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Understanding the robustness of topological phases of matter in the presence of strong interactions and
synthesizing novel strongly correlated topological materials lie among the most important and difficult
challenges of modern theoretical and experimental physics. In this work, we present a complete theoretical
analysis of the synthetic Creutz-Hubbard ladder, which is a paradigmatic model that provides a neat
playground to address these challenges. We give special attention to the competition of correlated
topological phases and orbital quantum magnetism in the regime of strong interactions. These results are,
furthermore, confirmed and extended by extensive numerical simulations. Moreover, we propose how to
experimentally realize this model in a synthetic ladder made of two internal states of ultracold fermionic
atoms in a one-dimensional optical lattice. Our work paves the way towards quantum simulators of
interacting topological insulators with cold atoms.
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I. INTRODUCTION

Topological features of quantum many-body systems
provide a new paradigm in our understanding of the phases
of matter [1], and give rise to a promising avenue towards
fault-tolerant quantum computation [2]. From a condensed-
matter perspective, such features lead to exotic ground
states beyond the conventional phases of matter, which are
typically understood by the principle of symmetry breaking
and the notion of a local order parameter. On the contrary,
these exotic states can be characterized by only certain
topological properties.
The integer quantum Hall effect, which is a paradigmatic

example of such peculiar phases [3], requires the intro-
duction of a topological invariant to describe the different
plateaus and their associated transverse conductivities [4].
Another interesting property of this state of matter is
the bulk-boundary correspondence, which relates such a
topological conductivity, a bulk property, to the existence
of current-carrying edge states localized within the boun-
daries of the system [5]. Although the bulk of an integer
quantum Hall sample appears as a trivial band insulator, its

boundary corresponds to a holographic chiral liquid
where interactions merely renormalize the edge-state
Fermi velocity [6].
As realized in a series of seminal works [7–9], these

remarkable properties are not unique to quantum Hall
samples subjected to strong magnetic fields. Instead, they
arise in various models with different symmetries and in
different dimensions [10], the so-called topological insula-
tors and superconductors [11], which also lead to the notion
of symmetry-protected topological phases in the context of
topological order [1]. Remarkably enough, some of these
models have turned out to be accurate descriptions of real
insulating materials [11–13] and promising candidates to
account for observations in proximitized superconducting
materials [14]. This has positioned the subject of topo-
logical insulators and superconductors not only at the
forefront of academic research, but also at the focus of
technological applications, such as topological quantum
computation with Majorana fermions [2].
Despite this success, (i) there are still several paradig-

matic models of topological models whose connection to
real materials remains unknown, or even seems quite
unlikely, as it occurs for the Hofstadter model with
magnetic fluxes on the order of the flux quantum [15],
or the Haldane model [7]. Moreover, (ii) most of the
topological materials explored in the laboratory so far do
not display important electronic correlation effects [16].
This is rather unfortunate in view of the richness of the
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fractional quantumHall effect [17], where such correlations
are responsible for a plethora of exotic topological phases
of matter.
In the presentwork, rather than considering realmaterials,

we are concerned with the so-called synthetic quantum
matter in atomic, molecular, and optical (AMO) platforms,
more particularly, with ultracold gases of neutral atoms
trapped in periodic potentials made of light, i.e., optical
lattices [18]. The ever-improving experimental control over
these quantum many-body systems has already allowed to
design their microscopic Hamiltonian to a great extent. In
this way, it is possible to target interesting condensed-matter
models, some of which are still lacking unambiguous
experimental feedback from experiments with real materials
[19,20], as occurs for the bosonic [21–23] and fermionic
[24–26] Hubbard models. The initial interest in optical-
lattice implementations of integer quantumHall phases [27],
and other time-reversal invariant topological insulators
[28,29], has risen considerably in recent years due to the
experimental progress [30,31]. In particular, elusive topo-
logical systems, such as the Hofstadter [15] or the Haldane
[7] models, have been realized in experiments with bosonic
[32] and fermionic [33] ultracold atoms, respectively. The
possibility of including two or more different atomic states
or species, controlling their interactions via Feshbach
resonances [34], may eventually lead to the experimental
test of correlation effects in these topological states.
Here, we introduce a variant of the quasi-one-

dimensional Creutz topological insulator [35] and study
the effect of repulsive Hubbard-type interactions on the
topological phase. This model, which we refer to as the
imbalanced Creutz-Hubbard ladder, is readily implement-
able with ultracold fermions in intensity-modulated optical
lattices. We argue that such a model has all the required
ingredients to become a workhorse in the study of strongly
correlated topological phases in AMO setups. Indeed, two
accessible AMO ingredients such as (i) a simple Zeeman
shift between the atomic internal states, which yields a leg
imbalance in the ladder, and (ii) on-site repulsive contact
interactions tuned by some Feshbach resonances, which
lead to Hubbard-type rung interactions in the ladder, can be
employed to access the rich phase diagram of this model
(see Fig. 1), which was widely uncharted prior to our study.
Starting from a flat-band regime, we show that the
imbalance and the interactions lead to a competition
between a topological phase and two different phases of
orbital quantum magnetism. At large interaction strength, a
long-range in-plane ferromagnetic order arises, related to
the symmetry-broken phase of an orbital quantum Ising
model (QIM), while the Zeeman imbalance then drives a
standard quantum phase transition in the Ising universality
class towards an orbital paramagnetic phase. In order to
understand the model away from this limit, we introduce
two new methods based on mappings onto models of
quantum magnetism and quantum impurity physics. These

methods allow us to locate exactly certain critical points or
lines and to predict topological quantum phase transitions
for weak and intermediate interactions with different
underlying conformal field theories (CFTs), i.e., Dirac vs
Majorana CFTs, which then fit very well with numerical
results based on matrix product states (MPS) [36]. We also
provide suggestions for experimental observables to
pinpoint these three phases.
This paper is organized as follows. In Sec. II, we introduce

the standard Creutz ladder, and some previous studies are
briefly accounted for which show that this model leads to a
topological insulator in the BDI symmetry class [10].
Therefore, the standard Creutz ladder lies in the same
symmetry class as the Su-Schrieffer-Heeger model [37],
which has already been implemented in optical lattices [38].
We then introduce the imbalanced Creutz ladder, which
provides an instance of a topological insulator in the AIII
class (chiral unitary), which still lacks an AMO implemen-
tation. Moreover, as we argue in Sec. III, the Hubbard
interactions lead to a very neat interplay of strongly
correlated and topological effects. We identify the different
phases of the model, together with standard and topological
quantum phase transitions that connect them. Finally, in
Sec. IV, we lay out a detailed proposal to implement the
imbalanced Creutz-Hubbard ladder in an ultracold
Fermi gas with two different internal states trapped in
a standard one-dimensional optical lattice, enriched by

FIG. 1. Phase diagram of the imbalanced Creutz-Hubbard
ladder. Phase diagram displaying a topological insulator (TI)
phase and a pair of nontopological phases: an orbital phase with
long-range ferromagnetic Ising order (OFM) and an orbital
paramagnetic phase (OPM). The horizontal axis represents the
ratio of the interparticle interactions to the tunneling strength,
whereas the vertical axis corresponds to the ratio of the energy
imbalance to the tunneling strength. The dashed yellow line
shows the transition points of the effective model in the strong-
coupling effective (Ising) model. The dashed red line indicates
the transition as obtained from the weak-coupling expansion. The
red circle shows the transition point in the balanced model at
intermediate interactions. Stars label numerical results, and the
blue line is an extrapolation of the phase boundaries. The labels of
the critical lines give the central charge of their underlying
conformal field theory. Details on the different phases and
transitions between them are provided in Sec. III.
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intensity-shaking and Raman laser-assisted tunneling. We
present our conclusions and outlook in Sec. V.

II. IMBALANCED CREUTZ-HUBBARD LADDER

The standard Creutz model describes a system of spinless
fermions on a two-leg ladder [see Fig. 2(a)], which are
created-annihilated by the fermionic operators c†i;l, ci;l,
where i ∈ f1;…; Ng labels the lattice sites within each leg
of the ladder l ∈ fu; dg. Fermions are allowed to hop
vertically along the rungs of the ladder with tunneling
strength tv and horizontally along the legs of the ladder
with a complex tunneling tl ¼ thðeiθδl;u þ e−iθδl;dÞ, where
th is a tunneling strength and δa;b is the Kronecker delta. The
arrangement of complex phases in the horizontal links leads
to a net 2θ flux gained by a fermion hopping around a square
unit cell, playing thus the role of the so-called Peierls phases
of a magnetic field piercing the ladder. In addition, the
kinetic part of the Hamiltonian also includes a diagonal
tunneling of strength tdiag, yielding altogether

HC ¼ −
X

i

X

l

ðtlc†iþ1;lci;l þ tdiagc
†

iþ1;lci;l̄

þ tvc
†

i;lci;l̄ þ H:c:Þ; ð1Þ

wherewe use the notation l̄ ¼ dðl̄ ¼ uÞ for l ¼ u (l ¼ d).
This quadratic lattice model was put forth in Ref. [35] as

a simple toy model to understand some of the key proper-
ties of higher-dimensional domain-wall fermions [39,40],
which were introduced in the context of lattice gauge
theories to bypass the fermion-doubling problem [41].
For periodic boundary conditions, this model leads to a
couple of bands that display a pair ofmassiveDirac fermions
with different Wilson masses m0, mπ at momenta kD ∈

f0; πg [42]. For open boundary conditions, a pair of zero-
energy modes exponentially localized to the left or right
edges of the ladder appear as one of the Wilson masses gets
inverted (mπ < 0) when tv < 2tdiag. Considering the bulk-
boundary correspondence discussed in Sec. I, these edge

states resemble the holographic liquid of the higher-
dimensional topological insulators. In fact, the change in
polarization of the system can be characterized by a topo-
logical invariant [43], the so-calledZak’s phase [44], such that
the appearance of these zero-energy modes coincides with a
nonvanishing topological invariant, and the Creutz ladder
yields a symmetry-protected topological phase in this regime.
As we discuss below, for θ ¼ π=2, this topological phase
corresponds to a BDI topological insulator.
Since the objective of this work is to study correlation

effects, we now consider the simplest possible Hubbard
interactions between the spinless fermions,

HH ¼
X

i

X

l

�

Vhni;lniþ1;l þ
Vv

2
ni;lni;l̄

�

; ð2Þ

where Vh (Vv) are the density-density interaction strengths
between fermions residing in neighboring sites along
horizontal (vertical) bonds of the ladder, and we introduce
the fermion number operators ni;l ¼ c†i;lci;l.
For reasons that will become clear in the cold-atom

implementation discussed in Sec. IV, in the following we
deal with a variant of the Creutz Hamiltonian: (i) we
substitute the vertical tunneling by an energy imbalance
between the legs of the ladder εu ¼ Δε=2 ¼ −εd, which
changes the symmetry class of the topological insulator for
θ ¼ π=2 from BDI to AIII; (ii) we limit the interaction
terms Eq. (2) to the anisotropic regime Vh ¼ 0; (iii) we set
the amplitude of the diagonal hopping equal to the one
along the legs (jtdiagj ¼ jtlj ¼ ~t); and finally (iv) we fix the
phases in order to get a net π flux through the plaquettes.
The resulting Hamiltonian [see Fig. 2(b)], which we refer to
as the imbalanced Creutz-Hubbard Hamiltonian, is

HπCH ¼ HπC þ VHubb; HπC ¼ HFB þ V imb; ð3Þ

where we introduce the kinetic term

HFB¼
X

i;l

ð−~tc†iþ1;lci;l̄þ isl~tc
†

iþ1;lci;lþH:c:Þ; ð4Þ

with su=d ¼ �1. This term leads to a pair of flat bands
and a couple of zero-energy topological edge states. The
remaining terms,

V imb ¼
X

i;l

Δε

2
slni;l; VHubb ¼

X

i;l

Vv

2
ni;lni;l̄; ð5Þ

contain the Hubbard interactions and the energy imbalance,
which can have nontrivial effects on the flat-band physics
and induce a phase transition to other nontopological
phases of matter. In the following section, we present a
new formalism to understand such transitions.
We are encouraged to study this imbalanced Creutz-

Hubbard ladder for both experimental and theoretical reasons

(a)

(b)

FIG. 2. Standard and imbalanced Creutz ladder. Two-leg ladder
where fermions tunnel along the black links enclosing a net flux
2θ along a closed plaquete: (a) standard Creutz ladder Eq. (1) and
(b) imbalanced Creutz ladder, which leads to Eq. (4) in the
π-flux limit.
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that we discuss in detail in the forthcoming sections. In
particular, let us advance that this model shares topological
properties with the original Hamiltonian Eq. (1). In particu-
lar, the Dirac fermions now occur at kD ∈ f−π=2; π=2g
with different Wilson masses m�π=2. Provided that Δε <
4th ¼ 4td, the mass mπ=2 < 0 gets inverted, and we obtain
analogous topological features and exponentially localized
edge states. The choice of the anisotropic regime Vh ¼ 0 is
motivated by the use of ultracold fermionic atoms in optical
lattices with contact interactions. Exploring also the regime
of Vh > 0 would require situations where the atoms have
longer-range interactions.

A. Previous studies on related models

With the model under study already defined, let us
comment on some relevant literature and advance some
comments in relation to our results. The standard Creutz
ladder Eq. (1) filled with bosons has been studied in
Refs. [45,46], which includes on-site Hubbard interactions
instead of the nearest-neighbor terms of Eq. (2). The focus of
Refs. [45,46] was the appearance of pair superfluids due to
the interplay of interactions and frustration flat-band effects
[47]. A useful formalism was introduced in these works,
which consisted of the projection of the Hamiltonian onto
the lowest-energy flat band by introducing highly localized
Wannier functions. Moreover, using a unitarily equivalent
formulation of the Creutz-ladder Hamiltonian introduced in
Ref. [46] would lead to a spin-orbit coupled Hubbard model
with staggered energy imbalance in our case Eq. (3), which
might broaden the relevance of our results beyond the ladder
compound of Fig. 2. The standard Creutz ladder Eq. (1)
populated by spinful fermions with on-site interactions
between opposite spins has been studied recently in
Ref. [48], which focused on an exact Bardeen-Cooper-
Schrieffer description for attractiveHubbard interactions. To
the best of our knowledge, the standard Creutz ladder with
spinless fermions has been studied previously only in
Ref. [49]. Here, the emphasis was placed on an additional
superconducting s-wave pairing, and its interplay with the
repulsiveHubbard interactions,which leads to an interesting
Creutz-Majorana-Hubbard ladder. The limit of vanishing
pairing, which corresponds to the standard Creutz-Hubbard
model with the vertical tunneling Eq. (1) instead of the
imbalance Eq. (5), and leads to the aforementioned BDI
topological insulator, was only touched upon briefly by
numerical mean-field and density-matrix renormalization
group studies. These results pointed towards the possibility
of a phase with in-plane ferromagnetic order as the inter-
actions are increased.
To the best of our knowledge, the effect of Hubbard

interactions in the imbalanced Creutz ladder Eq. (3), and
more generally on AIII topological insulators, remains
largely unexplored. In relation to the above studies on
related models, we show below that one cannot project onto
a single flat band for the fermionic model, but must instead

retain all flat bands and edge modes to account for
correlation and topological effects accurately. In this
way, we make interesting connections between the exist-
ence of topological phase transitions and the physics of
quantum impurity models. Additionally, by going beyond a
mean-field analysis in the strong-interaction limit of the
imbalanced model Eq. (3), we show analytically that in-
plane ferromagnetic order also arises in our model, and
moreover corresponds to the symmetry-broken phase of an
orbital quantum Ising model. In addition, we illustrate that
the imbalance drives such an Ising model into an orbital
paramagnetic phase.

III. TOPOLOGICAL QUANTUM

PHASE TRANSITIONS

The following sections are devoted to the construction of
the phase diagram shown in Fig. 1. We start by discussing
the solution of the noninteracting imbalanced Creutz ladder
and the appearance of flat bands and fully localized edge
states in the Hamiltonian Eq. (4) (see Sec. III A). This
corresponds to the vertical axis of the phase diagram.
In Sec. III B, we examine the weakly interacting regime and
show that the model maps onto a pair of weakly coupled
Ising chains, which can be studied through a mean-field
analysis (i.e., the region in the vicinity of the vertical axis of
Fig. 1). In Sec. III C, we study the opposite limit of very
strong interactions (i.e., rightmost region of Fig. 1) and
discuss the possible nontopological orbital magnetic phases
that can arise. In Sec. III D, we explore the intermediate
regime and show that the effect of the interactions and
imbalance leads to edge-bulk couplings that can be mapped
onto quantum impurity models. This new perspective
yields a neat picture underlying the destabilization of the
topological phase in favor of the orbital magnets. These
different methods allow us to build an analytical prediction
of the phase diagram of the model. Finally, in Sec. III E, we
test numerically the above predictions and provide a
detailed study of the phase diagram by means of matrix
product state numerical simulations. Scattered through
these sections, we also introduce comments on possible
experimental tools to measure the relevant observables for
the different phases of the model, which become relevant
for the specific experimental cold-atom proposal we dis-
cuss in Sec. IV.

A. Noninteracting limit: Flat bands and edge states

We start by solving the kinetic part [Eq. (4)] of the π-flux
Creutz-Hubbard Hamiltonian Eq. (3). For periodic boun-
dary conditions, and after introducing the spinor ΨðqÞ ¼
(cuðqÞ; cdðqÞ)t for the fermion operators in momentum
space clðqÞ ¼

P

ie
−iqaici;l=

ffiffiffiffi

N
p

, one finds

HFB ¼
X

q∈BZ

Ψ
†ðqÞBðqÞ · σΨðqÞ; ð6Þ
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where σ ¼ ðσx; σy; σzÞ is the vector of Pauli matrices and
BðqÞ ¼ 2~t( − cosðqaÞ; 0; sinðqaÞ). By direct diagonaliza-
tion, one finds that the system develops two flat bands,
ε� ≔ ε�ðqÞ ¼ �2~t, where q ∈ BZ ¼ ½−π=a; π=aÞ is the
quasimomentum, and the lattice constant is set to a ¼ 1

henceforth. The vanishing group velocity associated with
these bands, vg ¼ ∂qε�ðqÞ ¼ 0, indicates that the ground
state must be insulating, regardless of the particular filling.
This can be considered as a new type of insulator, namely, a
flat-band insulator, which corresponds neither to the usual
band insulator nor to the Mott insulators. It shares some
properties with the former (i.e., no correlations) and with
the latter (i.e., localized fermions), but it differs from both
insulators in the large degeneracy of the ground state,
except for half-filling conditions.
On top of this, the flat bands are also topological: the

diagonalization of the discrete chiral symmetry σy [s.t.
σyHðqÞσy ¼ −HðqÞ, with HðqÞ ¼ BðqÞ · σ] puts the
Hamiltonian Eq. (6) in a purely off-diagonal form, with
elements Bx � iBz; its complex phase gets a nontrivial
winding number W ¼ sgnð~tÞ ≠ 0 [50]. Equivalently, we
could consider the eigenvectors jε�ðqÞi ∝ ½ðBx þ iBzÞ1=2;
�ðBx − iBzÞ1=2�t and realize that they exhibit a uniform
Berry connection A�ðqÞ ¼ ihε�ðqÞj∂qjε�ðqÞi ¼ 1

2
. The

uniform Berry connection leads to a finite Zak’s phase,
which is defined [44] as

φZak;� ¼
Z

BZ
dqA�ðqÞ ð7Þ

and equals φZak;� ¼ π for our topological flat bands. This
Zak’s phase pinpoints the topological properties of the
bands, and can be connected to a macroscopic observable:
the polarization of the system [43].
Interestingly enough, the Creutz ladder displays an

infinite flatness parameter without requiring long-range
tunnelings, as is necessary in higher-dimensional models of
topological flat bands [51]. From this perspective, switch-
ing on the leg imbalance Δε > 0 in Eq. (5) leads to some
curvature in the energy bands,

ε�ðqÞ ¼ �εðqÞ ¼ �2~t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f−2 þ 2f−1 sin q
q

; ð8Þ

wherewe introduce the flatness parameter f ¼ 4~t=Δε, which
becomes infinite for vanishing imbalance. The presence of
the imbalance also drives the systemout of the BDI class and
into the AIII class [10], since BzðqÞ ¼ Δε=2þ 2~t sin q
acquires a mixed parity under k ↔ −k and therefore
no effective time-reversal [UTHð−qÞ�U†

T ¼ þHðqÞ] or

particle-hole [UCHð−qÞ�U†

C ¼ −HðqÞ] operators can be
found. Anyway, the discrete chiral symmetry is still
described by σy and the whole procedure described above
can be employed. The Berry connection of the bands
becomes nonuniform due to their curvature,

A�ðqÞ ¼
1þ f−1 sin q

2ð1þ f−2 þ 2f−1 sin qÞ ; ð9Þ

which leads to the following Zak’s phase: φZak;� ¼
πθðf − 1Þ, where θðxÞ is the Heaviside step function.
Hence, the Zak’s phase yields topological effects provided
that the bands are sufficiently flat, i.e., f > 1. Conversely,
whenΔε > 4~t, the curvature of the bands is large, i.e., f < 1,
and no topological phenomenon occurs. We note that this
point Δε ¼ 4~t is exactly the regime where one of the
fermionic Wilson masses vanishes, as mentioned in the
previous section in connection to the domain-wall fermions
of lattice gauge theories. This marks a quantum phase
transition between the AIII topological insulator and a
trivial band insulator, as shown in the vertical axis of Fig. 1.
Regarding cold-atom experiments, we note that the Zak’s

phase has been measured for another paradigmatic topo-
logical insulator in 1D: the Su-Schrieffer-Heeger model of
polyacetilene [37]. In this noninteracting limit, the Zak’s
phase is a single-particle property of the topological bands,
and can be thus measured by a Ramsey interferometric
protocol that exploits Bloch oscillations of single-particle
initial states [38]. This measurement scheme has been
generalized to other topological insulators [52], and can
also be applied to the cold-atom implementation of the
Creutz ladder considered in Sec. IV.
To have an alternative view on these topological features,

let us introduce the so-called Aharonov-Bohm cages
(ABC) [53], which will also become very useful once
interactions are switched on. In the π-flux Creutz ladder
Eq. (4), the fermions cannot tunnel two sites apart due to
the Aharonov-Bohm effect [35] [see Fig. 3(a)]. One can
thus find single-particle eigenstates strictly localized in
cages formed by simple square plaquettes [see Fig. 3(c)]. In
second quantization, such Aharonov-Bohm cages with
energies ε� ¼ �2~t are

j þ 2~tii ¼ w†
i;þj0i;

w†
i;þ ¼ 1

2
ðic†i;u þ c†i;d − c†iþ1;u − ic†iþ1;dÞ;

j − 2~tii ¼ w†
i;−j0i;

w†
i;− ¼ 1

2
ðic†i;u þ c†i;d þ c†iþ1;u þ ic†iþ1;dÞ; ð10Þ

with i ∈ f1;…; Ng for periodic boundary conditions,
where one identifies cNþ1;l ¼ c1;l. Conversely, for open
boundary conditions, these square ABC can be defined for
only i ∈ f1;…; N − 1g, and simple counting shows that
there are only 2ðN − 1Þ possible states that can be accom-
modated in such flat bands. The two missing states are
zero-energy modes, εl ¼ εr ¼ 0, fully localized at the
boundaries
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j0iL ¼ l†j0i; l† ¼ 1
ffiffiffi

2
p ðc†

1;u þ ic†
1;dÞ;

j0iR ¼ r†j0i; r† ¼ 1
ffiffiffi

2
p ðc†N;u − ic†N;dÞ: ð11Þ

For these particular weights, the fermions cannot tunnel one
site apart due to the Aharonov-Bohm effect [see Fig. 3(a)],
and are thus localized within a boundary ABC [see
Fig. 3(b)], which corresponds to an edge state within the
bulk-edge correspondence of the topological insulator.
We can finally express the π-flux Creutz Hamiltonian

Eq. (3) for open boundary conditions as

HFB ¼
X

N−1

i¼1

X

α¼�
εαw

†
i;αwi;α þ

X

η¼l;r

εηη
†η: ð12Þ

Although generic fillings can lead to a variety of interesting
phases in the presence of interactions, potentially con-
nected to fractional topological insulators [51], we are
concerned in this work with only half filling, i.e., N
fermions, where the ground state of Eq. (12) is twofold
degenerate,

jεg; LiNI ¼ l†w†

1;−w
†

2;− � � �w†

N−1;−j0i;
jεg; RiNI ¼ r†w†

1;−w
†

2;− � � �w†

N−1;−j0i; ð13Þ

and the ground-state energy is

εg;L ¼ εg;R ¼ −2~tðN − 1Þ: ð14Þ

We thus see that the ground-state degeneracy corresponds
to the two possible choices in populating either of the zero-
energy edge modes, and it is related to the topology of the
ladder (i.e., ring versus line with open edges).
The effects of the leg imbalance Δε > 0 in Eq. (5) can be

understood from this edge perspective by writing

V imb ¼
X

N−1

i¼2

timbðw†

i−1;þ − w†

i−1;−Þðwi;þ þ wi;−Þ

þ
X

α¼�

ffiffiffi

2
p

timbð−l†w1;α − iαr†wN−1;αÞ þ H:c:; ð15Þ

where timb ¼ −iΔε=4 is an effective tunneling induced by
the imbalance, and has two relevant effects. The first line
describes the hopping of fermions in neighboring ABC,
which leads to the aforementioned curvature of the bulk
energy bands Eq. (8). The second line represents the
hopping between the topological edge modes and the bulk
ABC. As discussed in more detail in Sec. III D, both terms
conspire to induce a broadening of the edge modes in the
regime 4~t ≤ Δε, which is the regime where the topological
Zak’s phase Eq. (7) vanishes, signaling an imbalance-
induced topological phase transition. We also note that,
precisely at the point 4~t ¼ Δε, the bulk bands become
ε�ðqÞ ¼ �2~tð1þ sin qÞ, and the gap vanishes exactly at
q ¼ −π=2, which coincides with the momentum of the
massless Wilson fermion.
Regarding cold atoms, previous experiments on syn-

thetic two-leg ladders subjected to artificial gauge fluxes,
where the diagonal interleg tunneling in Eq. (1) is
substituted by a vertical one, have measured nonvanish-
ing chiral currents circulating in opposite directions along
each leg of the ladder [54]. These states are connected to
the edge states of the Hofstadter model as the number of
legs is increased [54,55], but the bulk and edges coincide
in the limiting case of the two-leg ladder. The situation is
different for the two-leg Creutz ladder, as the edge states
are not extended along the legs of the ladder but
exponentially localized to the left- and rightmost rungs
Eq. (11). We note that observing the particular localiza-
tion in Eq. (11) would require implementing a box
confining potential, which has already been achieved
in several cold-atom experiments for bosonic gases [56].
However, we note that for milder confining potentials,

(a) (b) (c)

FIG. 3. Aharonov-Bohm cages in the Creutz ladder. (a) Considering the tunneling paths in the Creutz ladder Eq. (4), one can identify
two types of rhombic plaquettes that enclose a synthetic π flux (left). Therefore, a particle trying to tunnel two sites apart (middle) will be
subjected to a destructive Aharonov-Bohm interference that forbids this process. Accordingly, particles are confined to the so-called
Aharonov-Bohm cages and cannot spread through the entire lattice. These cages correspond to square plaquettes, except at the edges (b),
where destructive interference can also be found for a particle trying to tunnel one site apart (right). (c) Aharonov-Bohm cages with the
relative amplitudes for a single-particle state in two possible flat bands and in the two possible zero-energy edge modes.
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one expects that the edge states will remain to be
confined in the boundaries of the system, provided that
the confining potential increases at least quadratically
with the distance to the center of the trap [57].
According to the above discussion, no additional legs

would be required to identify the difference between edge
and bulk excitations in the Creutz ladder, such that
detecting the presence of zero-energy modes localized
at the edges would be a proof of the topological nature of
the phase. Using a pair of laser beams with a frequency
difference that can be scanned within the edge-bulk gap
jωL;1 − ωL;2j < 2~t and a spatial profile that can be
localized to a few sites from the left- and rightmost
rungs of the ladder, the associated Bragg signal due to
Raman excitations can detect the presence of these
localized zero modes, provided that the atomic gas is
confined in a box potential. This method is analogous to
the situation in higher-dimensional topological insulators
[58], where additional angular momentum of the laser
beams can be exploited to probe the chirality of the edge
modes and improve the measurement resolution [57]. For
milder confinement potentials, nontopological states
might also happen to be localized within the edges of
the system [58]. In Ref. [57], the authors show that the
Bragg scheme can be adapted to distinguish the chirality
of the localized edge states of a higher-dimensional
topological insulator, and thus differentiate them from
the nontopological states, probing in this way the
topological nature of the phase. It would be interesting
to explore analog techniques to differentiate the edge
states Eq. (11) of the Creutz ladder from spurious states
that would arise if no box potential is implemented.

B. Weak interactions: Quantum Ising ladder

Let us now address the fate of this topological phase
as the Hubbard repulsion is switched on. We start by
exploring the weakly interacting regime ~t ≫ Vv, and by
noting that the two representations of the noninteracting
imbalanced model HπC ¼ HπCð~t;ΔεÞ Eq. (3), both in the
original [Eqs. (1) and (2)] and in the plaquette [Eqs. (12)
and (15)] bases, are dual to each other. In particular, the
mapping between spinors,

Ψi ¼ ðci;u; ci;dÞt → Wi ¼ e−iðπ=4Þσ
z
i ðwi;þ; wi;−Þt; ð16Þ

induces a duality transformation HπCð~t;ΔεÞ → ðΔε=4~tÞ ×
HπC½~t; ð16~t2=ΔεÞ� with a self-dual point Δε ¼ ð4~tÞ2=Δε
corresponding to the previous critical point Δε ¼ 4~t.
Such a duality is reminiscent of the one occurring in the

QIM [59] and suggests a possible equivalence between
both models. Indeed, a formal equivalence is found by
introducing the following rung operators:

rj;1 ¼
ij
ffiffiffi

2
p ½icj;u þ ð−1Þjc†j;d�;

rj;2 ¼
ij
ffiffiffi

2
p ½cj;u þ ið−1Þjc†j;d�: ð17Þ

Under this canonical transformation, the Hamiltonian is
transformed onto

HπC ¼ −~t
X

j

X

n¼1;2

ðr†j;nrjþ1;n þ r†j;nr
†

jþ1;n þ H:c:Þ

þ Δε

4

X

j

X

n¼1;2

ð2r†j;nrj;n − 1Þ: ð18Þ

In this particle-hole rung basis Eq. (17), we identify two
independent subsystems which no longer display particle-
number conservation, but instead have parity conservation.
A Jordan-Wigner transformation [60], namely,

r†j;n ¼
Y

i<j

ð−σzi;nÞσþj;n ¼ ðrj;nÞ†; r†j;nrj;n ¼
1

2
σzj;n þ

1

2
;

ð19Þ

reveals the Ising nature of the two subsystems, and leads to
a Hamiltonian that can be understood as a two-leg quantum
Ising ladder:

HπC ¼
X

j

X

n¼1;2

�

−~tσxj;nσ
x
jþ1;n þ

Δε

4
σzj;n

�

: ð20Þ

For open boundary conditions, this description allows an
alternative interpretation of the edge-state behavior by
writing the Ising model as a Kitaev-Majorana chain [8].
The ferromagnetic regime is associated with two uncoupled
Majorana zero-energy modes on the opposing edges of the
system for each of the legs of the Ising ladder. Combining
the two free Majoranas on either edge of the Ising ladder
then yields the local fermionic edge modes defined in
Eq. (11). This contrasts the case of a single Majorana chain,
where the fermionic zero mode is highly nonlocal since it
can only be built from the Majoranas at the opposite edges
of the chain.
Let us turn on the interactions and express the weak

Hubbard repulsion in terms of these rung operators:

VHubb ¼
Vv

4

X

j

ðir†j;1rj;2 þ H:c:Þ

−
Vv

4

X

j

½ð1 − 2r†j;1rj;1Þð1 − 2r†j;2rj;2Þ − 1�: ð21Þ

These terms introduce a coupling between the two legs of
the quantum Ising ladder. If we restrict to half filling in the
original model, the tunneling term vanishes, and we are left
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with the quartic interactions. These in turn can be expressed
in terms of spin-spin interactions that couple the two legs of
the ladder:

VHubb ¼ −
Vv

4

X

j

σzj;1σ
z
j;2 þ const: ð22Þ

For weak interactions, Vv ≪ Δε, ~t, we can treat the
influence of one Ising chain on the remaining one with a
mean-field approximation,

HπCH ≈
X

j;n

�

−~tσxj;nσ
x
jþ1;n þ

Δε − Vvmn̄ðΔε; Vv; ~tÞ
4

σzj;n

�

;

ð23Þ

where we introduce the transverse magnetization
mn̄ðΔε; Vv; ~tÞ ¼ hσzj;n̄i for each leg of the ladder, and
n̄ ¼ 2, 1 for n ¼ 1, 2. We thus observe a renormalization
of the imbalance parameter that controls the transverse field
of the Ising model, and thus leads to a shift of the critical
point as the interaction strength Vv increases.
Accordingly, the topological phase of Sec. III A survives

in a finite region of parameter space as the interactions
are switched on. We find this region by solving the
self-consistency mean-field equations by iterating

mnðΔε; Vv; ~tÞ ¼ M

�

Δε − Vvmn̄ðΔε; Vv; ~tÞ
4~t

�

ð24Þ

to convergence. In this equation, we use the exact expres-
sion of the ground-state transverse magnetization in the
QIM [61], namely,

MðαÞ ¼

8

<

:

2ð1−α2Þ
πα

½Πðα2; αÞ − KðαÞ� for α < 1

2ðα2−1Þ
πα2

Πð1=α2; 1=αÞ for α > 1;
ð25Þ

where we introduce the complete elliptic integrals of the
first and third kind, namely,

KðkÞ ¼
Z

π=2

0

dθ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 θ
p ; ð26Þ

Πðn; kÞ ¼
Z

π=2

0

dθ
1

ð1þ n sin2 θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 θ
p : ð27Þ

The self-consistent mean-field approximation reprodu-
ces very precisely the numerical results for the density
imbalance of the Creutz ladder:

Δn ¼ 1

N

X

i

ðc†i;uci;u − c†i;dci;dÞ ¼
1

2N

X

j

X

n

σzj;n: ð28Þ

In Fig. 4, we compare the ground-state density imbalance
hΔni with the mean-field transverse magnetization
m1ðΔε; Vv; ~tÞ ¼ m2ðΔε; Vv; ~tÞ, and find a very good
agreement even for considerable interactions Vv ∼ ~t.
If we solve the self-consistency equation to first order in

Vv=~t, we find that the critical pointΔε=~t ¼ 4 flows towards
smaller values of the imbalance as the interactions increase:

Δε

~t
¼ 4 −

2

π

Vv

~t
þO

�

V2
v

~t2

�

: ð29Þ

This weak-coupling expansion defines a critical line in
parameter space that separates the topological and non-
topological phases and agrees well with our numerical
findings for the phase diagram of the model, as discussed
below (see the red dashed line in Fig. 1).
Regarding the cold-atom experiment, we note that the

definition of the Zak phase Eq. (7), which could be used to
probe the topological nature of the phase via interferometric
methods [52], is valid only in the noninteracting limit. For
weak interactions, the single-particle excitations will be
described instead by quasiparticles, and the interferometric
protocol to measure a many-body Zak’s phase can be
obtained by coupling additional impurities to the interact-
ing Fermi gas [62]. We also note that the method to detect
the zero-energy edge modes based on Bragg scattering [58]
should also hold in the interacting regime. Finally, we
advance that a measurement of the leg imbalance density
Eq. (28) could also be used to experimentally test the
validity of our prediction of the critical line Eq. (29) (see

FIG. 4. Exact density imbalance and mean-field magnetiza-
tions. In blue solid lines, we present the ground-state density
imbalance hΔni for systems with Vv=~t ¼ 1, 2, 3, 4 (from bottom
to top) as determined numerically by means of a matrix product
state algorithm for a ladder with L ¼ 256 sites. In red dashed
lines, we show the mean-field magnetizations m1ðΔε; Vv; ~tÞ ¼
m2ðΔε; Vv; ~tÞ of the coupled Ising chains. The agreement
hΔni ≈ 1

2
½m1ðΔε; Vv; ~tÞ þm2ðΔε; Vv; ~tÞ� is reasonable even for

considerably large interaction strengths. The green curve shows
as a reference the magnetization of the noninteracting model
MðΔε=4~tÞ.

J. JÜNEMANN et al. PHYS. REV. X 7, 031057 (2017)

031057-8



Sec. III E). Concerning the mapping in Eq. (78), this leg
imbalance can be inferred from spin-resolved density
measurements obtained by optical imaging, either in situ
(dispersive imaging) or after a time-of-flight expansion
(absorption imaging). Exploiting light polarization and
selection rules for the particular internal states of the atoms,
one could measure separately the density of each of the two
components, and even spin structure factors [63] that give
access to the leg-imbalance susceptibility. Note that this
susceptibility can be used to extract the position of the
critical line (see top panel of Fig. 6). Regarding in situ
absorption imaging, spin-selective density measurements
and correlations can also be accomplished [64]. As alter-
native possibilities, the spin structure factor could be
measured in a nondemolition manner by exploiting a
quantum Faraday effect [65], while spin-resolved density
measurements can be achieved by using recent quantum
gas microscopes (see, e.g., Ref. [66]).

C. Strong interactions: Orbital Ising ferromagnet

In this section, we explore the opposite limit of the
Creutz-Hubbard ladder [Eq. (3)], namely, the strongly
interacting regime ~t ≪ Vv. In the limit ~t ¼ 0, the ground
state of the Creutz-Hubbard Hamiltonian corresponds to a
Mott insulator where the N fermions are distributed in the
ladder avoiding simultaneous occupancies of two sites
within the same rung.
By switching on the tunneling ~t ≪ Vv, an orbital analog

of the well-known superexchange [67–70] takes place,
which reduces the energy of the ground state by allowing
for processes where a rung of the ladder is virtually
occupied by two fermions. Instead of the usual
Heisenberg model associated to the strongly interacting
Hubbard model [67], a different spin model arises in the
present case due to the combination of intra- and interleg
tunnelings. To second order of perturbation theory [71],
and considering the half-filling regime, the relevant
Hamiltonian describing the low-energy physics corre-
sponds to an orbital quantum Ising model, namely,

PrHπCHPr ¼
1

4
JN þ J

X

i

T
y
iT

y
iþ1

þ Δε
X

i

Tz
i ; ð30Þ

where the superexchange coupling is J ¼ −8~t2=Vv, and the
leg imbalance Δε plays the role of an effective transverse
field. The above spin operators are defined as the orbital
analogue of the usual spin operators for electrons:

T
y
i ¼

1

2
ð−ic†i;uci;d þ ic†i;dci;uÞ;

Tz
i ¼

1

2
ðc†i;uci;u − c†i;dci;dÞ: ð31Þ

Finally, Pr ¼ Πið1 − ni;uni;dÞ is a Gutzwiller projector
onto the subspace of singly occupied vertical rungs.

The 1D quantum Ising model can be exactly solved [72]
by introducing a Jordan-Wigner transformation [60],
followed by a fermionic Bogoliubov transformation [73].
In comparison with the noninteracting ground state
Eq. (13), which displays a topological twofold degeneracy,
the strongly interacting ground state for Δε < jJj=2 has a
nontopological degeneracy related to the Z2 symmetry of
the Ising model. In this regime, the ground state develops
long-range order as a consequence of spontaneous sym-
metry breaking:

limr→∞hTy
iT

y
iþriSI ¼

1

4
ð1 − h2Þ1=4; ð32Þ

where h ¼ 2Δε=jJj < 1. This defines a critical line,

Δε

~t
¼ 4~t

Vv

; ð33Þ

that separates the phase of long-range order, i.e., an orbital
ferromagnet (OFM), from the disordered phase, i.e., an
orbital paramagnet (OPM), and is depicted by a yellow
dashed line in Fig. 1. As the leg imbalance is increased
above a critical value ðΔε=~tÞjc ¼ ð4~t=VvÞ, a standard
quantum phase transition occurs between the long-range-
ordered Ising ferromagnet and a disordered orbital para-
magnet, where all fermions tend to occupy the lower leg of
the ladder. We note that this transition is not of a topological
origin, as it can be understood by a local order parameter:
the orbital magnetization hTy

iT
y
iþriSI → m2

y.
We also note that the long-range ferromagnetic order is

totally absent in the noninteracting topological ground state
Eq. (13), where one finds

hTy
iT

y
iþriNI ¼ 0: ð34Þ

According to this discussion, it is clear that one cannot
connect the noninteracting topological and strongly inter-
acting ferromagnetic phases adiabatically. Therefore, there
should be an interaction-induced topological quantum
phase transition between the symmetry-protected topologi-
cal phase and a state with magneto-orbital long-range order,
for intermediate interactions Vv=~t. Our analytical treatment
of the strongly interacting regime also points to the possible
origin of in-plane ferromagnetic order in the Creutz-
Hubbard ladder with vertical tunnelings Eq. (1) instead
of the imbalance, as recently found through a mean-field
and numerical analysis [49]. Similar topological quantum
phase transitions to magnetically ordered phases have also
been found numerically in higher-dimensional models [16].
Concerning the cold-atom realization, we note that the

orbital spin operators Eq. (31) developing the long-range
order Eq. (32) in the orbital ferromagnet correspond to the
standard spin operators for the two internal states of the
atoms Eq. (78). Therefore, the magnetic correlations can be
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inferred from the spin structure factor, which can be
measured, for instance, via Bragg scattering by playing
with the polarization of the laser beams [63]. This can allow
us to test experimentally the validity of the critical line
Eq. (33).

D. Intermediate interactions: Extended Hubbard

models and quantum impurity physics

In this section, we elaborate on a theory that allows us to
predict this interaction-induced topological quantum phase
transition by making an interesting connection to the
physics of quantum impurity models. We start by express-
ing the Hubbard part of the Hamiltonian Eq. (5) in the basis
of the bulk Eq. (10) and edge Eq. (11) Aharonov-Bohm
cages. A similar step has been performed by rewriting the
bosonic Creutz-Hubbard model in terms of the bulk
negative energy ABC [45,46]. This corresponds to a
projection onto the low-energy flat band, which is justified
for ~t ≫ Vv, and is also customary in the theory of fractional
topological insulators [51]. In our case, however, it is
crucial to retain the positive- and zero-energy ABC to
capture the topological phases and the possible quantum
phase transitions that take place in the regime ~t ∼ Vv.
In this basis, we find an extended Hubbard model,

VHubb ¼ Vnn þ Vpt þ Vdt; ð35Þ

with a nearest-neighbor interaction between fermions
confined in adjacent ABC,

Vnn ¼
Vv

2

X

α¼�
ðnln1;α þ nrnN−1;αÞ þ

Vv

4

X

N−1

i¼2

X

α;β¼�
ni−1;αni;β;

ð36Þ

where the ABC number operators are ni;α ¼ w†
i;αwi;α for

α ∈ fþ;−g and nη ¼ η†η for η ∈ fl; rg. This effective

repulsion between the fermions can be depicted in a new
ladder scheme, where the legs of the ladder correspond to
the positive or negative energy flat bands, and the sites
correspond to the labels of the different bulk cages, except
at the boundaries of the ladder, where the sites correspond
to the edge cages (see Fig. 5). All the possible interactions,
including the ones at the edges, are represented by wavy
lines. We also include the nearest-neighbor intra- and
interleg tunneling, which arises from interpreting the
imbalance Eq. (15) within this virtual ladder.
In addition to this effective tunneling and repulsion, we

also find correlated tunneling processes of two types. We
obtain a pair-tunneling Hamiltonian,

Vpt ¼ ~J
X

N−1

i¼2

½w†

i−1;þwi−1;−ðw†
i;−wi;þ þ w†

i;þwi;−Þ� þ H:c:;

ð37Þ

where ~J ¼ −Vv=4. The first term in the parentheses
describes how fermions confined in adjacent ABC of
opposite legs tunnel simultaneously to empty neighboring
cages, and can be understood as the anticorrelated pair
tunneling of Fig. 5. The second term in parentheses
describes how fermions confined in adjacent Aharonov-
Bohm cages on the same leg tunnel simultaneously to
empty neighboring cages, and can be understood as the
correlated pair tunneling of Fig. 5. In addition, we also
obtain an interleg density-dependent tunneling,

Vdt ¼ Td

X

N−1

i¼2

ðni−1;þ þ ni−1;− − niþ1;þ − niþ1;−Þw†
i;þwi;−

þ 2Tdðnlw†

1;þw1;− − nrw
†

N−1;þwN−1;−Þ þ H:c:; ð38Þ

where Td ¼ Vv=4 is the tunneling strength. The first line
describes an interleg tunneling within the bulk of the ladder
that depends on the density difference of the neighboring

FIG. 5. Nonstandard Hubbard terms in the Aharonov-Bohm cage basis. Virtual ladder structure to represent the relevant processes in
the Creutz-Hubbard ladder. The two legs of the ladder correspond to the two possible flat bands at energies ε� ¼ �2~t, with sites
representing the bulk Aharonov-Bohm cages Eq. (10). The two boundary sites represent the two zero-energy modes εl ¼ εr ¼ 0 and
their corresponding edge cages Eq. (11). The imbalance of the original Creutz-Hubbard ladder Eq. (15) leads to standard intra- and
interleg tunneling, but also to edge-bulk tunneling processes represented by curved arrows and with strengths proportional to timb. The
Hubbard interaction Eq. (35) can be decomposed into nearest-neighbor interactions of strength proportional to Vv that are represented by
wavy lines and involve two adjacent bulk cages in any possible leg, or adjacent edge-bulk ones. Nonstandard Hubbard terms involving a
pair tunneling also arise, where pairs of fermions tunnel simultaneously either from the same leg (correlated tunneling) or from opposite

legs (anticorrelated tunneling) of the ladder with amplitude ~J. Finally, we also describe a density-dependent interleg tunneling of
amplitude amplitude Td, where the fermion tunneling depends on the density of fermions populating the Aharonov-Bohm cage at the
neighboring edge.
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Aharonov-Bohm cages, and is negligible for a ground state
with translationally invariant bulk properties. On the other
hand, the second line describes interleg tunnelings that
occur at the boundaries of the Creutz-Hubbard ladder, and
depend on the density of the edge ABC (see Fig. 5). These
terms are not negligible for translational-invariant bulks
and will play a key role in the topological phase transitions
of the model.
As shown in this section, the flat-band physics of the

Creutz-Hubbard ladder provides an alternative route to the
physics of nonstandard Hubbard models, which typically
arise in optical lattices as a consequence of dipolar
interactions or higher orbitals [74]. In the present case,
these nonstandard terms arise due to the interplay of
interactions and the flatness of the bands, which yield

HπCH ¼ HFB þ V imb þ Vnn þ Vpt þ Vdt; ð39Þ

with the terms introduced in Eqs. (12), (15), and (36)–(38).
At first sight, this formulation leads to a Hamiltonian
[Eq. (39)] that seems more complicated than the original
one [Eq. (3)]. However, as we show below, it is an ideal
starting point to calculate an effective boundary theory for
the topological edge states, based on which one can
understand possible topological phase transitions as the
imbalance and/or interactions are increased.

1. Bulk-mediated broadening and edge-to-edge tunneling

As a warm-up to the discussion of the model for
intermediate interactions, let us discuss how to derive an
effective boundary theory in the noninteracting limit
Vv ¼ 0. In Sec. III A, we have already discussed how
the imbalance Eq. (15) may induce a quantum phase
transition at ðΔε=~tÞjc ¼ 4 that can be understood through
a topological invariant Eq. (7) of the bulk bands. We now
discuss how an effective boundary theory, derived via the
above nonstandard Hubbard Hamiltonian Eq. (39), yields
an alternative description of such a phase transition.
The Hamiltonian Eq. (3) can be rearranged as follows,

HπC ¼ Hedge þHbulk þHb−e, where

Hedge ¼ εll
†lþ εrr

†r ð40Þ

stands for the Hamiltonian of the zero-energy edge modes.
The bulk part of the Hamiltonian can be expressed as
follows:

Hbulk ¼
X

i;α

εαw
†
i;αwi;α

þ
X

N−1

i¼2

timbðw†

i−1;þ − w†

i−1;−Þðwi;þ þ wi;−Þ; ð41Þ

which is readily diagonalized by a Fourier transform
considering periodic boundary conditions wN;α ¼ w1;α.

This leads to the energy bands in Eq. (8), where the
quasimomentum lies in the Brillouin zone q ∈ ð−π; π�,
and there is a total of 2N single-particle modes. To
approximately solve the two-leg Creutz ladder with open
boundary conditions, we build on the solution of an open
single chain. We note that the bands in our ladder fulfill
εα½ðπ=2Þ þ q� ¼ εα½ðπ=2Þ − q�, which allows us to combine
modes with momenta ðπ=2Þ � q to construct ABC momen-
tum operators via standing waves that respect the open
boundary conditions of a finite ladder wN;α ¼ w0;α ¼ 0.
Note that the −q solutions of the problem with periodic
boundary conditions are implicitly considered in the þq
solutions. Together with the fact that the q ¼ 0, π modes of
the periodic solution yield trivial standing waves, this forces
us to enlarge the number of sites in the problemwith periodic
boundary conditions N − 1 → 2N, such that the allowed
momenta become qn ¼ ð2π=N − 1Þn→ qn ¼ ðπ=NÞn.
The transformation that approximately diagonalizes the
bulk Hamiltonian Eq. (41) is

�

wþðqnÞ
w−ðqnÞ

�

¼
ffiffiffiffi

2

N

r

X

N−1

j¼1

e−iðπ=2Þj sinðqnjÞ
�

wj;þ

wj;−

�

: ð42Þ

Using these operators, the bulk Hamiltonian for the ladder
with open ends approximately becomes

Hbulk ≈
X

N−1

n¼1

Ψ
†ðqnÞBðqnÞ · σΨðqnÞ; ð43Þ

where BðqnÞ ¼ ½0; ðΔε=2Þ cos qn; 2~tþ ðΔε=2Þ sin qn�, and
we introduce new spinors ΨðqnÞ ¼ (wþðqnÞ; w−ðqnÞ)t.
Diagonalizing this Hamiltonian leads to the curved energy

bands Eq. (8), such that Hbulk ¼
P

n;ααεðqnÞγ†αðqnÞγαðqnÞ
[75], where we introduce

γþðqnÞ ¼ þu�qnwþðqnÞ þ vqnw−ðqnÞ;
γ−ðqnÞ ¼ −v�qnwþðqnÞ þ uqnw−ðqnÞ; ð44Þ

together with the following constants,

uqn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðqnÞ þ ζðqnÞ
2εðqnÞ

s

; vqn ¼ eiϕn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðqnÞ − ζðqnÞ
2εðqnÞ

s

;

ð45Þ

and ζðqnÞ¼2~tþðΔε=2Þsinqn, eiϕn ¼ −isgn½cosðqnÞ�. We
note that by using the periodic bulk energies Eq. (8), our
approximation is essentially introducing an intensive con-
tribution coming from the added bonds at the ends of the
ladder.
Finally, the imbalance Eq. (15) also induces a bulk-edge

coupling that can be understood as a hybridization between
the edge and bulk orbitals:
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Hb−e ¼
X

n;α

ðgln;αl† þ grn;αr
†ÞγαðqnÞ þ H:c: ð46Þ

To obtain the correct bulk-edge couplings gηn;α, note that the
connection between the solutions of the periodic and open
chains requires enlarging the number of sites of the periodic
chain. To preserve the distance between the edges, one
must change the site indexes of operators that form the
edge-bulk coupling Eq. (15), and leads to

gln;þ ¼ −
Δε

2
ffiffiffiffi

N
p sin qnðuqn − vqnÞ;

gln;− ¼ −
Δε

2
ffiffiffiffi

N
p sin qnðu�qn þ v�qnÞ;

grn;þ ¼ Δε

2
ffiffiffiffi

N
p ð−iÞðN−1Þ=2 sin

�

1

2
qnðN − 1Þ

�

ðuqn þ vqnÞ;

grn;− ¼ Δε

2
ffiffiffiffi

N
p ð−iÞðN−1Þ=2 sin

�

1

2
qnðN − 1Þ

�

ðv�qn − u�qnÞ:

ð47Þ

Interestingly, the Hamiltonian of the Creutz ladder in this
formulation, Hedge þHbulk þHb−e, is similar to a non-
interacting two-impurity Fano-Anderson model [76],
where the impurities correspond to the modes localized
at the edges of the Creutz ladder, and the gapless metallic
bands are substituted by gapped bulk bands also described
by free fermions. This analogy yields an insightful inter-
pretation of the topological quantum phase transition
at ðΔε=~tÞjc ¼ 4.
Interpreting the dispersive bulk bands as reservoirs, the

hybridization can have two effects: (i) the zero-energy
edge modes η ¼ l, r may get shifted and broadened,
εη ¼ 0 → Δεη − iΓη=2, and (ii) the bulk fermions mediate
an edge-to-edge tunneling. Because of the particle-hole
symmetry of the bands, the level shifts cancel, Δεη ¼ 0,
such that the poles representing the edge excitations always
correspond to zero energy. On the other hand, the broad-
ening can be expressed as Γη ¼

P

αJη;αðεηÞ, where we
introduce the spectral density for the coupling of the edge
states to the bulk bands:

JηαðωÞ ¼ 2π
X

n

jgηn;αj2δ(ω − αεðqnÞ): ð48Þ

Accordingly, the broadening of the levels depends on the
value of the spectral function at zero energy, Γη ¼
P

αJηαð0Þ. For Δε < 4~t, the bulk bands Eq. (8) remain
gapped, and thus Jηαð0Þ ¼ 0, such that Γl ¼ Γr ¼ 0, and
the edge modes thus remain in-gap bound states. As noted
previously, there will be a bulk-mediated tunneling between
these in-gap modes:

He−e ¼ teer
†lþ H:c:; ð49Þ

where we introduce the tunneling strength,

tee ¼
X

n;α

grn;αðgln;αÞ�
αεðqnÞ

: ð50Þ

Provided that the bulk bands Eq. (8) remain gapped, this
edge-edge tunneling will decrease exponentially with the
edge-to-edge distance, such that the topological degeneracy
of the ground states Eq. (13) is preserved in the thermo-
dynamic limit. Conversely, whenΔε ¼ 4~t, the gap vanishes
and the exponential localization of the edge states dis-
appears. Moreover, the bulk density of states at zero energy
does not vanish anymore, such that Jηαð0Þ ≠ 0, and the
edge modes become broadened resonances Γη > 0 instead
of the previous bound states.
It is very instructive to understand how the onset of a

topological phase transition can be predicted by looking at
the effective theory for the edges. This will become very
useful in the presence of interactions, where a simple
interpretation in terms of observables associated to a
topological invariant Eq. (7) for noninteracting systems
cannot be applied. Additionally, this result also underlies
the importance of preserving all the orbitals in the effective
description in terms of ABC, and not simply projecting to
the low-energy flat band when trying to describe flat-band
effects in fermionic topological insulators.

2. Bulk-mediated dephasing and edge-edge interactions

Let us now derive an effective boundary theory in
the balanced interacting model (Δε ¼ 0) for intermediate
interactionsVv=~t. Therefore, we must analyze the following
part, HπCH ¼ HFB þ Vnn þ Vpt þ Vdt, of the Hamiltonian
Eq. (39). Although the pair and density-dependent tunnel-
ings in Eqs. (37) and (38) modify the distribution of particle-
hole pairs in the rungs of the virtual ladder (see Fig. 5), the
nearest-neighbor interactions Eq. (36) do not change, since
the number of neighboring ABC that are occupied is
preserved under such processes. Therefore, in this limit,
the nearest-neighbor interactions Eq. (36) can be substituted
by a c number, and only the flat band Eq. (12) and the
correlated-tunneling terms Eqs. (37) and (38) have an
important effect on the noninteracting ground states
Eq. (13). Moreover, as argued below Eq. (38), only the
density-dependent tunneling at the edges of the ladder will
play a role to determine the order of the translationally
invariant ground states.
According to this discussion, we can rearrange these

terms as HπCH ¼ Hedge þHbulk þHb−e, where the edge
Hamiltonian coincides with Eq. (40) for the noninteracting
imbalanced case. In contrast, the bulk Hamiltonian is no
longer described by a quadratic fermionic model, but
instead by quartic terms that can be understood as some
effective spin exchange. This becomes apparent after
introducing the suð2Þ algebra,
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~Tx
i ¼

1

2
ðw†

i;þwi;− þ w†
i;−wi;þÞ;

~Tz
i ¼

1

2
ðw†

i;þwi;þ − w†
i;−wi;−Þ; ð51Þ

which should not be confused with the strong-coupling
orbital spin operators of Eq. (31). With this notation, the
bulk Hamiltonian becomes

Hbulk ¼
Vv

4
N þ

X

N−1

i¼1

4~t ~Tz
i þ

X

N−1

i¼2

4~J ~Tx
i−1

~Tx
i ; ð52Þ

where ~J ¼ −Vv=4, which corresponds to a ferromagnetic
Ising model in a transverse field. This model can be solved
exactly for periodic boundary conditions [72] by means of a
Jordan-Wigner transformation [60], namely,

~Tz
i ¼ f†i fi −

1

2
; ~Tx

i ¼
1

2
f†i e

iπ
P

j<i
f†
j
fj þ H:c:; ð53Þ

where f†i ¼ ðfiÞ† are spinless fermionic operators.
Considering periodic boundary conditions fN ¼ f1,
we would obtain the energy bands for single-particle
excitations,

~ε�ðqÞ ¼ �~εðqÞ ¼ �2j ~Jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~f
2
− 2~f cos q

q

; ð54Þ

where we introduce the flatness parameter ~f ¼ 8~t=Vv, such
that we recover perfect flat bands in the noninteracting
regime Vv ¼ 0. Here, the quasimomentum is defined
within a halved Brillouin zone q ∈ ð0; π�, such that there
is a total ofN single-particle modes. Let us remark that, just
by looking at this effective theory of the bulk, one would
predict a standard quantum phase transition at jJj ¼ 2~t onto
an orbital ferromagnet that can be described by a local order
parameter. However, this theory would predict a featureless
disordered phase for jJj < 2~t, and thus completely miss the
topological features of the model. It is thus of paramount
importance to include the boundary ABC in the full
description.
To prepare for that,we use a similar approximation to treat

the bulk as in the previous section. We note that the above
energies have the symmetry ~εαðþqÞ ¼ ~εαð−qÞ, such that we
can move back to the entire Brillouin zone, and construct
ABC momentum operators that respect the open boundary
conditions fN ¼ f0 ¼ 0 of a finite ladder by combining the
�q solutions of the periodic chain. In this case, in order to
recover theN single-particle modes, and taking into account
that theq ¼ πmodeyields a trivial sandingwave,we need to
enlarge the number of sites in the problem with periodic
boundary conditions N − 1→ N, such that the allowed
momenta become qn ¼ ð2π=N − 1Þn → qn ¼ ð2π=NÞn,
with n ∈ f1;…; 1

2
Ng. Accordingly, the mapping

�

fðþqnÞ
f†ð−qnÞ

�

¼
ffiffiffiffi

2

N

r

X

N−1

j¼1

sinðqnjÞ
 

fj

f†j

!

ð55Þ

transforms the bulk Hamiltonian Eq. (52) approximately
into

Hbulk ≈
X

N=2

n¼1

~Ψ
†ðqnÞ ~BðqnÞ · σ ~ΨðqnÞ; ð56Þ

where ~BðqnÞ¼ð0;−2~Jsinqn;4~tþ2~JcosqnÞ, and ~ΨðqnÞ ¼
(fðqnÞ; f†ð−qnÞ)t are the Nambu spinors. Diagonalizing
this Hamiltonian leads to the bulk curved energy bands

Eq. (54), such thatHbulk ¼
P

n;αα~εðqnÞ~γ†αðqnÞ~γαðqnÞ, where
we introduce

~γþðqnÞ ¼ þ ~u�qnfðqnÞ þ ~vqnf
†ð−qnÞ;

~γ−ðqnÞ ¼ −~v�qnfðqnÞ þ ~uqnf
†ð−qnÞ; ð57Þ

together with the following constants,

uqn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~εðqnÞ þ ~ζðqnÞ
2~εðqnÞ

s

; vqn ¼ ei
~ϕn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~εðqnÞ − ~ζðqnÞ
2~εðqnÞ

s

;

ð58Þ

and ~ζðqnÞ ¼ 2~tþ ~J cos qn, e
i ~ϕn ¼ isgn½sinðqnÞ�. In contrast

to the single-particle bulk excitations in the imbalanced case
Eq. (44), the fermionic operators Eq. (57) now describe
Bogoliubov fermionic excitations [77]. We note again that
by using the periodic bulk energies, our approximation is
essentially introducing an intensive contribution coming
from the added bonds at the ends of the ladder.
Finally, the bulk-edge coupling corresponds to a spin-

density interaction:

Hb−e ¼ Vvðnl ~Tx
1 − nr ~T

x
N−1Þ: ð59Þ

We can express this interaction in terms of the Bogoliubov
excitations, after using the above Jordan-Wigner trans-
formation, together with Eqs. (55) and (57). In a first
approximation, we neglect the Jordan-Wigner string, which
allows us to derive a bulk-edge coupling that is analogous
to the imbalance-induced hybridization Eq. (46), namely,

Hb−e ¼
X

n;α

ð~gln;αl†l − ~grn;αr
†rÞ~γαðqnÞ þ H:c: ð60Þ

Once again, in order to obtain the correct bulk-edge
couplings ~g

η
n;α, we have to consider that the connection

between the modes of the periodic and open chain require
enlarging the number of lattice sites, and thus changing the
indexing of the operators in the edge-bulk coupling. This
leads to
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~gln;þ ¼ þ Vv
ffiffiffiffiffiffiffi

2N
p sin qn ~uqn ;

~gln;− ¼ −
Vv
ffiffiffiffiffiffiffi

2N
p sin qn ~vqn ;

~grn;þ ¼ þ Vv
ffiffiffiffiffiffiffi

2N
p sin½qnðN − 1Þ� ~uqn ;

~grn;− ¼ −
Vv
ffiffiffiffiffiffiffi

2N
p sin½qnðN − 1Þ�~vqn : ð61Þ

Accordingly, the Creutz-Hubbard ladder in this formu-
lation, HπCH ¼ Hedge þHbulk þHb−e, becomes again sim-
ilar to a noninteracting two-impurity Fano-Anderson model
[76]. In this case, the gapless metallic bands in the Fano-
Anderson model are substituted by gapped bands of
Bogoliubov fermions Eq. (57) due to the lack of conserva-
tion of the number of Jordan-Wigner fermions. The bulk-
edge hybridization Eq. (46) is substituted by a bulk-edge
coupling Eq. (60) that does not conserve the number of
Jordan-Wigner fermions either, and depends on the pop-
ulation of the edge modes. This analogy allows us to predict
the onset of a topological quantum phase transition in the
Creutz ladder caused solely by the Hubbard interactions.
Interpreting once more the dispersive bulk bands as

reservoirs, the bulk-edge coupling can have two effects:
(i) the zero-energy edge modes η ¼ l, r may get shifted

εη ¼ 0 → εη ¼ Δεη and dephased with a rate ~Γη=2, and
(ii) the bulk Bogoliubov excitations can mediate an edge-
edge interaction (i.e., density-density interactions between
the edge fermions mediated by spin-wave-type excitations).
In analogy to the imbalance-induced broadening Eq. (48),

the dephasing rate can be expressed as ~Γη ¼
P

α
~JηαðεηÞ,

where we introduce the spectral density for the new bulk-
edge coupling:

~JηαðωÞ ¼ 2π
X

n

j~gn;αj2δ(ω − α~εðqnÞ): ð62Þ

Accordingly, the dephasing of the superposition states
depends on the value of this spectral function at zero

energy, ~Γη ¼
P

α
~Jηαð0Þ. For Vv=4 < 2~t, the bulk bands

Eq. (54) remain gapped, and thus Jηαð0Þ ¼ 0, such that
there is no dephasing. In this regime, there are only level
shifts and edge-edge interactions described by

He−e ¼ Δεlnl þ Δεrnr þUeenlnr; ð63Þ

where we introduce

Δεη ¼ −
X

n;α

j~gηn;αj2
εðqnÞ

; Uee ¼
X

n;α

~gln;α ~g
r
n;α

εðqnÞ
þ c:c: ð64Þ

Let us note that, in contrast to the imbalanced case, the
particle-hole symmetry does not impose the vanishing of

the level shifts. Because of the different bulk-edge cou-
pling, these shifts depend on the filling of the Bogoliubov
levels for the bulk ground state jgbulki ¼ ~γ†−ðq1Þ~γ†−ðq2Þ � � �
~γ†−ðqN−1Þj0Bi, where j0Bi is the Bogoliubov vacuum, and
thus do not vanish.
If we now use a similar argument as for the imbalance-

induced quantum phase transition, we find that (i) the
bulk-mediated edge-edge interaction has no effect on the
degenerate ground state Eq. (13), since both edge modes
are not populated simultaneously for a half-filled system,
and (ii) although the zero modes are shifted in energy, the
topological degeneracy is preserved, Δεl ¼ Δεr, and no
dephasing occurs provided that the Bogoliubov excitations
remain gapped. Conversely, when j ~Jj ¼ 2~t, or equivalently,
Vv ¼ 8~t, dephasing takes place signaling that the edge
modes are not well-defined single-particle excitations. This
argument thus locates the critical point of the interaction-
induced quantum phase transition at ðVv=~tÞjc ¼ 8, which is
represented by a red circle in the phase diagram of Fig. 1.

E. Phase diagram of the Creutz-Hubbard ladder

Our considerations in the above sections has already
allowed us to determine the possible phases of themodel and
their phase boundaries in certain parameter regimes. In the
following, we lay out the full phase diagram of the model in
the ½ðΔε=~tÞ; ðVv=~tÞ� plane using DMRG calculations.
Our DMRG code is based on matrix product states and

uses a two-site optimization scheme. It is built on the
Abelian Symmetric Tensor Networks Library (developed in
collaboration with the group of Montangero in Ulm) and
capable of implementing multiple Abelian symmetries,
such as particle-number conservation. We consider lattices
up to N ¼ 256 sites and virtual bond dimensions of up
to m ¼ 200.
The analytic and numerical results for the phase diagram,

collected in Fig. 1, are described in the following sections.

1. Topological insulator to orbital paramagnet

phase transition

As shown in Sec. III B, the mapping of the Creutz ladder
onto a quantum Ising ladder allows us to predict a critical
line Eq. (29) separating the topological insulator (TI) and
the orbital paramagnet (OPM) for sufficiently weak inter-
actions. This critical line is represented by a red dashed line
that starts to form the point Δε ¼ 4~t, Vv ¼ 0 in Fig. 1.
The Ising transverse magnetization, or, equivalently, the

density imbalance between the legs of the Creutz ladder
Eq. (28), can serve as a good indicator for this quantum
phase transition that can be easily calculated numerically
using the DMRG code. We can determine the critical line
by studying the divergence of the imbalance susceptibility,
χΔn ¼ ∂hΔni=∂ðΔε=~tÞ [Fig. 6 (top)].
As an alternative means of identifying the TI phase, we

can study the behavior of the ground-state degeneracy in
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the Creutz-Hubbard model with variable filling. We there-
fore introduce the single- and two-particle energy gaps

Δ ¼ lim
N→∞

1

2
½EðN þ 2Þ þ EðN − 2Þ − 2EðNÞ�; ð65Þ

δ ¼ lim
N→∞

½EðN þ 1Þ þ EðN − 1Þ − 2EðNÞ�; ð66Þ

where EðxÞ is the ground-state energy of a system with x
particles. It can be shown that the two quantities coincide
for gapless systems (Δ ¼ δ ¼ 0) and conventional insula-
tors (Δ ¼ δ ≠ 0). In a topological insulator, however, δ ¼ 0

due to the presence of zero-energy edge modes whileΔ ≠ 0

measures (half) the band gap. In Fig. 6 (bottom), we show
that the predicted behavior is indeed observed.

The critical points obtained through these different
observables are represented by yellow stars in the left-
hand part of Fig. 1. As can be seen from these results, the
analytical prediction of the phase boundary Eq. (29) is
reasonably accurate even for quite large interactions, where
the exact critical line given by DMRG departs from a
straight line, and bends up.

2. Orbital ferromagnet to orbital

paramagnet phase transition

In Sec. III C, we introduce an effective orbital Ising
model in the limit of very strong interactions, which allows
us to predict a critical line Eq. (33) separating the orbital
ferromagnet (OFM) and orbital paramagnet (OPM). This
critical line is represented by a yellow dashed line in Fig. 1.
Indeed, by measuring the paramagnetic and ferromag-

netic magnetization [hTz
i i and hT

y
i i in Eq. (31)], we confirm

that these quantities scale equally, and identify the phase-
transition point also for finite interactions (Fig. 7).
Technically, we determine the paramagnetic magnetization
by measuring the fermionic observable that defines Tz

i ,
which is proportional to the leg density imbalance
discussed above [see Eq. (31)]. In order to avoid problems
due to incomplete symmetry breaking when studying the
ferromagnetic order parameter hTy

i i (i.e., between the
possible alignments in the ferromagnetic phase), we deter-
mine instead the zero-momentum component of the orbital
magnetic structure factor,

STyTy
ðkÞ ¼ 1

N2

X

i;j

eikði−jÞhTy
iT

y
ji; ð67Þ

which yields the desired ferromagnetic magnetization in the
thermodynamic limit, hTy

i i ¼ ½STyTy
ð0Þ�1=2.

We observe for both quantities an Ising-like scaling,
which differs from the strong-coupling prediction only by a
renormalization of the critical point and of the maximum
ferromagnetic magnetization (cf. Fig. 7).
The critical points obtained through these magnetiza-

tions are represented by yellow stars in the right-hand part
of Fig. 1. As can be seen from these results, the analytical
prediction of the phase boundary Eq. (29) is reasonably
accurate even for moderate interactions.

3. Topological insulator to orbital ferromagnet

phase transition

In Sec. III D, we derive an interesting connection
between the balanced Creutz-Hubbard ladder for inter-
mediate interactions and a Fano-Anderson-type model,
which allows us to predict the extension of the topological
phase along the ½0; ðVv=~tÞ� axis of the phase diagram until a
critical point ðVv=~tÞ ¼ 8. Beyond this point, the long-range
ordered orbital Ising magnet sets in, and the topological

FIG. 6. Paramagnetic susceptibility and energy gaps along the
TI-OPM transition. Top: The divergence of the magnetization
susceptibility χΔn with growing system size indicates the critical
point for a cut through the phase diagram at Vv ¼ 4.0 (left-hand
inset: occupation imbalanceΔn; right-hand inset: fitted finite-size
scaling of the susceptibility maxima assuming up to second-order
corrections, ΔεcðNÞ ¼ Δεcð1þ aN−1 þ bN−2Þ). Bottom: The
dashed lines show the finite-size results for the energy gap Δ,
which is nonzero in both the TI and the OPM phase. The quantity
δ (solid lines), on the contrary, is zero in the TI phase due to the
presence of zero-energy modes, but achieves a nonvanishing
value in the OPM phase. Blue, N ¼ 8; orange, N ¼ 16; green,
N ¼ 32; red, N ¼ 64; violet, N ¼ 128; brown, N ¼ 256. The
vertical line (black) indicates the transition point (Δεc ¼ 1.857).
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edge modes disappear into the bulk. This critical point is
represented by a red circle in Fig. 1.
The numerical analysis (Fig. 8) confirms the validity of

the effective Ising model derived in Eq. (52), and the exact
location of this critical point. Moreover, in the case of finite
imbalance (Δε ≠ 0), the divergence of the paramagnetic
susceptibility serves as a criterion for the determination of
the phase boundary (see inset Fig. 8). The critical points
obtained by these means are represented by yellow stars in
the middle part of Fig. 1.

4. Conformal field theories for the critical lines

and entanglement spectrum for the phases

Thus far, we have used a conventional condensed-matter
approach to explore numerically the phase diagram of the
model, which is based on exploiting energy gaps, suscep-
tibilities, and correlation functions to identify phases with

long-range order or symmetry-protected topological
phases, and critical lines that separate them. An alternative
approach, based on the ground-state entanglement, has
recently become a complementary method to understand
the phase diagram of quantum many-body models [78]. For
instance, the pairwise concurrence “susceptibility” can
serve as a probe to localize quantum critical points [79],
displaying a scaling behavior similar to that of certain
observables in the more conventional condensed-matter
approach. Other entanglement measures can also serve as
probes of quantum criticality, as occurs for the block
entanglement entropy SðlÞ ¼ −Trfρl log ρlg, where ρl ¼
TrL−lfjεgsihεgsjg is the reduced density matrix of the left
block with l sites for a bipartition of a chain of L sites.
Remarkably enough, not only does the block entanglement
entropy serve as a probe of criticality due to its divergence
at a phase transition, but its scaling with the system size
also reveals the central charge c of the conformal field
theory underlying the critical behavior [80,81]. For a
critical system with open boundary conditions, the block
entanglement entropy scales as

SðlÞ ¼ c

6
ln

�

2L

π
sin

πl

L

�

þ a; ð68Þ

where we introduce a nonuniversal constant a. Since such
entanglement entropy can be easily recovered from our
MPS numerical results, calculating the central charge of the
different critical lines of our phase diagram can serve as an
additional confirmation of our previous derivations.
In Sec. III B, we argue that the synthetic Creutz ladder

for sufficiently weak interactions can be understood
as a couple of Ising models of length L ¼ N with a

FIG. 7. Ferromagnetic and paramagnetic magnetization along
the OFM-OPM transition. Top: Paramagnetic magnetization
susceptibility for a cut through the phase diagram at Vv ¼ 16~t
and different system sizes [inset: fitted finite-size scaling of the
susceptibility maxima assuming up to second-order corre-
ctions, ΔεcðNÞ ¼ Δεcð1þ aN−1 þ bN−2Þ]. Bottom: Ferromag-
netic magnetization along the same line. Blue, N ¼ 8; orange,
N ¼ 16; green, N ¼ 32; red, N ¼ 64; violet, N ¼ 128. The light
blue vertical line (dashed) in the top figure indicates the critical
point (here, Δεc=~t ¼ 0.266). The black dashed curves indicate
the analytical predictions of an Ising model with the same critical
point (and a saturation of the ferromagnetic magnetization
hTy

i imax ¼ 0.48). The effective Ising model in Eq. (31) suggests
Δεc=~t ¼ 0.25 and hTy

i imax ¼ 0.5.

FIG. 8. Paramagnetic magnetization susceptibility along the
TI-OFM transition. Blue, N ¼ 8; orange, N ¼ 16; green,
N ¼ 32; red, N ¼ 64; violet, N ¼ 128; brown, N ¼ 256.
The black dashed lines indicate the TD result in a TFIM model.
Inset: The finite-size scaling of the maxima of the susceptibility
yields ðVv=~tÞc;num ¼ 8.003 [here, fitted via Vv;c;numðNÞ ¼
Vv;c;numð1þ aN−1Þ], in good agreement with the analytical result
ðVv=~tÞc ¼ 8.
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renormalized transverse field. Accordingly, the corres-
ponding CFT should have central charge of c ¼ 1=2þ
1=2 ¼ 1, such that we would expect the scaling SðlÞ ¼
1

6
ln ½ð2N=πÞ sinðπl=NÞ� þ a. This is a natural connection to

the noninteracting regime of Sec. III, wherewe argue that the
phase transition can be understood in terms of aDirac fermion
with a Wilson mass in lattice gauge theories. This Wilson
fermion becomes massless at the critical point, and corre-
sponds to the CFT of a single massless Dirac fermion with
central charge c ¼ 1.
For the strongly interacting regime of Sec. III C, we

show that the OFM-OPM quantum phase transition can be
predicted in terms of a single Ising model of length L ¼ N
in a transverse field. Accordingly, the corresponding CFT
should have central charge of c ¼ 1=2, and SðlÞ ¼
1

12
ln ½ð2N=πÞ sinðπl=NÞ� þ ~a. In contrast to the previous

case, the critical phenomenon is governed by the CFT of a
single Majorana fermion with central charge c ¼ 1=2.
Finally, in the intermediate interacting regime of Sec. III D,

we argue that the relevant physics to understand the TI-OFM
phase transition is by approximating a complicated non-
standard Hubbard model with a simpler quantum impurity
model for the edges coupled to a bulk of spins described by
yet another Ising model of L ¼ N − 1 sites in a transverse
field. Technically, however, we determine the entanglement
entropy between the N physical sites in the original basis and
therefore measure SðlÞ ¼ 1

12
ln ½ð2N=πÞ sinðπl=NÞ� þ a0 for

a system of length L ¼ N, corresponding to the CFT of a
single Majorana fermion with a central charge of c ¼ 1=2.
We confirm the above predictions through the numerical

determination of the central charge along the critical lines
in three representative cases (see Fig. 9). We find central
charge values agreeing with c ¼ 1=2 for the TI-OFM and
the OFM-OPM transition. The charge c ¼ 1 along the
TI-OPM transition originates from the hybrid nature of the
Ising model describing it [see Eq. (20)]. Building on these
results, we depict the central charges of the three critical
lines of our phase diagram in Fig. 1. Interestingly, the
massless Dirac fermion c ¼ 1 governing the topological
phase transition TI-OPM for sufficiently weak interactions
is split into a pair of massless Majorana fermions c ¼ 1

2
þ 1

2

at the tricritical point, each of which governs the critical
properties of the TI-OFM and OFM-OPM quantum phase
transitions, respectively. At this tricritical point, the central
charge is conserved, and the two Majorana fermions paired
to yield the Dirac fermion governing the TI-OPM phase
transition become unpaired and describe individually the
critical properties of the two other phase transitions of
the model.
In the previous sections, we provide several indicators of

the nontrivial topological nature of the TI phase, such as the
resilience of the zero-energy edge modes as interactions are
switched on (see Sec. III D), or the different single- and two-
particle gaps [Eq. (66)] that distinguish topological and
nontopological phases (see Sec. III E). Let us now provide

further evidence by using entanglement properties of the
ground state. In particular, a strong signature of the presence
of topological order can be extracted from the study of the
entanglement spectrum (ES) [82]. Similarly to the case of
the entanglement entropy, to define the ES we take a

FIG. 9. Scaling of the entanglement entropy for critical points
on the different transition lines. The prefactor c in SðlÞ ¼
ðc=6Þ ln½ð2N=πÞ sinðπl=NÞ� þ const identifies the central charge
of a critical phase. Here, we show the entanglement entropy in
systems with N sites and fit the data for N=4 < l ≤ N=2. The
fitting results for the TI-OPM transition yield c ¼ 1.003 for
Vv=~t ¼ 4.0, Δε=~t ¼ 1.857, N ¼ 128 (blue line), the OFM-OPM
transition yield c ¼ 0.524 for Vv=~t ¼ 16, Δε ¼ 0.266, N ¼ 128

(green line), and the TI-OFM transition yield c ¼ 0.503 for
Vv=~t ¼ 0, Δε=~t ¼ 8, N ¼ 256 (yellow line). All these numerical
fits agree considerably well with the model predictions
c ∈ f1; 1=2; 1=2g.

FIG. 10. Degeneracies of the entanglement spectrum for differ-
ent phases. For a ladder of length L ¼ 128 and for a bipartition in
the half chain, the 20 lower eigenvalues of the ES are depicted
for the three different phases. The dots represent the degeneracy
of the corresponding eigenvalue. In the TI phase, for Vv=~t ¼ 4

and Δε=~t ¼ 1.5 the eigenvalues are all doubly degenerate. In the
OPM phase, for Vv=~t ¼ 4 and Δε=~t ¼ 2, and in the OFM phase
for Vv=~t ¼ 9 and Δε=~t ¼ 0.2, almost all the eigenvalues are not
degenerate. We find the same behavior elsewhere in phase space.
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bipartition of the ladder and the resulting Schmidt decom-
position of the ground state jψi ¼

P

iλijψ i
Li ⊗ jψ i

L−li,
where jψ i

Li and jψ i
L−li are basis vectors of the two parts,

satisfying the orthogonality condition hψ j
l jψ i

L−li ¼ δij,
whereas the λi are the Schmidt values. By convention, the
ES is defined as a logarithmic rescaling of the Schmidt
values, −2 logðλiÞ, and it can be again extracted straight-
forwardly fromMPS calculations. As originally pointed out
in Ref. [83] in the context of the characterization of the
Haldane phase of Heisenberg-type magnets, the degeneracy
of the ES robustly identifies the symmetries protecting the
topological phase. As shown in Fig. 10 in the imbalanced
Creutz-Hubbardmodel, the ES in the TI phase clearly shows
doubly degenerate eigenvalues, whereas in the OPM and
OFM phases the ES is trivial and almost completely non-
degenerate. This supports the topological nature of the wide
region of the phase diagram labeled as TI (see Fig. 1), and
demonstrates that the topological insulating phase survives
to considerably strong interactions.

IV. SYNTHETIC CREUTZ-HUBBARD LADDER

In this section,we discuss an experimental setup capable of
implementing the imbalanced Creutz-Hubbard Hamiltonian
Eq. (3).We focus on a particular set ofmicroscopic couplings
that can be realized with ultracold atoms in optical lattices by
exploiting the tools of laser-assisted tunneling.

A. Cold-atom Creutz-Hubbard ladder

We consider a cubic state-independent optical lattice that
traps a two-component atomic gaswithhyperfine states j↑i ¼
jF ¼ I − 1

2
;Mi; j↓i ¼ jF0 ¼ I þ 1

2
;M0i [see Fig. 11(a)]. In

the Wannier basis, the Hamiltonian corresponds to the
standard Hubbard model [25], namely,

H ¼
X

N

i¼1

X

σ¼↑;↓

�

−tf†iþ1;σfi;σ þ
εσ

2
ni;σ þ H:c:

�

þ
X

i

U↑↓ni;↑ni;↓; ð69Þ

where the fermionic operators f†i;σ; fi;σ create and annihilate
an atom in the electronic state σ at site i of the lattice, and
ni;σ ¼ f†i;σfi;σ are the number operators. In this equation, t is
the tunneling strength of atoms between neighboring poten-
tial wells along the x axis, εσ stand for the energies of the
electronic levels, and U↑↓ corresponds to the on-site inter-
action strength due to s-wave scattering. As customary [22],
tunnelings and interactions of a longer range, as well as
tunnelings along the y and z axes, are neglected in this
expression. This is justified for sufficiently deep optical
lattices V0;y; V0;z ≫ V0;x ≫ ER, where V0α are the corre-
sponding amplitudes of the optical potential VðrÞ ¼
P

α¼x;y;zV0α sin
2ðkrαÞ, ER ¼ k2=2m is the recoil energy,

and k is the wave vector of the retroreflected laser beams
forming the optical lattice. In this regime, the parameters of
Eq. (69) can be expressed as

t ¼ 4ER
ffiffiffi

π
p

�

V0;x

ER

�

3=4

e−2
ffiffiffiffiffiffiffiffiffiffiffi

V0x=ER

p
;

U↑↓ ¼
ffiffiffi

8

π

r

ka↑↓ER

�

V0xV0yV0z

ER

�

1=4

; ð70Þ

where a↑↓ is the s-wave scattering length for the collision of
two atoms in the two different hyperfine states.
The first step towards a possible implementation of the

Creutz-Hubbard model based on Eq. (69) is to represent the
legs of the ladder by the two hyperfine states [84,85] [see
Fig. 11(b)]. This might be interpreted as the smallest

(a) (b) (c)

FIG. 11. Ladder scheme for a binary hyperfine mixture of ultracold atoms in an optical lattice. (a) Atoms in two hyperfine
states, j↑i ¼ jF ¼ I − 1

2
;Mi (blue circles) and j↓i ¼ jF0 ¼ I þ 1

2
;M0i (red circles), are trapped at the minima of an optical lattice.

At low temperatures, the kinetic energy of the atoms can be described as tunneling of strength −t between the lowest energy levels
ε↑; ε↓ of neighboring potential wells. Additionally, the s-wave scattering of the atoms leads to contact interactions of strength
U↑↓ whenever two fermionic atoms of different internal state meet on the same potential well. (b) Ladder representation of the
binary mixture, where each hyperfine state corresponds to a different leg of the ladder. The tunneling (on-site energy) is represented
by solid lines linking neighboring (same) sites within each leg, whereas the on-site interactions are represented by wavy lines
among two neighboring sites that belong to different legs. (c) Creutz-Hubbard model obtained by including a Peierls phase in the
intraleg tunnelings −t → � − the

�iθ, and introducing interleg tunnelings −td represented by solid lines along diagonal rungs of the
ladder.
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possible synthetic dimension along which real [86] or
complex [87] tunnelings can be implemented via Raman
transitions, leading to recent experiments realizing syn-
thetic gauge fields [54,55]. Unfortunately, the Creutz ladder
involves more-complicated tunnelings [see Fig. 11(c)] that
cannot be directly obtained using this scheme. One pos-
sibility to implement the required tunnelings could be to
combine bichromatic optical lattices with additional Raman
transitions and a staggered optical potential, which allows
for a very flexible toolbox to realize spin-dependent
tunnelings [85]. However, in view of the success
of experimental schemes based on periodic modulation
of the lattice [32,33] that can be understood in terms of
Floquet engineering [88], we hereby present an alternative
scheme to achieve the desired Hamiltonian combining
periodic modulations with a generalization of the
Raman-assisted scheme [27] applied to a spin-independent
optical lattice.

1. State-independent energy gradient

We consider a linear energy gradient that tilts the
optical lattice independently of the hyperfine state. Such
a linear gradient can be obtained by accelerating the
lattice, or by exploiting the ac-Stark effect, and yields

Htilt ¼
X

i;σ

Δif†i;σfi;σ: ð71Þ

Note that we have considered the regime Δ ≪ V0x, such
that the gradient does not modify the intersite terms of
the original Hubbard model Eq. (69), but only leads to
the local on-site term Eq. (71) in the Wannier basis.
Moreover, we impose t ≪ Δ, such that the tilt inhibits
the original intraleg tunneling in Fig. 11(b). The goal
now is to reactivate the tunneling against this gradient,
by generalizing the ideas of schemes based on Raman

transitions [27], or on periodic modulations [89] with
additional shallower optical lattices [32].

2. Raman-assisted tunneling

We consider three additional laser beams. These lead to a
couple of Raman two-photon excitations that assist the
interleg tunnelings [see Fig. 12(a)]. A first pair of laser beams
with frequencies ω1, ω2 assists the interleg tunnelings in
Fig. 12(b) by virtually populating an excited state. The effect
of the lasers is twofold: they provide the energy to overcome
the potential offset in the tunneling process ω1 − ω2 ¼
ðε↓ − ε↑Þ þ Δ, and they also induce a recoil kick δk ¼
ðk1 − k2Þ · ex along the x axis, thus allowing the tunneling to
occur (i.e., overlap of neighboring Wannier functions). The
other pair of laser beams assists the interleg tunneling in
Fig. 12(c) provided that ω1 − ω3 ¼ ðε↑ − ε↓Þ þ Δ, also

yielding a recoil kick δ~k ¼ ðk1 − k3Þ · ex. Altogether, these
Raman-assisted terms lead to

HRaman ¼
X

i

1

2
ðΩf†iþ1;↓fi;↑ þ ~Ωf†iþ1;↑fi;↓Þ þ H:c:; ð72Þ

where we introduce the Raman-assisted tunneling
strengths

Ω¼Ω12e
−ðπ=4Þ

ffiffiffiffiffiffiffiffiffiffiffi

V0x=ER

p
; ~Ω¼Ω13e

−ðπ=4Þ
ffiffiffiffiffiffiffiffiffiffiffi

V0x=ER

p
; ð73Þ

which are expressed in terms of the respective two-photon
Rabi frequencies Ω12, Ω13 corresponding to the particular
Raman transition, and an exponential term due to the laser-
assisted overlap of the neighboring Wannier orbitals, which
has been calculated using a Gaussian approximation. We
consider the limit where the Raman-assisted tunneling

strengths are set to be equal Ω ¼ ~Ω. To arrive at these
expressions, we consider again the regime of deep optical

lattices, and that δk · λ ¼ 2πn, δ~k · λ ¼ 2π ~n, where n, ~n ∈ Z

(a) (b) (c)

FIG. 12. Raman-assisted tunneling scheme for a binary hyperfine mixture of ultracold atoms in an optical lattice. (a) Atoms in a given
hyperfine state from the ground-state manifold nS1=2 can tunnel to the neighboring potential well changing its hyperfine state by means
of a Raman transition that virtually populates an excited state from the manifolds nP1=2, nP3=2. (b) The interleg tunneling of j↑i (blue
circles) to j↓i (red circles) is mediated by a pair of lasers providing the energy necessary to overcome the offset
ω1 − ω2 ¼ ðε↓ − ε↑Þ þ Δ, and a recoil kick to assist the tunneling. (c) The interleg tunneling of j↓i (red circles) to j↑i (blue circles)
is mediated by a pair of lasers providing the energy necessary to overcome the offset ω1 − ω3 ¼ ðε↑ − ε↓Þ þ Δ, and a recoil kick to
assist the tunneling.
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and λ is the wavelength of the retroreflected laser beam that
leads to the original optical lattice. This can be achieved by
controlling the angle of the Raman lasers with respect to the x
axis. More importantly, we assume that the two-photon Rabi
frequencies fulfil jΩ12j; jΩ13j ≪ Δ, such that on-site Raman
transitions are highly off resonant, and can be neglected.
Let us note that, by avoiding a state-dependent optical

lattice that traps each of the two components differently, our
scheme is not subjected to the heating problems that
become especially troublesome for fermionic atoms [90].

3. Intensity-modulated optical lattice

To obtain the complex horizontal hopping in Fig. 11(c),
we must reactivate the intraleg tunneling inhibited by the
lattice tilting [Eq. (71)] and dress it with the correct Peierls
phases. This can be achieved by introducing a periodic
driving provided by an additional optical lattice with a
modulated intensity [see Fig. 13(a)], namely,

Hdriving ¼
X

i;σ

Vd;σðtÞ sin2ðkdx0i Þf†i;σfi;σ; ð74Þ

where the intensity of the ac-Stark shifts for each of the
hyperfine states is modulated periodically in time,
Vd;σðtÞ ¼ Vd;0 sinðωd;σt − ϕσÞ, with frequency ωd;σ and a
phase ϕσ . In analogy with the lattice tilting Eq. (71), we
assume that the amplitude fulfills Vd;0 ≪ V0x, such that we
can neglect any periodic modulation on the bare tunneling
of the original Hubbard model Eq. (70), and consider
instead a periodic driving of the on-site energies Eq. (74).
More importantly, since this lattice must be very shallow,
one can minimize the scattering of photons from the excited
state in the calculation of the two-photon ac-Stark shift,
which can lead to the aforementioned problematic heating
effects in the opposite regime of deep state-dependent
optical lattices [90]. As an interesting alternative, we note
that a time-dependent magnetic-field gradient [91] can also

be exploited to obtain state-dependent time-periodic
modulations.

4. Effective Creutz-Hubbard Hamiltonian

Now that the ingredients have been introduced, let us
show how the synthetic Creutz-Hubbard model is obtained.
If the wavelength of this intensity-modulated lattice is twice
that of the original lattice, λd ¼ 2λ, only the even sites will
be subjected to the periodic modulation [see Fig. 13(a)].
Moreover, if the resonance condition is met, namely,
nωd;σ ¼ Δ for n ∈ Z, the nearest-neighbor tunneling can
be restored by absorbing energy quanta from the periodic
drive. By setting ωd;σ ¼ Δ=2, the intraleg tunnelings
acquire the phase of the corresponding drivings [see
Figs. 13(b) and 13(c)], and lead to

Hh ¼ −tJ2

�

Vd;0

Δ

�

X

i;σ

e−i2ϕσf†iþ1;σfi;σ þ H:c:; ð75Þ

whereJ2ðxÞ is the second-order Bessel function of the first
class. Let us note that the phases of the periodic modu-
lations must fulfil ϕ↑ ¼ −ϕ↓, and that the Raman-assisted
tunneling Eq. (72) will get off-resonantly modified by this
driving, leading to the final interleg tunneling,

Hd ¼
Ω

2
J0

�

Vd;0

Δ

�

X

i

ðf†iþ1;↓fi;↑ þ f†iþ1;↑fi;↓Þ þ H:c:;

ð76Þ

where J0ðxÞ is the zero-order Bessel function. We finally
note that the on-site Raman transitions, which were
previously neglected under a rotating-wave approximation
jΩ12j; jΩ13j ≪ Δ, can also become activated due to the
intensity-modulated lattice. This contributes with a spuri-
ous vertical interleg tunneling:

(a) (b) (c)

FIG. 13. Photon-assisted tunneling scheme for a binary hyperfine mixture of ultracold atoms in an optical lattice. (a) Atoms in a given
hyperfine state can tunnel to the neighboring potential well preserving its hyperfine state by absorbing energy from an additional optical
lattice whose intensity is periodically modulated. (b) The intraleg tunneling of j↑i (blue circles) is activated by the weak modulated
lattice with ωd;↑ ¼ Δ=2, such that the tunneling picks the modulation phase e−i2ϕ↑ . (c) The intraleg tunneling of j↓i (red circles) is

activated by the weak modulated lattice with ωd;↓ ¼ Δ=2, such that the tunneling picks the modulation phase e−i2ϕ↓ .
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Hv ¼
Ω12

2
J2

�

2Vd;0

Δ
sin

�

1

2
ðϕ↑ − ϕ↑Þ

��

X

i

f†
2i;↓f2i;↑

þ H:c: ð77Þ

At this point we should stress that the above derivation does
not pose any constraint on the ratio Vd;0=Δ. Hence, we can
set this ratio such that we hit a zero of the corresponding
Bessel function, e.g., 2Vd;0 sinðϕ↑ − ϕ↑=2Þ ¼ 5.1356Δ,
which yields a coherent destruction of the spurious tunnel-
ing against the energy offset [92], such that we can make
Hv ≈ 0.
All the ingredients discussed so far combine to give

us the desired laser-assisted tunneling that implements
the Creutz-ladder kinetic Hamiltonian HC ¼ Hh þHd

[Eq. (1)]. This becomes clear after the mapping

fi;↑ → ci;u; fi;↓ → ci;d; ð78Þ

and the associated identification of the Creutz-ladder
parameters with the microscopic cold-atom ones:

th ¼þtJ2

�

Vd;0

Δ

�

; θ ¼ 2ϕ↑; td ¼ −
Ω

2
J0

�

Vd;0

Δ

�

:

ð79Þ

In addition, if the Raman beams in Eq. (72) are slightly
detuned from the resonance, we would have an addi-
tional term,

Hlocal ¼
δ

2

X

i

ðf†i;↑fi;↑ − f†i;↓fi;↓Þ; ð80Þ

where δ is the Raman detuning, and we work in a
rotating frame. By identifying

Δε ¼ δ

2
; ð81Þ

we obtain the last ingredient of the kinetic energy,
namely, the leg imbalance in Eq. (5).
So far, we have been concerned with only the kinetic

term of the Creutz ladder. As studied for other types of
periodic drivings, Refs. [93,94] or Refs. [32,95], the
Hubbard interactions present in the microscopic model
Eq. (69) may have an important impact in the dressed
tunnelings if they modify the resonance conditions. In this
work, we assume that such resonances are avoided, which
permits mapping the s-wave scattering of the cold atoms
Eq. (69) onto the required Hubbard interaction of the
Creutz ladder Eq. (2) directly:

Vv ¼ U↑↓; Vh ¼ 0: ð82Þ

We have thus finished with the derivation of the syn-
thetic Creutz-Hubbard model in the cold-atom setup. To

summarize, one can explore the properties of the imbal-
anced Creutz-Hubbard Hamiltonian in Eq. (3) by applying
a laser-assisted-tunneling scheme to a two-component gas
of fermionic atoms loaded 1D optical lattice, such that the
components play the role of the two legs of the ladder
[Eq. (78)]. The Hamiltonian parameters can be controlled
experimentally using the mappings in Eqs. (79), (80), and
(82), together with the expressions (70) and (73), as a
guiding principle. The particular Hamiltonian Eq. (3) with
~t ¼ tJ0ðVd;0=ΔÞ, Δε ¼ δ=2, and Vv ¼ U↑↓ is obtained by
tuning the ratio of the bare and Raman tunnelings
t=Ω ¼ −2J0ðVd;0=ΔÞ=J2ðVd;0=ΔÞ, such that the strength
of the inter- and intraleg tunnelings is equal, and by fixing
the phases such that ϕ↑ ¼ π=4 ¼ −ϕ↓ leads to a net π flux.

V. CONCLUSIONS AND OUTLOOK

In this work, we advance the understanding of the
competition between topological features and interaction
effects in quantum many-body systems. By focusing on the
paradigmatic Creutz-Hubbard ladder, we develop a variety
of analytical tools and perform a thorough numerical
analysis, unveiling characteristic features and general
methods that could be applied to other strongly correlated
topological insulators or superconductors. Moreover, our
predictions can be readily tested in tabletop experiments
with ultracold fermionic atoms in optical lattices, which
may serve as quantum simulators of interacting topological
phases.
By using a pair of electronic states of the atoms as

synthetic legs of the ladder, and by exploiting laser-assisted
tunneling to control their dynamics, we show that the
physics of a variant of the Creutz ladder can be imple-
mented in a one-dimensional optical lattice. Such a variant
is obtained by applying a Zeeman splitting between the two
legs of the ladder, which puts the system into the AIII class
of topological insulators. To the best of our knowledge,
topological insulators in such a symmetry class have not yet
been realized in cold-atom experiments. Moreover, by
adding on-site repulsive interactions only, we can induce
phase transitions of different universality classes into an
orbital ferro- or paramagnetic phase. Surprisingly, we find
that the expected Dirac CFT transition line at weak
interactions splits into two Majorana CFT critical lines,
once the Hubbard term dominates over the Zeeman term:
these findings are also numerically supported by the scaling
of entanglement entropy. In addition, we provide an
understanding of these topological phase transitions in
the language of quantum impurity physics, shedding new
light on the hybridization mechanism of the edge states.
Finally, we identify experimentally accessible signatures to
test our theoretical predictions.
From the above results, we are convinced that the

synthetic Creutz-Hubbard ladder can become a workhorse
in the theoretical and experimental study of correlated
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topological insulators, as it allows for a very neat under-
standing of the underlying phase diagram and a clear path
to implement the model with ultracold atoms. This could be
helpful in order to gain even deeper insight into the
tricritical point, serving as a guide to construct an effective
quantum field theory that describes the mechanism under-
lying the splitting of the central charge into the two critical
lines. It would be very interesting to study the imbalanced
Creutz-Hubbard model at different fillings, and to explore
the possibility of finding topological phases of matter that
disappear for vanishing interactions. In this respect, the
analytic and numerical methods hereby presented may be
generalized to other fillings, allowing one to go beyond
mean-field arguments that support the existence of such
interesting ground states.

ACKNOWLEDGMENTS

We thank L. Mazza and M. Burrello for critical reading
of the paper before submission, L. Tarruell for interesting
discussions on the experimental details, and L. Tagliacozzo
and J. Stasinska for fruitful discussions. J. J. thanks
Studienstiftung des deutschen Volkes for financial support.
M. R. thanks the KITP Santa Barbara for hospitality within
the Visiting Program “Synthetic Quantum Matter,” during
which part of the manuscript writing was performed. A. B.
acknowledges support from Spanish MINECO Project
No. FIS2015-70856-P, and CAM PRICYT Project
QUITEMAD+S2013/ICE-2801. A. P., S.-J. R., and M. L.
acknowledge financial support from Fundació Cellex, from
the European Union (ERC-2013-AdG Grant No. 339106
OSYRIS, FP7-ICT-2011-9 No. 600645 SIQS, H2020-
FETPROACT-2014 No. 641122 QUIC, FP7/2007–2013
Grant No. 323714 Equam), from Spanish MINECO Project
(FIS2013-46768-P FOQUS, SEV-2015-0522 Severo
Ochoa), from the Generalitat de Catalunya (2014 SGR
874), and from CERCA Programme/Generalitat de
Catalunya. Some of the MPS simulations were run by
J. J. and M. R. on the Mogon cluster of the JGU (made
available by the CSM and AHRP), with a code based on a
flexible Abelian Symmetric Tensor Networks Library,
developed in collaboration with the group of S.
Montangero at the University of Ulm.

[1] X. Wen, From the Origin of Sound to an Origin of Light and
Electrons, Quantum Field Theory of Many-Body Systems
(Oxford University Press, New York, 2004).

[2] A. Y. Kitaev, Fault-Tolerant Quantum Computation by
Anyons, Ann. Phys. (Amsterdam) 303, 2 (2003); C. Nayak,
A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian
Anyons and Topological Quantum Computation, Rev. Mod.
Phys. 80, 1083 (2008).

[3] K. Klitzing, G. Dorda, and M. Pepper, New Method
for High-Accuracy Determination of the Fine-Structure

Constant Based on Quantized Hall Resistance, Phys.
Rev. Lett. 45, 494 (1980).

[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional
Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).

[5] B. I. Halperin, Quantized Hall Conductance, Current-
Carrying Edge States, and the Existence of Extended States
in a Two-Dimensional Disordered Potential, Phys. Rev. B
25, 2185 (1982).

[6] C. L. Kane and M. P. A. Fisher, in Perspectives in Quantum
Hall Effects: Novel Quantum Liquids in Low-Dimensional
Semiconductor Structures, edited by S. Das Sarma and A.
Pinczuk (Wiley-VCH Verlag, Weinheim, 2004).

[7] F. D. M. Haldane, Model for a Quantum Hall Effect
without Landau Levels: Condensed-Matter Realization of
the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[8] A. Y. Kitaev, Unpaired Majorana Fermions in Quantum
Wires, Phys. Usp. 44, 131 (2001).

[9] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802
(2005).

[10] A. Altland and M. R. Zirnbauer, Nonstandard Symmetry
Classes in Mesoscopic Normal-Superconducting Hybrid
Structures, Phys. Rev. B 55, 1142 (1997); A. P. Schnyder,
S. Ryu S, A. Furusaki, and A.W.W. Ludwig, Classification
of Topological Insulators and Superconductors in Three
Spatial Dimensions, Phys. Rev. B 78, 195125 (2008); A. Y.
Kitaev, Periodic Table for Topological Insulators and
Superconductors, AIP Conf. Proc. 1134, 22 (2009).

[11] See M. Z. Hasan and C. L. Kane, Colloquium: Topological
Insulators, Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi and
S.-C. Zhang, Topological Insulators and Superconductors,
Rev. Mod. Phys. 83, 1057 (2011), and references therein.

[12] M. König, S.Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum
Spin Hall Insulator State in HgTe Quantum Wells, Science
318, 766 (2007).

[13] D. Hsieh, Q. Dong, A. L. Wray, Y. Xia, Y. Hor, R. Cava, and
M. Z. Hasan, A Topological Dirac Insulator in a Quantum
Spin Hall Phase, Nature (London) 452, 970 (2008).

[14] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
Fermions in Hybrid Superconductor-Semiconductor
Nanowire Devices, Science 336, 1003 (2012).

[15] D. R. Hofstadter, Energy Levels and Wave Functions of
Bloch Electrons in Rational and Irrational Magnetic Fields,
Phys. Rev. B 14, 2239 (1976).

[16] See M. Hohenadler and F. F. Assaad, Correlation Effects
in Two-Dimensional Topological Insulators, J. Phys. Con-
dens. Matter 25, 143201 (2013), and references therein.

[17] R. B. Laughlin, Anomalous Quantum Hall Effect: An
Incompressible Quantum Fluid with Fractionally Charged
Excitations, Phys. Rev. Lett. 50, 1395 (1983).

[18] See I. Bloch, J. Dalibard, and W. Zwerger, Many-Body
Physics with Ultracold Gases, Rev. Mod. Phys. 80, 885
(2008), and references therein.

[19] See M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen, and U. Sen, Ultracold Atomic Gases in Optical
Lattices: Mimicking Condensed Matter Physics and Be-
yond, Adv. Phys. 56, 243 (2007), and references therein.

J. JÜNEMANN et al. PHYS. REV. X 7, 031057 (2017)

031057-22

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1038/nature06843
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1088/0953-8984/25/14/143201
https://doi.org/10.1088/0953-8984/25/14/143201
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1080/00018730701223200


[20] See I. Bloch, J. Dalibard, and S. Nascimbène, Quantum
Simulations with Ultracold Quantum Gases, Nat. Phys. 8,
267 (2012), and references therein.

[21] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Boson Localization and the Superfluid-Insulator
Transition, Phys. Rev. B 40, 546 (1989).

[22] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P.
Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev.
Lett. 81, 3108 (1998).

[23] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Quantum Phase Transition from a Superfluid to a
Mott Insulator in a Gas of Ultracold Atoms, Nature
(London) 415, 39 (2002).

[24] J. Hubbard, Electron Correlations in Narrow Energy
Bands, Proc. R. Soc. A 276, 238 (1963).

[25] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D.
Lukin, High-Temperature Superfluidity of Fermionic Atoms
in Optical Lattices, Phys. Rev. Lett. 89, 220407 (2002).

[26] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T.
Esslinger, A Mott Insulator of Fermionic Atoms in an
Optical Lattice, Nature (London) 455, 204 (2008); U.
Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch,
T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch,Metallic
and Insulating Phases of Repulsively Interacting Fermions
in a 3D Optical Lattice, Science 322, 1520 (2008).

[27] D. Jaksch and P. Zoller, Creation of Effective Magnetic
Fields in Optical Lattices: The Hofstadter Butterfly for Cold
Neutral Atoms, New J. Phys. 5, 56 (2003).

[28] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A.
Martin-Delgado, M. Lewenstein, and I. B. Spielman, Real-
istic Time-Reversal Invariant Topological Insulators with
Neutral Atoms, Phys. Rev. Lett. 105, 255302 (2010).

[29] K. Wilson, in New Phenomena in Subnuclear Physics,
edited by A. Zichichi (Plenum, New York, 1977).

[30] See N. Goldman, G. Juzeliunas, P. Öhberg, and I. B.
Spielman, Light-Induced Gauge Fields for Ultracold Atoms,
Rep. Prog. Phys. 77, 126401 (2014), and references therein.

[31] See N. Goldman, J. C. Budich, and P. Zoller, Topological
Quantum Matter with Ultracold Gases in Optical Lattices,
Nat. Phys. 12, 639 (2016), and references therein.

[32] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, Realization of the Hofstadter
Hamiltonian with Ultracold Atoms in Optical Lattices,
Phys. Rev. Lett. 111, 185301 (2013); H. Miyake, G. A.
Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle,
Realizing the Harper Hamiltonian with Laser-Assisted
Tunneling in Optical Lattices, Phys. Rev. Lett. 111,
185302 (2013); M. Atala, M. Aidelsburger, M. Lohse,
J. T. Barreiro, B. Paredes, and I. Bloch, Observation of
Chiral Currents with Ultracold Atoms in Bosonic Ladders,
Nat. Phys. 10, 588 (2014); M. Aidelsburger, M. Lohse, C.
Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R.
Cooper, I. Bloch, and N. Goldman, Measuring the Chern
Number of Hofstadter Bands with Ultracold Bosonic Atoms,
Nat. Phys. 11, 162 (2015).

[33] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Experimental Reali-
zation of the Topological Haldane Model with Ultracold
Fermions, Nature (London) 515, 237 (2014); N. Fläschner,
B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann,

K. Sengstock, and C. Weitenberg, Experimental Recon-
struction of the Berry Curvature in a Floquet Bloch Band,
Science 352, 1091 (2016).

[34] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
Resonances in Ultracold Gases, Rev. Mod. Phys. 82, 1225
(2010).

[35] M. Creutz, End States, Ladder Compounds, and Domain-
Wall Fermions, Phys. Rev. Lett. 83, 2636 (1999).

[36] See U. Schollwoeck, The Density-Matrix Renormalization
Group in the Age of Matrix Product States, Ann. Phys.
(Amsterdam) 326, 96 (2011), and references therein.

[37] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in
Polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).

[38] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and I. Bloch, Direct Measurement of
the Zak Phase in Topological Bloch Bands, Nat. Phys. 9,
795 (2013).

[39] M. Creutz and I. Horváth, Surface States and Chiral
Symmetry on the Lattice, Phys. Rev. D 50, 2297 (1994).

[40] D. B. Kaplan, A Method for Simulating Chiral Fermions on
the Lattice, Phys. Lett. B 288, 342 (1992).

[41] H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a
Lattice: (I). Proof by Homotopy Theory, Nucl. Phys. B185,
20 (1981); Absence of Neutrinos on a Lattice: (II). Intuitive
Topological Proof, Nucl. Phys. B193, 173 (1981).

[42] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M.
Lewenstein, and M. A. Martin-Delgado, Wilson Fermions
and Axion Electrodynamics in Optical Lattices, Phys. Rev.
Lett. 105, 190404 (2010).

[43] See D. Xiao, M.-C. Chang, and Q.Niu, Berry Phase Effects
on Electronic Properties, Rev. Mod. Phys. 82, 1959 (2010),
and references therein.

[44] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys.
Rev. Lett. 62, 2747 (1989).

[45] M. Tovmasyan, E. van Nieuwenburg, and S. D. Huber,
Geometry-Induced Pair Condensation, Phys. Rev. B 88,
220510(R) (2013).

[46] S. Takayoshi, H. Katsura, N. Watanabe, and H. Aoki, Phase
Diagram and Pair Tomonaga-Luttinger Liquid in a Bose-
Hubbard Model with Flat Bands, Phys. Rev. A 88, 063613
(2013).

[47] S. D. Huber and E. Altman, Bose Condensation in Flat
Bands, Phys. Rev. B 82, 184502 (2010).

[48] M. Tovmasyan, S. Peotta, P. Törmä, and S. D. Huber,
Effective Theory and Emergent SU(2) Symmetry in the Flat
Bands of Attractive Hubbard Models, Phys. Rev. B 94,
245149 (2016).

[49] D. Sticlet, L. Seabra, F. Pollmann, and J. Cayssol, From
Fractionally Charged Solitons to Majorana Bound States in
a One-Dimensional Interacting Model, Phys. Rev. B 89,
115430 (2014).

[50] L. Mazza, M. Aidelsburger, H.-H. Tu, N. Goldman, and M.
Burrello, Methods for Detecting Charge Fractionalization
and Winding Numbers in an Interacting Fermionic Ladder,
New J. Phys. 17, 105001 (2015).

[51] See S. A. Parameswaran, R. Roy, and S. L. Sondhi, Frac-
tional Quantum Hall Physics in Topological Flat, C.R.
Phys. 14, 816 (2013), and references therein.

[52] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler,
Interferometric Approach to Measuring Band Topology

EXPLORING INTERACTING TOPOLOGICAL … PHYS. REV. X 7, 031057 (2017)

031057-23

https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1038/nature07244
https://doi.org/10.1126/science.1165449
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevLett.105.255302
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.83.2636
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1103/PhysRevD.50.2297
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1103/PhysRevLett.105.190404
https://doi.org/10.1103/PhysRevLett.105.190404
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.88.220510
https://doi.org/10.1103/PhysRevB.88.220510
https://doi.org/10.1103/PhysRevA.88.063613
https://doi.org/10.1103/PhysRevA.88.063613
https://doi.org/10.1103/PhysRevB.82.184502
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1103/PhysRevB.89.115430
https://doi.org/10.1088/1367-2630/17/10/105001
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1016/j.crhy.2013.04.003


in 2D Optical Lattices, Phys. Rev. Lett. 110, 165304 (2013);
F. Grusdt, D. Abanin, and E. Demler, Measuring Z2

Topological Invariants in Optical Lattices Using Interfer-
ometry, Phys. Rev. A 89, 043621 (2014).

[53] J. Vidal, R. Mosseri, and B. Doucot, Aharonov-Bohm Cages
in Two-Dimensional Structures, Phys. Rev. Lett. 81, 5888
(1998).

[54] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Observation of Chiral Edge States with Neutral
Fermions in Synthetic Hall Ribbons, Science 349, 1510
(2015).

[55] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Visualizing Edge States with an Atomic Bose Gas
in the Quantum Hall Regime, Science 349, 1514 (2015).

[56] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith,
and Z. Hadzibabic, Bose-Einstein Condensation of Atoms in
a Uniform Potential, Phys. Rev. Lett. 110, 200406 (2013);
A. L. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic,
Critical Dynamics of Spontaneous Symmetry Breaking in a
Homogeneous Bose Gas, Science 347, 167 (2015); L.
Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C.
Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon,
Quench-Induced Supercurrents in an Annular Bose Gas,
Phys. Rev. Lett. 113, 135302 (2014).

[57] N. Goldman, J. Beugnon, and F. Gerbier, Detecting Chiral
Edge States in the Hofstadter Optical Lattice, Phys. Rev.
Lett. 108, 255303 (2012).

[58] T. D. Stanescu, V. Galitski, and S. Das Sarma, Topological
States in Two-Dimensional Optical Lattices, Phys. Rev. A
82, 013608 (2010).

[59] E. Fradkin and L. Susskind, Order and Disorder in Gauge
Systems and Magnets, Phys. Rev. D 17, 2637 (1978); J. B.
Kogut, An Introduction to Lattice Gauge Theory and Spin
Systems, Rev. Mod. Phys. 51, 659 (1979).

[60] P. Jordan and E. Wigner, Über das Paulische Äquivalenz-
verbot, Z. Phys. 47, 631 (1928).

[61] J. H. Taylor and G. Müller, Magnetic Field Effects in the
Dynamics of Alternating or Anisotropic Quantum Spin
Chains, Physica (Amsterdam) 130A, 1 (1985).

[62] F. Grusdt, N. Y. Yao, D. Abanin, M. Fleischhauer, and E.
Demler, Interferometric Measurements of Many-Body
Topological Invariants Using Mobile Impurities, Nat.
Commun. 7, 11994 (2016).

[63] I. Carusotto, Bragg Scattering and the Spin Structure
Factor of Two-Component Atomic Gases, J. Phys. B 39,
S211 (2006).

[64] J. H. Drewes, L. A. Miller, E. Cocchi, C. F. Chan, N. Wurz,
M. Gall, D. Pertot, F. Brennecke, and M. Köhl, Antiferro-
magnetic Correlations in Two-Dimensional Fermionic
Mott-Insulating and Metallic Phases, Phys. Rev. Lett.
118, 170401 (2017).

[65] K. Eckert, O. Romero-Isart, M. Rodriguez, M. Lewenstein,
E. S. Polzik, and A. Sanpera, Quantum Non-Demolition
Detection of Strongly Correlated Systems, Nat. Phys. 4, 50
(2008).

[66] D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt,
F. Huber, G. Ji, and M. Greiner, Site-Resolved Imaging of a
Fermionic Mott Insulator, Science 351, 953 (2016);
M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,

L. Pollet, I. Bloch, and C. Gross, Spin- and Density-
Resolved Microscopy of Antiferromagnetic Correlations
in Fermi-Hubbard Chains, Science 353, 1257 (2016).

[67] P. W. Anderson, New Approach to the Theory of Super-
exchange Interactions, Phys. Rev. 115, 2 (1959).

[68] L.-M. Duan, E. Demler, and M. D. Lukin, Controlling Spin
Exchange Interactions of Ultracold Atoms in Optical
Lattices, Phys. Rev. Lett. 91, 090402 (2003).

[69] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and
I. Bloch, Time-Resolved Observation and Control of Super-
exchange Interactions with Ultracold Atoms in Optical
Lattices, Science 319, 295 (2008).

[70] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T.
Esslinger, Short-Range Quantum Magnetism of Ultracold
Fermions in an Optical Lattice, Science 340, 1307
(2013); R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T.
Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse,
and R. G. Hulet, Observation of Antiferromagnetic Corre-
lations in the Hubbard Model with Ultracold Atoms, Nature
(London) 519, 211 (2015).

[71] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t=U

Expansion for the Hubbard Model, Phys. Rev. B 37, 9753
(1988).

[72] P. Pfeuty, The One-Dimensional Ising Model with a
Transverse Field, Ann. Phys. (N.Y.) 57, 79 (1970).

[73] N. N. Bogoliubov, On a New Method in the Theory of
Superconductivity, Sov. Phys. JETP, 7, 41 (1958) [Nuovo
Cimento Soc. Ital. Fis. 6, 794 (1958)].

[74] See O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S.
Lhmann, B. A. Malomed, T. Sowiski, and J. Zakrzewski,
Non-Standard Hubbard Models in Optical Lattices: A
Review, Rep. Prog. Phys. 78, 066001 (2015), and references
therein.

[75] The energies of the bulk bands for the finite chain can
differ from those of the periodic chain by an intensive
quantity related to the missing bond timb connecting the
edges. In the thermodynamic limit N → ∞, this difference
will be irrelevant for any extensive observable, or any
quantity that depends on a sum over all possible bulk
energies.

[76] P. W. Anderson, Localized Magnetic States in Metals, Phys.
Rev. 124, 41 (1961); U. Fano, Effects of Configuration
Interaction on Intensities and Phase Shifts, Phys. Rev. 124,
1866 (1961).

[77] N. N. Bogoliubov, On a New Method in the Theory of
Superconductivity, Sov. Phys. JETP, 7, 41 (1958) [Nuovo
Cimento Soc. Ital. Fis. 6, 794 (1958)].

[78] See L. Amico, R. Fazio, A. Osterloh, and V. Vedral,
Entanglement in Many-Body Systems, Rev. Mod. Phys.
80, 517 (2008), and references therein.

[79] T. Osborne and M. Nielsen, Entanglement in a Simple
Quantum Phase Transition, Phys. Rev. A 66, 032110
(2002); A. Osterloh, L. Amico, G. Falci, and R. Fazio,
Scaling of Entanglement Close to a Quantum Phase
Transition, Nature (London) 416, 608 (2002).

[80] G. Vidal, J. Latorre, E. Rico, and A. Kitaev, Entanglement in
Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003); P. Calabrese and J. Cardy, Entanglement Entropy
and Quantum Field Theory, J. Stat. Mech. (2004) P06002.

J. JÜNEMANN et al. PHYS. REV. X 7, 031057 (2017)

031057-24

https://doi.org/10.1103/PhysRevLett.110.165304
https://doi.org/10.1103/PhysRevA.89.043621
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1126/science.1258676
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.108.255303
https://doi.org/10.1103/PhysRevLett.108.255303
https://doi.org/10.1103/PhysRevA.82.013608
https://doi.org/10.1103/PhysRevA.82.013608
https://doi.org/10.1103/PhysRevD.17.2637
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1007/BF01331938
https://doi.org/10.1016/0378-4371(85)90096-2
https://doi.org/10.1038/ncomms11994
https://doi.org/10.1038/ncomms11994
https://doi.org/10.1088/0953-4075/39/10/S20
https://doi.org/10.1088/0953-4075/39/10/S20
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1038/nphys776
https://doi.org/10.1038/nphys776
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRevLett.91.090402
https://doi.org/10.1126/science.1150841
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1038/nature14223
https://doi.org/10.1038/nature14223
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1038/416608a
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002


[81] See P. Calabrese and J. Cardy, Entanglement Entropy and
Conformal Field Theory, J. Phys. A 42, 504005 (2009), and
references therein.

[82] H. Li and F. D. M. Haldane, Entanglement Spectrum as a
Generalization of Entanglement Entropy: Identification of
Topological Order in Non-Abelian Fractional Quantum
Hall Effect States, Phys. Rev. Lett. 101, 010504 (2008).

[83] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,
Entanglement Spectrum of a Topological Phase in One
Dimension, Phys. Rev. B 81, 064439 (2010).

[84] A. Bermudez, D. Patane, L. Amico, and M. A. Martin-
Delgado, Topology-Induced Anomalous Defect Production
by Crossing a Quantum Critical Point, Phys. Rev. Lett. 102,
135702 (2009).

[85] L. Mazza, A. Bermudez, N. Goldman, M. Rizzi, M. A.
Martin-Delgado, and M. Lewenstein, An Optical-Lattice-
Based Quantum Simulator for Relativistic Field Theories
and Topological Insulators, New J. Phys. 14, 015007
(2012).

[86] O. Boada, A. Celi, M. Lewenstein, and J. I. Latorre,
Quantum Simulation of an Extra Dimension, Phys. Rev.
Lett. 108, 133001 (2012).

[87] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B.
Spielman, G. Juzeliunas, and M. Lewenstein, Synthetic
Gauge Fields in Synthetic Dimensions, Phys. Rev. Lett.
112, 043001 (2014).

[88] See A. Eckardt, Colloquium: Atomic Quantum Gases in
Periodically Driven Optical Lattices, Rev. Mod. Phys. 89,
011004 (2017), and references therein.

[89] A. Bermudez, T. Schätz, and D. Porras, Synthetic Gauge
Fields for Vibrational Excitations of Trapped Ions, Phys.
Rev. Lett. 107, 150501 (2011); P. Hauke, O. Tieleman,

A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg,
P. Windpassinger, K. Sengstock, M. Lewenstein, and A.
Eckardt, Non-Abelian Gauge Fields and Topological
Insulators in Shaken Optical Lattices, Phys. Rev. Lett.
109, 145301 (2012).

[90] F. Gerbier and J. Dalibard, Gauge Fields for Ultracold
Atoms in Optical Superlattices, New J. Phys. 12, 033007
(2010).

[91] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and
T. Esslinger, Creating State-Dependent Lattices for Ultra-
cold Fermions by Magnetic Gradient Modulation, Phys.
Rev. Lett. 115, 073002 (2015).

[92] K. Drese and M. Holthaus, Ultracold Atoms in Modulated
Standing Light Waves, Chem. Phys. 217, 201 (1997); C.
Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O.
Morsch, and E. Arimondo, Observation of Photon-Assisted
Tunneling in Optical Lattices, Phys. Rev. Lett. 100, 040404
(2008).

[93] R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, and M.
Greiner, Photon-Assisted Tunneling in a Biased Strongly
Correlated Bose Gas, Phys. Rev. Lett. 107, 095301 (2011);
Y.-A. Chen, S. Nascimbene, M. Aidelsburger, M. Atala, S.
Trotzky, and I. Bloch, Controlling Correlated Tunneling
and Superexchange Interactions with ac-Driven Optical
Lattices, Phys. Rev. Lett. 107, 210405 (2011).

[94] A. J. Daley and J. Simon, Effective Three-Body Interactions
via Photon-Assisted Tunneling in an Optical Lattice, Phys.
Rev. A 89, 053619 (2014).

[95] A. Bermudez and D. Porras, Interaction-Dependent
Photon-Assisted Tunneling in Optical Lattices: A Quantum
Simulator of Strongly-Correlated Electrons and Dynamical
Gauge Fields, New J. Phys. 17, 103021 (2015).

EXPLORING INTERACTING TOPOLOGICAL … PHYS. REV. X 7, 031057 (2017)

031057-25

https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevLett.102.135702
https://doi.org/10.1103/PhysRevLett.102.135702
https://doi.org/10.1088/1367-2630/14/1/015007
https://doi.org/10.1088/1367-2630/14/1/015007
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.107.150501
https://doi.org/10.1103/PhysRevLett.107.150501
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1103/PhysRevLett.109.145301
https://doi.org/10.1088/1367-2630/12/3/033007
https://doi.org/10.1088/1367-2630/12/3/033007
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1016/S0301-0104(97)00025-6
https://doi.org/10.1103/PhysRevLett.100.040404
https://doi.org/10.1103/PhysRevLett.100.040404
https://doi.org/10.1103/PhysRevLett.107.095301
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1103/PhysRevA.89.053619
https://doi.org/10.1103/PhysRevA.89.053619
https://doi.org/10.1088/1367-2630/17/10/103021

