUGUUCCUGGUGUUCA
GCAACGUGCUGUGC

MNALRRLPVICSFLVFLVFSNVLCC FRGNNGHNSSSSLYNGSQFIEQLN
NSFTSAFLESQSMNKIGDDLAETISNELVSVLQKNSPTFLESSFDIKSEVKK
HAKSMLKELIKVGLPSFENLVAENVKPPKVDPATYGIIVPVLTSLFNKVET
AVGAKVSDEIWNYNSPDVSESEEESLSDDFFD

Native – 3 putative
(NxS/T motif)d

Residue Number 32:
NSSe

Residue Number 39:
NGSf

Residue Number 48:
NNSg

Mouse CH
PfCelTOS
mouse-Ig Light
Chain-SS

AUGAUGAGCCCAGC
ACAAUUUCUCUUUCUUCUCG
UACUCUGGAUACGAGAAACGAAUGGG

MMSPAQFLFLLVLWIRETNG FRGNNGHQSSSSLYQGSQFIEQ
LQNSFTSAFLESQSMNKIGDDLAETISNELVSVLQKNSPTFLESSF
DIKSEVKKHAKSMLKELIKVGLPSFENLVAENVKPPKVDPATYGIIV
PVLTSLFNKVETAVGAKVSDEIWNYNSPDVSESEESLSDDFFD

Replace N>Q h at first
position of the motif

Mouse CH
PfCelTOS Human
–IgE-SS

AUGGAUUGGACUUGGAUCCUGU
UUCUGGUAGCAGCGGCUACUCG
CGUACACUCC

MDWTWILFLVAAATRVHS FRGNNGHQSSSSLYQGSQFIEQLQ
NSFTSAFLESQSMNKIGDDLAETISNELVSVLQKNSPTFLESSFDI
KSEVKKHAKSMLKELIKVGLPSFENLVAENVKPPKVDPATYGIIVP
VLTSLFNKVETAVGAKVSDEIWNYNSPDVSESEESLSDDFFD

Replace N>Q at first
position of the motif
(a) Coding sequences were codon harmonized (CH) for optimal expression in mice.
(b) Signal Sequence (SS).
(c) Signal sequence amino acid shown as underlined text.
(d) N-glycosylation sites shown as bold text.
(e) NxS/T motif where N is Asparagine, X is any amino acid except Proline, S is Serine, and T is Threonine.
(f) NSS motif where N is Asparagine and S is Threonine.
(g) NGS motif where N is Asparagine, G is Glycine, and S is Threonine.
(h) NNS motif where N is Asparagine and S is Threonine.
(h) N>Q where N (Asparagine) is modified to Q (Glutamine).
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immunogenicity and efficacy in the mouse model (UPenn).

These were in vitro transcribed (IVT) from different plasmid

templates (Cap1-TEV), were codon optimized, and translated

identical coding regions that were either N-link glycosylated or

nonglycosylated, and were nucleoside modified by uridine

triphosphate replacement with one-methylpseudouridine

(m1Y)-5′-triphosphate, and cellulose affinity purified (29–31).

The UPenn mRNAs were transcribed to contain 101 nucleotide-

long poly (A) tails. Capping was performed co-transcriptionally

using the trinucleotide Cap1 analog, CleanCap (TriLink). All

IVT mRNAs were analyzed by agarose gel electrophoresis and

were stored frozen at either -20° C (UPenn) or -80°C (TriLink).
Lipid nanoparticle (LNP) encapsulation

Lipid Nanoparticles (LNP) used in this study were similar to

those previously described (30, 32, 33) and contained ionizable

lipids and have compositions that are proprietary to Acuitas

Therapeutics (pKa in range of 6.0-6.5/DSPC/Cholesterol/PEG-

Lipid). The proprietary lipids and LNP composition are

described in US patent applications WO 2017/075531 and

WO 2017/0041443. All LNP used for the current studies were

characterized post-production for their size and polydispersity

(PDI) using a Malvern Zetasizer (Zetasizer, Nano DS, Malvern,

UK) and for measuring the encapsulation efficiency using

ribogreen assay (RG). Characterization results were measured

and calculated using Malvern Panalytical Software (Malvern,

UK) and are listed here for LNP1 – size range: 68-75nm, PDI:

<0.054, Ribogreen: 95-97%; and for LNP3 – size range: 70 nm,

PDI: <0.095, Ribogreen: 86%. All mRNA-LNPs were stored at

-80°C.
Cell lines

Chinese hamster ovary (CHO) E77.4 cells (34) purchased

from ATCC were cultured in media supplemented with RPMI

1640 (Quality Biological 112-025-101), 10% heat inactivated fetal

bovine serum (FBS) (Gibco 10082147), 2mM L-Glutamine

(Quality Biological 118-084-721) and 100 U/mL Penicillin with

100 µg/mL Streptomycin (Quality Biological 120-095-721). Cells

were passaged using 0.05% Trypsin-0.1% EDTA (Quality

Biological 118-087-721). CHO cells at passages 9-12 were used

for all experiments.
Mouse immunization

Female, inbred BALB/cJ mice aged five-six weeks were used

in all animal studies (The Jackson Laboratories, Sacramento,

CA). Mice were immunized intramuscularly two or three times

at three-week intervals. The intramuscular injection site was at
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the posterior thigh muscle with an immunization volume of

50µL. For evaluation of humoral responses, blood samples were

collected by lateral tail vein bleeds the day before each

immuniza t ion and two weeks fo l lowing the final

immunization, at which time terminal cardiocentesis was

performed and splenocytes were harvested to measure cellular

cytokine responses.
Mouse challenge study

To determine protection, BALB/cJ mice (n = 10 for each

group) were challenged two weeks following the final

immunization by mosquito bite challenge. Mice were

anesthetized using a cocktail of Ketamine, Xylazine (100 µg/

mL) and Phosphate buffered saline (PBS; pH 7.4) based on

weight and drug response. Four female An. stephensimosquitoes

were placed in a plastic cup container with a mesh covering per

challenge. Sedated mice were placed on the mesh with their

bellies facing down. Mosquitoes were allowed to take a blood

meal during a timed 8-minute period. Evidence of blood in the

abdomen was rated as successful injection. The sporozoite

ratings of infected mosquitoes for this experiment was 2.4 on a

scale of 1-4, in 9-out-of-10 infected mosquitoes. The challenge

study used Plasmodium berghei ANKA transgenic strain

expressing NF54/3D7 strain PfCelTOS under the Pbuis4

promoter control (Gene model: PF3D7_1216600) (Leiden

University Medical Center, Leiden, The Netherlands) (17).

Parasitemia detection was assessed as previously described

(30). Protection in mice was defined as the lack of blood stage

parasites up to 14 days post challenge. Briefly, parasitemia was

observed using microscopy with thin blood smears fixed with

methanol and stained with 10% Giemsa stain for 15 minutes at

room temperature (Sigma Aldrich GS500). Mice were monitored

starting on day 7 following the challenge through day 14, the

final day in the study. Any mouse that was not parasitemic by

day 14 was considered sterile protected.
Detection of PfCelTOS protein from in
vitro transfected CHO cells by Western
blotting

To determine in vitro protein expression, transient mRNA

transfections were performed using the TransIT-mRNA kit

(Mirus Bio MIR 2225) according to the manufacturer’s

protocol. Briefly, CHO cells were plated at 300,000 cells/mL in

a 24-well tissue culture plate and incubated at 37°C with 5%

carbon dioxide for 24 hours. Following the incubation, when

cells achieved ~80% confluence, cells were transfected with 0.5

µg/well mRNA and returned to 37°C in a 5% carbon dioxide

incubator. Transfected cell culture supernatants and pellets were

harvested at 8-, 24-, and 48-hour time-points. A negative control
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with TransIT reagents without mRNA (no mRNA) was included

for each time point to provide background detection levels. For

gel loading, at the time of cell harvest, cells were counted and

normalized for equal loading. Translated proteins from the

culture supernatant and cell lysates (cell pellet) were analyzed

using Tris-Glycine SDS-PAGE (Novex XP04205BOX) with

SeeBlue Pre-stained protein standard marker and transferred

onto nitrocellulose membranes for protein detection by

Western blot.

Following transfer, membranes were blocked with 5% non-

fat dried milk (w/v) in phosphate buffered saline, pH 7.4 with

0.1% Tween-20 (PBS-T) (w/v) for 1 hour at room temperature

with gentle rocking. Membranes were washed three times with

PBS-T for 5 minutes at room temperature with gentle rocking

between each step. The primary antibody; SVP-09-011, a rabbit

polyclonal anti-PfCelTOS antibody (generated at Spring Valley

Laboratories, Sykesville MD) was diluted in PBS-T at a ratio of

1:10,000 (antibody:diluent). The primary antibody was

incubated for 1 hour at room temperature (RT) with gentle

rocking. Following the wash, the membrane was probed with

alkaline phosphatase-conjugated anti-rabbit IgG (Southern

Biotech 4030-04) diluted in PBS at a ratio of 1:10,000

(antibody:diluent). Following the wash, membranes were

developed for 5 minutes using 5-bromo-4-chloro-3-indolyl-

phosphate (BCIP) with nitro blue tetrazolium (NBT) (Sigma

Aldrich Lot# 16853420, 14799531, respectively) in alkaline

phosphatase buffer. Reactions were stopped with deionized

water and membranes were air dried.
Densitometry analysis of Western blots
using ImageJ

Densitometric detection of proteins in Western blots were

quantified with ImageJ software (35). The 10ng recombinant

PfCelTOS (rPfCelTOS) protein served as a relative control for

quantification. Bands in the experimental lanes were individually

selected and circumscribed with the rectangular selection option,

followed by quantification of peak areas of the obtained

histograms. The data acquired were reported as arbitrary

area units.
Antibody concentration by enzyme
linked immunosorbent assay (ELISA)

To determine antibodies specific to PfCelTOS, mice were

bled via lateral tail veins and blood samples were collected prior

to each immunization and the day of challenge. ELISA was

performed as previously described (16, 36). Briefly, 96-well 2HB

Immunolon plates (Thermo Scientific, Waltham, MA) were

coated with 100µL/well of 25ng/well of rPfCelTOS in 1X PBS,

pH 7.4 (Quality Biological, Gaithersburg, MD) and incubated
Frontiers in Immunology 05
overnight at 4°C in a humidified chamber. Plates were washed

with 1X PBS/0.1% Tween 20 and then blocked with 1X PBS/1%

BSA at 22°C for 1 hour. Diluted sera samples were incubated for

2 hours at 37°C. Plates were washed and then incubated with

alkaline phosphatase-conjugated goat anti-mouse IgG (Southern

Biotechnology, Birmingham, AL) diluted in PBS at 1:1000

(antibody:diluent) for 1 hour at room temperature (RT). Anti-

PfCelTOS IgG was detected using BluePhos substrate

(Kirkegaard Perry, MD) for 15 minutes at RT. The reaction

was arrested with stop solution and read at 630nm using M2

spectrophotometer (Molecular Devices, Downington, PA). The

antibody concentration was determined against a purified mouse

standard IgG curve (run in parallel with each assay) (Invitrogen,

Waltham, MA). For each serum tested, we determined a

concentration that was within the linear portion of the

reaction curve and used this dilution to extrapolate the actual

antibody concentration in the assay wells (16).
Antibody fine specificity ELISA

Fine specificity of antibody responses was assessed by using

rPfCelTOS, recombinant protein fragments PfCelTOS N-term

and PfCelTOS C-term and PfCelTOS Peptides: Peptide 1-2,

Peptide 2-3, and Peptide 4 (Supplementary Table 1). Briefly,

microtiter plates, 4HBX (ThermoFisher Scientific, Waltham,

MA), were coated with 100µL/well of 25ng/well of rPfCelTOS,

each protein fragment, and Peptides 1-2, 2-3, and 4, and

incubated overnight at 4°C in a humidified chamber. Plates

were washed with 1X PBS/0.1% Tween 20 and then blocked with

1X PBS/1% BSA at 22°C for 1 hour. Sera were diluted serially

two-fold and incubated at 22°C for 2 hours. Plates were washed

and then incubated with goat anti-mouse IgG (H+L) conjugated

with horseradish peroxidase and diluted 1:4000 (KPL

Gaithersburg, MD, USA) for 1 hour at 22°C. Antibody titers

were detected using ABTS substrate (KPL Gaithersburg, MD,

USA), measured at OD405 after 1 hour with an M2

spectrophotometer (Molecular Devices, Downington, PA).

Antibody titers were reported as the serum dilution required

to achieve an optical density equal to 1.0.
Cytokine response by enzyme linked
immunospot (ELISpot)

To determine cellular responses against PfCelTOS, mouse

IFN-g and IL-4 ELISpot assay (R&D systems SEL485 SEL404,

respectively) were performed according to the manufacturer’s

instructions. Briefly, spleens were harvested following terminal

cardiocentesis and processed under sterile conditions.

Hydrophobic multiscreen plates (Millipore) were coated with

IFN-g and IL-4 capture antibodies in sterile 1X PBS and

incubated overnight at 4°C in humidified chamber. The plates
frontiersin.org
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were washed with D-MEM (Quality Biological 112-013-101)

followed by blocking with complete media. Wells were plated

with splenocytes at 200,000 cells/well (16). The cells were

stimulated with recombinant PfCelTOS (10 mg/mL) for 42

hours at 37°C with 5% carbon dioxide incubator. Following

wash, IFN-g and IL-4 detection antibodies in sterile PBS/1%BSA

were added to the plates and incubated overnight at 4°C in a

humidified chamber. Plates were then incubated for 2 hours at

RT with streptavidin AP conjugate followed by development

with BCIP/NBT substrate (R&D systems P201257).

Spot counting was performed with appropriate settings

using an ELISpot reader (Autoimmune Diagnostika,

Strassberg, Germany).
Cytokine detection by Meso Scale
Discovery (MSD)

Cytokine detection was determined with MSD assay and as

previously described (16, 36). Briefly, following splenocytes

harvest from mice, splenocytes were plated at 400,000 cells/

well in 96-well flat bottom plates (Costar 3595). The stimulating

antigen was either 10µg/mL rPfCelTOS 3D7 protein or 15mer

overlapping CelTOS peptide pools (1 µg/mL). Cells were

stimulated for 48 hours by incubation at 37°C with 5% carbon

dioxide. Cell culture supernatant was harvested, and pro-

inflammatory cytokines measured using the V-PLEX

Proinflammatory Panel 1 Mouse Kit (Meso Scale Discovery,

K15048G-2) according to the manufacturer’s instructions.

Cytokine levels detected with cells incubated in culture media

alone served to normalize for background cytokine secretion.
Statistical analysis

Statistical analysis of mouse serological and cellular immune

responses where p<0.05 is considered significant, were evaluated

using parametric two-tailed, unpaired T-tests and Mann-

Whitney tests (GraphPad Prism, v 8.4.1, San Diego, CA).
Results

Different signal sequences do not alter
translation and cellular localization
in vitro

Signal sequences play a crucial role in cellular localization of

target proteins and are essential for their proper function (24). In

eukaryotes, signal sequences or signal peptides, direct secretory

and membrane proteins to the Sec61 translocon in the

endoplasmic reticulum (ER) membrane. To determine an

optimal signal sequence for in vitro expression in CHO cells
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and targeting to the cellular secretion pathway, we explored

pfceltos translation and localization using the homologous wild-

type parasitic pfceltos signal sequence (Wt-SS), and two

heterologous signal sequences, one derived from human IgE

(IgE-SS) and second derived from mouse Ig light chain (IgLC-

SS) (Table 1). While these signal sequences have no homology in

their primary structures, several common features are inherent,

such as the positively charged N-terminal end, a hydrophobic

core and a polar C-terminal end that serves as the recognition

sequence for processing by signal peptidases (37). A pfceltos

mRNA transcript lacking a signal sequence (No-SS) was also

assessed for protein expression and retention in the cell lysate of

transfected cells by Western blot (Figure 1A). Other general

features of pfceltos mRNA transcripts used in this experiment

were inclusion of Cap1 analog modification at the 5’-end and

codon harmonization of coding regions using WRAIR’s

proprietary codon harmonization (CH) algorithm for optimal

expression in mice (28).

To assess for protein translation in vitro, CHO cell culture

supernatant and cell lysate fractions were harvested at 8-, 24-,

and 48-hour time-points post transient transfection. High levels

of translated protein were detected from pfceltos mRNAs

incorporating the Wt-SS, IgLC-SS and IgE-SS signal sequences,

with expression detected both in the cell culture supernatant and

the cell lysate until 48 hours post transfection by Western blot

(Figure 1A). In contrast, pfceltos mRNA without a signal

sequence (No-SS) had significantly reduced protein levels at 8

hours with partitioning exclusively to the cell lysate, and a barely

visible band detected at 24 hours (Figure 1A, 24 hours, Ln 10). A

functional signal sequence on secreted proteins has a role in

protecting mRNA in the cytosol from degradation and the lack

of such here, may account for the reduced protein translation

levels for the pfceltos No-SS mRNA transcript. To estimate

protein expression profiles of pfceltos mRNA’s incorporating

different signal sequences, relative density plots based on the

10ng rPfCelTOS reference standard, were analyzed using

ImageJ, a Java-based image processing program, on Western

blots (35). Differences in protein migration observed between

the E. coli expressed reference protein and the in vitro translated

protein is approximately 2KDa and can be accounted for by the

inclusion of a 6-His+linker sequence on the rPfCelTOS. The

semi-quantitative analysis reinforced that pfceltos mRNAs

encoding with each, Wt-SS, mouse IgLC-SS and human IgE-SS

transcripts, were translated at comparable protein kinetics

(Figures 1B, C). Maximal protein expression was observed

between 24 and 48 hours, providing evidence of peak

translation. Additional time points beyond 48 hours are

needed to define the limits of in vitro translation in transfected

CHO cells. Density plots indicated that at earlier time points, 8

hours, PfCelTOS protein was predominantly found in cell lysates

(Figure 1C), while between 24-48 hours, the PfCelTOS protein

was predominantly found in the culture supernatant fractions

(Figures 1B, C). Since no significant differences in protein levels
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or translocation kinetics were detected for the mRNA encoding

WT-SS, IgLC-SS and IgE-SS, then the pfceltos encoding mRNAs

with Wt-SS and human IgE-SS were selected for subsequent

experiments to assess for in vivo responses in mice.
Effect of N-glycosylation on in vitro and
in vivo responses

Post-translational modifications by N-glycosylation of

proteins are essential for cells to diversify their function,

enabling recognition by endocytic receptors of antigen-

presenting cel ls and preventing proteolysis in the

endolysosome by steric obstruction (38, 39). Common across

all eukaryotes, N-linked glycosylation imparts a wide range of

properties to proteins including their localization, cellular

growth, and host immune regulation (40). The relevance of N-

glycans, in Plasmodium has been much in debate for several

decades. A recent study of the Plasmodium genome

demonstrated that Plasmodium expresses the essential

oligosaccharyl transferase complex needed for N-glycan

modification of asparagines on proteins (41). Notwithstanding

these findings, little is known on the extent and biological

function of N-glycosylation in Plasmodium and thus the

impact on vaccine induced immune responses of Plasmodium

proteins. A scan of PfCelTOS amino acid sequence revealed
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three putative asparagine N-linked glycosylation sites all located

at the N-proximal end (Table 1). In practice, post-translation

modifications (PTM) of protein N-linked glycosylation can be

assessed by SDS-PAGE, the extent of which is seen as shifts in

protein molecular weight and retardation of migration. PTM by

N-link glycosylation can impact protein quality attributes

including protein folding, stability, and solubility. We

evaluated the influence of N-linked glycosylation on CelTOS

in vitro translation and translocation using ARCA-capped

pfceltos mRNA transcripts with and without N-glycosylation

recognition sites (pfceltos ARCA GM and pfceltos ARCA,

respectively) and compared these to a similar coding Cap1

pfceltos mRNA transcript with native N-glycosylation sites as a

reference. Analysis of CHO cell supernatants and cell lysates,

harvested at 24 hours post-transfection, showed a qualitative

difference between the two transcripts, i.e. pfceltos ARCA and

pfceltos ARCA GM (Figure 2A; Lanes 5, 6, and 9, 10),

respectively, with the latter having a single homogenous band

that was distributed between the cell supernatant and the cell

lysate at 24 hours, similar to what was observed in Figure 1A.

Both mRNA’s coding for native sequence N-glycosylation sites,

whether having ARCA or Cap1 analogs at the 5’-end (Figure 2A;

Lanes 5, 6 and 7, 8, respectively), exhibited a more complex,

heterogeneous protein banding from ~25-36kDa. We speculate

that the increased molecular weight of translated proteins are

isoforms having varying extent of glycosylation. More in depth
A

B C

FIGURE 1

In vitro translation of pfceltos mRNAs with different signal sequences. (A) CHO cells were transfected with pfceltos mRNAs, having identical
non-coding and coding sequences except for the signal sequences, and harvested at 8-, 24-, and 48-hours post-transfection. Western blot
analysis was performed to assess for in vitro translation and translocation of PfCelTOS. The right panel outlines each lane and provides a
detailed description of the test samples. Semi-quantitative analysis of the PfCelTOS protein levels at the different time points was performed by
using ImageJ for the (B) supernatant and (C) cell lysate relative to the 10ng recombinant PfCelTOS protein (Lane 1, for each panel).
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analysis is required to directly characterize these glycans. No

protein bands are detected in the negative control lanes, 3 and 4,

which are CHO cells transfected with Mirus reagent but without

mRNAs. While glycans added to secreted proteins play an

essential role in their function; including immunogenicity,

potency and stability, little is known of the effects of

introduction of ‘non-native’ N-glycans on vaccine efficacy,

thus addressing this knowledge gap can aid in vaccine design

strategies (38).

To evaluate the impact of N-glycosylation on in vivo

immune responses in mice, we evaluated pfceltos mRNA

transcripts without (pfceltos LNP1) and with N-glycosylation

site modifications (pfceltos GM LNP1), that were 5’-capped with

ARCA analog, included the WT-SS and were codon harmonized

for expression in mice. mRNAs were packaged in biodegradable

ionizable lipid nanoparticles (LNPs) consisting of phospholipids,

cholesterol and polyethylene glycol (PEG) containing lipids for

in vivo delivery (42). Female BALB/cJ mice were immunized

intramuscularly (IM) with 10µg of each mRNA, encapsulated in
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LNP1, twice, at three-week intervals. Mouse sera were collected

on day -1, day 21, and day 42 and PfCelTOS-specific antibody

responses were measured by enzyme-linked immunosorbent

assay (ELISA) in which, the coating antigen was the

rPfCelTOS produced in Escherichia coli and, therefore, not N-

glycosylated, and lacked the native signal sequence. Whether the

N-glycosylation sites on pfceltos mRNA transcripts were

modified or not, had little effect on the antigen-specific

antibody responses (Figure 2B). Using a two-dose regimen,

neither the mice vaccinated with pfceltos mRNA-LNP1 nor

those vaccinated with the pfceltos GM mRNA-LNP1, induced

significant PfCelTOS-specific antibody concentrations. ELISpot

assays, on the other hand, demonstrated significant numbers of

splenocytes producing antigen-specific IFN-g, while not

statistically different between the two pfceltos mRNA groups

(Figure 2C). In contrast, no significant IL-4 production was

detected above background (Figure 2D), suggesting that the

responses were biased toward a T helper 1 (Th1) response

using this regimen. To assess in more depth cytokine
A B

D

C

FIGURE 2

Effect of N-glycosylation on in vitro and in vivo responses. (A) Western blot analysis of CHO cells transfected with mRNAs pfceltos ARCA,
pfceltos Cap1 and pfceltos ARCA GM. pfceltos mRNA transcripts were codon harmonized (CH) for optimal expression in mice and encoded with
the native falciparum celtos signal sequence (Wt-SS). Cell culture supernatants and cell lysates were harvested at 24 hours post-transfection to
assess for the effect of N-glycosylation on protein translation. (B) BALB/cJ mice were immunized intramuscularly (IM) two times at a three-week
interval with 10µg of pfceltos mRNA encapsulated into LNP1 (10µg LNP1), 10µg pfceltos mRNA with glycosylation site modified (GM) in LNP1
(10µg GM LNP1) or LNP1 alone (n=5 per group). PfCelTOS-specific IgG antibody concentrations (µg/mL) were quantified in sera at pre-
immunization, three weeks after the primary dose and two weeks after the final dose by ELISA. Antibody concentrations are reported as the
geometric mean and 95% confidence intervals. (C, D) Splenocytes were harvested and IFN-g and IL-4 cytokines were detected by ELISpot assay.
The mean number of spot-forming cells (SFC) per splenocytes were reported with standard errors of the mean (SEM). Statistical analysis was
performed using Mann-Whitney test (**p<0.01).
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responses, Meso Scale Discovery (MSD) was performed.

Responses were recalled using the rPfCelTOS protein, as with

ELISpot. The results showed that the concentrations of CelTOS-

specific IFN-g, IL-2, TNF-a, IL-10, and IL-6 for pfceltos mRNA-

LNP1 and pfceltos GM mRNA-LNP1 were not significantly

different (Supplementary Figure 1). Like the ELISpot

responses, MSD revealed a biased response toward Th1

cytokines, that was not restricted by potential non-natural N-

glycans on the translated protein.
Effect of dose and nucleoside
modification of pfceltos encoded
mRNA-LNP

To date, vaccines comprised of nucleoside-modified mRNA-

lipid nanoparticle (LNP) have shown promise for inducing

potent neutralizing antibodies against an array of global and

emerging infectious disease threats (43, 44). We investigated

pfceltos mRNA dose and nucleoside substitutions on

immunogenicity in mice. pfceltos mRNA transcripts comprised

of identical pfceltos coding sequences mutated at the three

predicted N-glycosylation sites (N>Q) (glycosylation site

modified, GM), encoded for human IgE signal sequence (IgE-

SS), were codon harmonized for optimal expression in mice,

were 5’-CleanCap1 (Cap1), and were encapsulated in one of two

LNPs (LNP1 or LNP3). Nucleoside modifications of 5-

methylcytidine (m5C) and pseudouridine (y) (PU5MC), for

cytidine and uridine, respectively, were introduced to dampen

innate immune responses while purportedly increasing

translation efficiency (45). As above, female, BALB/cJ mice

were immunized by the IM route, twice at three-week intervals

with either 10µg or 30µg of pfceltos encoding mRNAs; GM-IgE-

SS or GM-PU5MC-IgE-SS. PfCelTOS-specific antibody

concentrations were measured by ELISA and splenocytes were

harvested to measure cytokine profiles by either ELISpot or

MSD. The findings revealed the following: first, antibody

concentrations were relatively low, and increasing the mRNA

dose from 10 to 30µg, was not a factor for improving antibody

responses (Figure 3A). Humoral responses across groups were

by-and-large “all-or-none”, as was also seen by Huysmans et al.

(46). Although several mice had higher concentrations of

antibodies, particularly in groups where mRNA was

encapsulated in LNP1, overall, the antibody responses were

low. Second, cytokine responses detected by ELISpot suggested

that lower doses of mRNA were superior for both PfCelTOS-

specific IFN-g and IL-4 responses, particularly when

encapsulated in LNP3 (Figures 3B, C). With regards to

nucleoside modification, a similar trend was observed that

lower doses, i.e., 10 µg pfceltos GM PU5MC IgE-SS mRNA-

LNP3 yielded significant numbers of antigen specific IFN-g
secreting splenocytes. MSD revealed a similar bias toward Th1

and pro-inflammatory cytokines (IFN-g, IL-4, TNF-a, IL-12p70,
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IL-2, IL-1b, IL-10, IL-6, KC/GRO) (Supplementary Figure 2).

IFN-g responses affirmed those of ELISpot that 10µg of pfceltos

GM PU5MC IgE-SS mRNA-LNP3 induced significant pro-

inflammatory cytokines compared to the same mRNA

encapsulated in LNP1. Notably, the presence of IFN-g and IL-

10 cytokines are implicated in immune response regulation.

With respect to Th2 cytokines, 10µg of pfceltosGM PU5MC IgE-

SS mRNA-LNP3 induced significantly higher levels of IL-4

compared to the mRNA encapsulated in LNP1 which was also

observed for mRNAs in Figure 2D using an mRNA-LNP1

coding for ARCA capped pfceltos with P. falciparum signal

sequence, suggesting that at least for IL-4 encapsulation with

LNP3 was superior for inducing significant numbers of IL-4

secreting splenocytes. Characterization of LNPs by dynamic

light scattering (DLS) suggest similar particle sizes, while there

was greater efficiency of encapsulation seen with LNP1

compared to LNP3. These findings emphasize the need for

optimizing composition and encapsulation of LNPs.
Three doses of pfceltos mRNA
overcomes an “all-or-none” pattern of
humoral immune responses

The magnitude of antibody responses depends on several

factors including the nature of the antigen, administration route

and the dosing schedule (30, 47). An experiment was conducted

to examine if a second boost of pfceltos encoding mRNA-LNP

improved immunogenicity to CelTOS. Female BALB/cJ mice

were vaccinated by IM route, thrice, at three-week intervals with

either 10µg pfceltos TriLink GM encapsulated in LNP1 or the

same mRNA, 10µg pfceltos TriLink GM, encapsulated in LNP3.

These mRNAs had glycosylation site modified (GM), human IgE

signal sequence, codon harmonized for expression in mice and

incorporated PU5MC nucleoside modifications. To address the

role of innate immunity on adaptive immune responses, and to

dampen innate immune sensor activation and improve on

translational efficiency, these pfceltos mRNAs underwent and

additional HPLC purification step (48). Contrary to the

preceding experiments, two booster doses of pfceltos mRNA-

LNP, either TriLink GM LNP1 or TriLink GM LNP3, yielded

overall higher PfCelTOS-specific antibody concentrations

(Figure 4A). This suggests that a second booster dose may be

necessary for pfceltos mRNAs to overcome the “all-or-none”

pattern of humoral immune responses, also corroborating

similar findings observed for malaria antigen, pfcsp encoding

mRNA-LNP1 (30). In addition to the mRNA transcripts

(TriLink), we tested two additional pfceltos encoding mRNAs

that were essentially identical in their coding regions but

differing in their upstream and downstream untranslated

regions (UTRs) and poly A tail lengths (UPenn GM LNP1 and

UPenn LNP1). mRNA in vitro transcription (IVT) and LNP

encapsulation for the UPenn mRNAs was as previously
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described (29, 30). The UPenn pfceltos mRNAs (Cap1-TEV)

were codon optimized and like the TriLink mRNAs modified to

either retain or remove N-linked glycosylation sites. Female,

BALB/cJ were vaccinated as above, by the IM route, with 10µg of

each mRNA, three times at a three-week interval. Two weeks

after the final dose, these mice were challenged by infectious

mosquito bite with P. berghei PfCelTOS NF54/3D7 transgenic

parasites. Serum was analyzed for antigen-specific antibody

concentrations and splenocytes were assessed for production

of cytokines. The kinetics of the antibody responses revealed that

the pfceltos mRNA-LNP1 (UPenn) boosted higher responses

after two primary doses compared to either TriLink encoding

pfceltos mRNA-LNP1 or pfceltos mRNA-LNP3, as seen by

nonoverlapping 95% confidence intervals (Figure 4A).

Similarly, both pfceltos mRNA-LNP1 (UPenn GM LNP1 and

UPenn LNP1) yielded significantly higher antibodies to

PfCelTOS two weeks after the final booster dose. IFN-g
cytokine responses (Figure 4B) were not different for the two

mRNAs that were glycosylation site modified (GM), i.e., the

TriLink GM LNP1 versus UPenn GM LNP1). MSD revealed a

higher pro-inflammatory immune response for the TriLink

mRNAs with significantly higher concentrations of IL-1b, IL-
10, KC/GRO, and IL-6 cytokines for both TriLink GM LNP1 and

LNP3 compared to the two UPenn transcripts, pfceltos UPenn

LNP1 (glycosylated) and UPenn GM LNP1 (glycosylation site

modified) (Supplementary Figure 3). Relative to the responses

measured here, UPenn mRNA encoding pfceltos either

glycosylated or nonglycosylated were superior for inducing

antibody responses compared to the TriLink mRNA (TriLink

GM LNP1 versus TriLink GMP LNP3). Interestingly, the mRNA

TriLink GM LNP3 induced the highest IFN-g responses

compared to all groups. These findings suggest a bias toward
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cellular responses using the TriLink mRNA while the UPenn

mRNA preferentially induced higher antibody responses.
Antibody fine specificities induced by
pfceltos encoding mRNAs

To address fine-specificity of antibody responses, post third

dose sera from UPenn GM LNP1, UPenn LNP1 and TriLink

GM LNP1 mRNA vaccinated mice were analyzed through

ELISAs PfCelTOS, PfCelTOS N-term, PfCelTOS C-term, full

length PfCelTOS proteins and three PfCelTOS peptides (14),

Peptide 1-2, 2-3, and 4 (amino acid sequence information,

Supplementary Table 1). Antibody titers to subunit regions of

PfCelTOS revealed significant differences between the UPenn

GM LNP1 (nonglycosylated) and UPenn LNP1 (glycosylated)

coding mRNAs specifically targeted to the N-terminus, i.e., to N-

term protein (Figure 5A), CelTOS Peptide 1-2 (Figure 5B), and

CelTOS Peptide 2-3 (Figure 5C). In each case, responses to the

‘native’ protein sequences were higher (UPenn LNP1). Both

CelTOS Peptides 1-2 and 2-3 comprise a region of the N-

terminus, with Peptide 1-2 fully encompassing the three

predicted N-glycosylation motifs (amino acid 25-60 of the

native sequence). These findings suggest that mutating the N-

glycosylation sites altered induction of antibodies to this region.

Interestingly, for TriLink GM LNP1 vaccinated mice, fewer mice

had positive seroconversion rates with antibody levels below the

assay limits of detection, i.e., PfCelTOS N-term subunit (n=5 out

of 15) (Figure 5A), CelTOS Peptide 1-2 (N= 6 out of 15)

(Figure 5B), and CelTOS Peptide 2-3 (N=3 out of 15)

(Figure 5C). All three mRNA encoding immunogens

responded equally to the PfCelTOS C-term subunit protein
A B C

FIGURE 3

Effect of mRNA dose and nucleoside modification on immune responses. BALB/cJ mice were immunized intramuscularly (IM), two times at
three-week intervals, with a low dose (10µg) or a high dose (30µg) of pfceltos mRNA that was N-glycosylation site modified (GM), containing
human IgE signal sequence (IgE-SS) (GM IgE-SS), and with nucleoside y-pseudouridine and 5’-methylcytosine substitutions (PU5MC), (GM
PU5MC IgE-SS), in LNP (LNP1 or LNP3), (n=5 per group). (A) Antigen-specific IgG antibody concentrations against PfCelTOS were quantified in
sera two weeks after the final dose by ELISA. Antibody concentrations are represented as the mean and standard deviation (SD). Statistical
analysis was performed using an unpaired t-test (*p<0.05). (B, C) IFN-g and IL-4 cytokines were detected by ELISpot. The mean number of
spot-forming cells (SFC) per splenocytes were reported with standard errors of the mean (SEM). Statistical analysis was performed using Mann-
Whitney test, (*p<0.05, **p<0.01).
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(Figure 5D) and the PfCelTOS C-term Peptide 4 (Figure 5E).

Interestingly, antibody titers to the full length PfCelTOS after the

final immunization revealed no difference between the two

UPenn mRNAs, UPenn LNP1 (glycosylated) and UPenn GM

LNP1 (nonglycosylated); and similarly, no significant differences

for the UPenn GM LNP1 (nonglycosylated) and TriLink GM

LNP1 (nonglycosylated) groups (Figure 5F). Notwithstanding

the possibility of technical variations, and despite comparing

inbred mice of the same sex and age, other factors may

contribute to the variability in responses observed, include

animal epigenetic differences, housing, interactions, and the

local microbiome. These effects have previously been well

documented (49, 50).

Given that the three-dose regimen yielded superior antibody

and cellular responses compared to the two-dose regimen, we

next sought to evaluate whether the mRNAs encoding pfceltos

were protective against rodent malaria challenge. The challenge

was performed by a four-mosquito bite inoculum of the P. berghei

ANKA expressing P. falciparum NF54/3D7 CelTOS (PbANKA

PfCelTOS) parasites two weeks following the third

immunizations, a challenge model that is more sensitive to the

role of antibodies than the intravenous sporozoite challenge route.

All mice (n =10 per group) including challenge controls were

parasitemic on day 7, thus neither the UPenn nor TriLink pfceltos

mRNA-LNP (neither LNP1 nor LNP3) elicited sterile protection

(data not shown). A possible explanation for the lack of protection

the transgenic P. berghei line used in this study expresses an

additional copy of the pfceltos gene under control of the UIS4
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promoter (17). The additional copy of pfceltos may not correctly

expressed PfCelTOS with regards to timing of expression which

may affect its localization. Thus, the observations made in

immunization/challenge studies using transgenic/chimeric

mouse models while informative can differ from outcomes from

immunization studies in humans using P. falciparum. Unlike the

extensive characterization of the protective potential of P.

falciparum CSP antigen in preclinical and clinical studies, the

CelTOS antigen has yet to be robustly validated as a

protective antigen.
Discussion

In response to the COVID-19 pandemic caused by the

SARS-CoV-2 virus, mRNA-LNP vaccines have demonstrated

their versatility to overcome manufacturing obstacles associated

with traditional vaccine platforms (51, 52). mRNA have unique

advantages over traditional vaccine technologies, such as

efficient delivery and in vivo translation obviating the need for

long development processes for difficult purification/isolation

steps. Unlike nucleic acid or vectored approaches, mRNA

transcripts are delivered directly to the cell cytosol, thus

avoiding the safety concerns of host genome integration which

can have detrimental effects due to insertional mutagenesis (48,

53). An essential feature of mRNA-LNP vaccines is the efficient

delivery and uptake of transcripts encoding immunogens to

target cells. Moreover, targeting directly to the cell cytosol
A B

FIGURE 4

A three-dose regime overcomes an “all-or-none” pattern for humoral immune responses. Mice were immunized intramuscularly (IM) thrice at a
three-week interval with 10µg of University of Pennsylvania (UPenn) N-glycosylation site modified (GM) and encapsulated in LNP1 (UPenn GM
LNP1), or without N-glycosylation modification (UPenn LNP1) that were one-methylpseudouridine (m1Y)-5′-triphosphate modified, and
cellulose affinity purified or with TriLink pfceltos mRNA with N-glycosylation site modified (GM) in LNP1 (TriLink GM LNP1) or LNP3 (TriLink GM
LNP3) that were y-pseudouridine and 5-methylcytosine modified (n = 15 per group; n = 10 in LNP alone groups). (A) Kinetics of PfCelTOS
antibody concentrations measured by ELISA. Antibody concentrations are reported as the geometric mean and 95% confidence intervals. (B)
IFN-g cytokine responses were detected by ELISpot, (n=5 per group). The mean number of spot-forming cells (SFC) per splenocytes were
reported with standard errors of the mean (SEM). Statistical analysis was performed using Mann-Whitney test, (*p<0.05, **p<0.01).
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eliminates the rate-limiting step of nuclear translocation (54).

Conversely, mRNA’s utility for in vivo protein expression is

potentially limited by translational capacity and rapid mRNA

turnover rates, compromising induced immune responses.

LNPs, the preferred delivery platform for mRNA, enable

efficient encapsulation, protection from nucleases, and in vivo

transport into cells. LNPs are comprised of phospholipids,

cholesterol, PEGylated lipids, and cationic or ionizable lipids.

The phospholipids and cholesterol serve structural and

stabilizing roles, while PEGylated lipids support persistence in

circulation. Cationic and ionizable lipids form complexes with

the negatively charged mRNA molecules and allow for exiting

from the endosome to the cytosol for translation. Proprietary

ionizable cationic lipids decrease cytotoxicity and inflammation,

while retaining some adjuvanting activities (55). In vaccine

applications, mRNA-LNPs induce strong immune responses,

antigen-specific antibody responses and T-cell responses. In fact,

LNP formulations promote T follicular helper (Tfh) cell

adjuvant activities, and the induction of robust germinal

center B cell responses and proinflammatory IL-6 cytokine
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responses (56). Administration of mRNA-LNPs by the

intramuscular route results in a local inflammation that drives

recruitment of neutrophils and antigen presenting cells at the

site of injection (56). In this study, we addressed factors such as

the effect of signal peptides and N-linked glycosylation on

PfCelTOS protein quality, translation levels, and the influence

of nucleoside modifications of pfceltos encoding mRNA

transcripts on immune responses in BALB/cJ mice. While the

goal was to select a signal peptide that facilitated higher

extracellular secretion of PfCelTOS protein compared to the

native Plasmodium CelTOS signal peptide, we observed overall

similar translational profiles in transfected CHO cells; with no

significant differences seen in the kinetics of translation nor in

the rate of localization of target antigen to the extracellular space,

nor total protein translation levels. The selected signal peptides

had similar hydrophobicity indices (Table 1) and were either

derived from the native or from antibody sequences naturally

targeted to the cell membrane, i.e., falciparumWt-SS, and mouse

IgLC-SS, human IgE-SS, respectively, thus achieving the desired

evidence of adequate translational levels and extracellular
A B
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FIGURE 5

Fine specificity of antibody responses. Sera from mice that were immunized IM thrice at a three-week interval with 10µg mRNA pfceltos UPenn N-
glycosylation site modified (GM) in LNP1 (UPenn GM LNP1), or without N-glycosylation modification (UPenn LNP1) that were one-methylpseudouridine
(m1Y)-5′-triphosphate, and cellulose affinity purified or with TriLink pfceltos mRNA that were N-glycosylation site modified (GM) in LNP1 (TriLink GM
LNP1) and were y-pseudouridine and 5-methylcytosine modified were characterized for antibody specificities by ELISA against (A) PfCelTOS N-term, (B)
CelTOS Peptide 1-2, (C) CelTOS Peptide 2-3, (D) PfCelTOS C-term, (E) CelTOS Peptide 4 and (F) Full length PfCelTOS protein (n = 15 per group).
Antibody titers are reported as the geometric mean and 95% confidence interval of the dilution required to achieve an OD405 = 1. Statistical analysis was
performed using a Mann-Whitney test (*p<0.05, **p<0.01, ***p<0.001).
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translocation. While eukaryotic signal sequences may lack

sequence homology, they generally share common structural

characteristics; a charged N-terminal region, a hydrophobic core

and a less hydrophobic region which includes the cleavage site

information. Notionally, cells control translation levels of

proteins in a sequence-dependent manner by controlling the

efficiency by which ribosomes recognize the initiation complex

and the adjacent nucleotides to the initiation codon (57, 58).

Therefore, selecting an optimal signal peptide is a critical feature

in antigen design for eukaryotic cell expression. All things being

considered, the results showed that the introduction of the

heterologous signal peptides at the 5’-end of the coding region

had little overall influence on PfCelTOS protein translation and

the protein output, confirming the ubiquity of primary signal

sequences for protein translation, at least in vitro.

Glycosylation is a critical post translational modification to

consider when developing vaccine strategies. An ideal vaccine

target must share the same antigenic determinants as the native

antigen of the pathogen. Thus, removal of N-linked glycans is a

reasonable strategy toward avoiding altering immunity. The

nature of N-glycosylation on Plasmodium parasite antigens,

and effect on induction of functional immune responses is a

critical decision point in vaccine antigen design (59–62). N-

glycosylation on parasite proteins may play a role in survival,

infectivity and antigenicity, of which the exact nature is still not

well understood (60). Metabolic labeling reveals that Plasmodium

parasites produce shortened N-glycans of N-acetylglucosamine,

(i.e., GlcNac and GlcNac2), that recognize the Griffonia

simplicifolia Lectin-II (GSL-II) (63), and localize to Plasmodium

rhoptry organelle, the endoplasmic reticulum (ER), and cell

surface. Previously, the effect of N-link glycosylation on vaccine

induced responses raised for two lead blood-stage subunit vaccine

candidates, i.e. - P. falciparum apical membrane antigen 1

(AMA1) (55), and merozoite surface protein 1 (MSP1) (64, 65),

and the transmission blocking vaccines, Pfs25 (61) and Pfs48/45

was investigated (66). For PfAMA1 and the transmission blocking

vaccine Pfs25, post-translational modifications had little effect on

functional immunity. While, a milk secreted, N-glycosylated

version of MSP142 yielded poor efficacy in vaccinated Aotus

nancymai monkeys, a similar non-glycosylated form protected

monkeys against virulent challenge with P. falciparum FVO

parasites. In the same study, a baculovirus expressed MSP142,

which was glycosylated, was able to induce protective responses in

monkeys, revealing that the extent and/or complexity of

glycosylation contributed to efficacy outcomes. These findings

highlight that the effect of N-glycosylation on malarial antigens

may vary depending on the antigen, the site of modification,

localization, and the type of glycans presented (63). Expression of

complex mammalian glycans on plasmodial proteins through

nucleic acid vaccines can either adversely influence or redirect

the immune responses. Thus non-’natural’ glycans can mask

epitopes and impede antigenicity and immunogenicity (67, 68).
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apoptosis and induction of MHC class I-specific CD8+ T cell

responses. Cytotoxic, antigen-specific CD8+ T cells can then

function against malaria-infected hepatocytes (69). To evaluate

the influence of N-linked glycosylation on CelTOS protein

translation, mutated transcripts of pfceltos were constructed

introducing N>Q amino acids substitutions at the three

predicted N-glycosylation sites (NxS/T), all located on the N-

terminal end of the protein. For PfCelTOS, we observed that

mutating NxS/T motifs altered antibody responses to the N-

terminus, while responses to B-cell dominant epitopes localized

to the C-terminal end were relatively similar across mRNA

transcripts. These findings suggest that the mutated PfCelTOS

had altered structure as a more likely explanation of the reduced

recognition since these responses were measured against either

recombinant protein derived from E. coli expression or synthetic

linear peptides.

In the present study, mRNA-LNP encoding pfceltos with

varying signal sequences, N-glycosylation, nucleoside

substitutions along with LNP (LNP1 versus LNP3) and

coding/noncoding regions of mRNA (TriLink versus UPenn)

were explored to identify an optimal configuration for in vivo

delivery. Importantly, the results reveal that a third dose of

pfceltos mRNA-LNPs can overcome an “all-or-none” immune

response pattern seen for the two-dose regimen. Currently,

nucleoside modified of mRNA transcripts are commonly

applied to evade innate immune activation and improve on

antigen stability and expression (48, 70), we observed differences

that were associated with mRNA dose and/or LNP composition,

over N-glycosylation or nucleoside modifications. Interestingly,

unlike the pfceltos mRNA (TriLink), pfceltos mRNA (UPenn)

induced higher levels of antibody after three doses whether

modified for N-link glycosylation (GM) or as glycosylated

protein. One distinction between the two mRNAs was that the

UPenn mRNAs were N1-methylpseudouridine-modified while

TriLink mRNAs were modified with y-pseudouridine and 5-

methylcytosine. While not confirmed, this could explain for the

differences in immune responses and the improved antibody

responses with the UPenn mRNAs. N1-methylpseudouridine

modified mRNA have been previously reported as superior to

pseudouridine, demonstrating reduced sensing by TLR3 and

improved in vivo expression levels (25), by prolonged antigen

availability, increased expression of antigen in antigen presenting

cells and/or a favorable cytokine environment (55, 71).
Conclusion

CelTOS is a soluble, micronemal secreted protein, previously

identified as a promising vaccine candidate against malaria. We

and others demonstrated that CelTOS vaccines induce potent

humoral and cellular immune responses that are capable of
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functional immunity (15, 16, 18, 19). Structural conserved

elements of the N- and C-terminus are prerequisite to

oligomerization and function of CelTOS in pore formation

(72), therefore preservation of the natural protein assembly

and folding is essential (73) for inducing relevant immune

responses (11, 72). Given the complexity of the parasite life

cycle and infection, presentation of a structurally and

functionally conserved CelTOS could augment immunity and

yield improved breadth of immune responses. The potential role

of antibodies and T cells against this function are still not fully

elucidated. Factors such as coding and noncoding content on

mRNA, immunization schedule and delivery modalities such as

LNP composition are likely critical to optimal immunogenicity.

Novel antigens and delivery platforms which target both

humoral and/or cellular immunity are needed to ensure a

robust pipeline of next-generation malaria vaccine candidates.

To date, relatively limited success has been achieved in

translating novel antigens such as the P. falciparum CelTOS

from preclinical to clinical studies. A more rigorous effort to

optimize antigens with unique and/or essential biological roles

would yield novel high-priority targets for translation to

clinically relevant vaccines.
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