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Abstract

Discourse Parsing and Sentiment Analysis are two fundamental tasks in Natural

Language Processing that have been shown to be mutually beneficial. In this work,

we design and compare two Neural Based models for jointly learning both tasks. In

the proposed approach, we first create a vector representation for all the segments

in the input sentence. Next, we apply three different Recursive Neural Net models:

one for discourse structure prediction, one for discourse relation prediction and

one for sentiment analysis. Finally, we combine these Neural Nets in two different

joint models: Multi-tasking and Pre-training. Our results on two standard corpora

indicate that both methods result in improvements in each task but Multi-tasking

has a bigger impact than Pre-training.
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Lay Summary

In Natural Language Processing, gathering and processing human-labeled data re-

quires considerable amount of time, money and resources. As a result of not having

an abundance of such data, learning complex NLP tasks is a challenge. Therefore,

being able to transfer and apply the knowledge learned in one task to another rele-

vant task can be very beneficial.

In this work, we study two fundamental and closely related NLP tasks, Dis-

course Parsing and Sentiment Analysis, and explore two ways in which knowledge

learned in one task could be transferred to the other task. Our research confirms

that the knowledge-sharing between these two tasks helps boost the performance

of each one individually.
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Chapter 1

Introduction

With the rapid growth of the amount of text data on the Internet, the need for meth-

ods to analyze these texts has grown as well. This thesis focuses on studying two

fundamental NLP tasks, Discourse Parsing and Sentiment Analysis. The impor-

tance of these tasks and their wide applications (e.g., [10], [31]) has initiated much

interest in studying both but no method yet exists that can come close to human

performance in solving them.

It has been known that they are mutually beneficial, meaning that Discourse

information could be used to improve Sentiment Analysis and likewise, knowing

the sentiment of text spans within a sentence or document can help with improv-

ing Discourse Parsing. Our project relies on previous findings and borrowing from

Transfer learning ideas to create a joint model that improves both Discourse Pars-

ing and Sentiment Analysis.

1.1 Discourse Parsing
“Clauses and sentences rarely stand on their own in an actual discourse; rather,

the relationship between them carries important information that allows the dis-

course to express a meaning as a whole beyond the sum of its individual parts.

Discourse analysis seeks to uncover this coherent structure.” [13]

Discourse Parsing is the task of building a hierarchical tree structure over a
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Figure 1.1: The Discourse Tree of a sentence from Sentiment Treebank
dataset

sentence or a document, the leaves of which are clauses (also called Elementary

Discourse Units) and nodes correspond to the juxtaposition of their children’s text

spans. A Discourse Tree is represented as a set of constituents R[i,m, j] where

i ≤ m < j. R in this representation refers to the rhetorical relation that holds be-

tween the Discourse Unit containing EDUs i to m and the one containing EDUs

m+1 to j.

The relation R also specifies nucliearity. Nuclei are the core parts of the relation

and Satellites are the supportive ones.

R can take one of the following forms:

• Satellite-Nucleus (SN) : First Discourse Unit is Satellite and second Dis-

course Unit is Nucleus.

• Nucleus-Satellite (NS) : First Discourse Unit is Nucleus and second Dis-

course Unit is Satellite.

• Nucleus-Nucleus (NN) : Both Discourse Units are Nuclei.

In this approach relation identification and nuclearity assignment is done si-
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multaneously. Figure 1.1 shows the Discourse Tree of a sample sentence. In this

sentence, the Discourse Unit “There are slow and repetitive parts,” holds a “Con-

trast” relationship with “but it has just enough spice to keep it interesting.”. Fur-

thermore, we can see that the former Discourse Unit is the satellite of the relation

and the later part is the Nucleus.

Discourse Parsing is such a critical task in NLP because previous work has

shown that information contained in the resulting Discourse Tree can benefit many

other NLP tasks including but not restricted to automatic summarization (e.g.,

[10], [23], [20]), machine translation (e.g., [25],[11]) and question answering (e.g.,

[34]).

In contrast to traditional syntactic and semantic parsing, Discourse Parsing can

generate structures that cover not only a single sentence but also multi-sentential

text. However, the focus of this thesis is on sentence level Discourse Parsing, leav-

ing the study of extensions to multi-sentential text as future work.

1.2 Sentiment Analysis
Given a piece of text, the task of Sentiment Analysis studies how a label, represent-

ing the contextual polarity of the text, can be assigned to it. Consider the following

two examples:

• “The whole cast looks to be having so much fun”

• “It’s Robert Duvall.”

The sentiment for the first phrase is probably “Very Positive”, while the sentiment

label for the second phrase is probably “Neutral”. Analyzing the overall polarity

of a sentence is a challenging task due to the ambiguities that can be introduced

by combinations of words and phrases. For example in the movie review excerpt

shown in Figure 1.2, the phrase “There are slow and repetitive parts” has a negative

sentiment. However when it is combined with the positive phrase “but it has just

enough spice to keep it interesting”, it results in an overall positive sentence.

3



Figure 1.2: The Sentiment annotation (over Discourse Tree structure) of a
sentence from Sentiment Treebank dataset

With a wide range of applications, including Review Analysis, Poll predictions

and Recommender Systems [8], Sentiment Analysis has been one of the most stud-

ied and hottest areas of NLP, yet highly accurate Sentiment Analysis of a domain

independent piece of text remains an ongoing research problem.

1.3 Motivation
It has been suggested that the information extracted from Discourse Trees can help

with Sentiment Analysis [2] and likewise, knowing the sentiment of two pieces

of text might help with the identification of discourse relationships between them

[16]. For instance, taking the sentence in Figure 1.1 as an example, knowing

that the two text spans “There are slow and repetitive parts” and “but it has just

enough spice to keep it interesting” are in a Contrast relationship to each other,

also signals that the sentiment of the two text spans is less likely to be of the

same type. Likewise, knowing that the sentiment of the former text span is “very

negative”, while the sentiment of the later text span is “very positive”, helps to

narrow down the choice of discourse relation between these two text spans to

the Contrastive group which contains relations Contrast, Comparison, Antithesis,

Antithesis-e,Consequence-s,Concession and Problem-Solution.

4



To the best of our knowledge there is no previous work that learns both of these

tasks in joint model, using deep learning architectures.

1.4 Approach and Contributions
The main contribution of this thesis is to address this gap by investigating how the

two tasks can benefit from each other at the sentence level within a deep learning

joint model. More specific contributions include:

(i) The generation of embeddings for each task which is obtained by compress-

ing generic skip-thought vectors. [15]

(ii) The development of three independent recursive neural nets: two for the

key sub-tasks of discourse parsing, namely structure prediction and relation

prediction; the third net for sentiment prediction.

(iii) The design and experimental comparison of two alternative neural joint mod-

els, Multi-tasking and Pre-training, that have been shown to be effective in

previous work for combining other tasks in NLP ([6],[7],[18]).

Our results indicate that a joint model performs better than individual models in

either of the tasks with Multi-tasking outperforming Pre-training.

1.5 Outline
Chapter 2 describes the background and previous work done on Discourse Parsing,

Sentiment Analysis and ways of jointly training multiple tasks. In Chapter 3, we

talk about the two datasets that we have used to train and test our models. We also

discuss their properties and any preprocessing work needed to prepare them for our

specific tasks. Chapter 4 discusses our framework and all of its subparts in detail.

We describe how we learn the embeddings for text spans, our individual Neural

Net models and finally our joint models. We then present the training and evalua-

tion process in Chapter 5. Chapter 7 talks about some possible future avenues to

improve the results or extend the work to other, more complicated tasks. Finally,

we wrap up the thesis in Chapter 8.
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Chapter 2

Related Work

In this section we discuss related projects and their advantages and disadvantages.

The related work is divided into three subsections that address the three main ar-

eas of our work. The first subsection explores previous work done on Discourse

Parsing and Sentiment Analysis which are the two tasks we want to solve. The

second subsection describes previous work on distributed vector representations

for sentences and text spans. Since we do not hand pick features, having mean-

ingful vector representations for text spans is key to obtaining more accurate re-

sults. The third subsection explores previous work on joint models, focusing on

two techniques: Pre-training and Multi-tasking. In particular, we describe how

Multi-tasking and Pre-training affects the performances of the tasks that are jointly

trained.

2.1 Discourse Parsing and Sentiment Analysis
Traditionally, Discourse Parsing and Sentiment Analysis have been approached

by applying machine learning methods with predetermined, engineered features

that were carefully chosen by studying the properties of the text.

Examples of effective sentence level and document level Discourse Parsers in-

clude CODRA [13] and the parser of [9] . These parsers use organizational, struc-

tural, contextual, lexical and N-gram features to represent Discourse Units and ap-

ply graphical models for learning and inference (i.e. Conditional Random Fields).
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The performance of these parsers critically depends on a careful selection of infor-

mative and relevant features, something that is instead performed automatically in

the neural models we propose in this thesis.

[27], [28] and [30], approach Sentiment Analysis using carefully engineered

features as well as polarity rules. The choice of features also plays a key role in the

high performance of these models.

Yet, with the rapid advancements of Neural Nets in complex areas such as vi-

sion and speech understanding, there has been increased interest in applying them

to different NLP tasks. Socher et al. [33] approached the problem of Sentiment

Analysis by recursively assigning sentiment labels to the nodes of a binarized syn-

tactic parse tree over a sentence. At each non-leaf node, the Sentiment Neural Net

first creates a distributed embedding for the node using the embedding of its two

children and then assigns a sentiment label to that node. Their approach achieves

state of the art results. In our work, we borrow from the same idea of Recursive

Neural Nets to learn the Sentiment labels. However, the structure over which we

learn the Sentiment labels is the Discourse Tree of the sentence as opposed to the

syntactic parse tree, with the goal of testing if Sentiment Analysis can benefit di-

rectly from discourse information within a neural joint model.

Motivated by Socher’s success on Sentiment Analysis, Li et al. [17] approached

the problem of Discourse Parsing by recursively building the Discourse Tree using

two Neural Nets. A Structure Neural Net decides whether two nodes should be con-

nected in the Discourse Tree or not. If two nodes are determined to be connected

by the Structure Neural Net, a Relation Neural Net then decides what rhetorical

relation should hold between the two nodes. Their approach also yields promising

results. In terms of representation, the recursive structure of a Discourse Tree is

used to learn the embedding of each non-leaf node from its children. For leaf nodes

(EDUs), the representation is learned recursively using the syntactic parse tree of

the node. One problem with their work is that it is unclear how they combine the

labeled Discourse Structure Tree with the unlabeled syntactic parse trees to learn

the vector representations for the text spans.

Bhatia et al. [2] trained a Recursive Neural Network for Sentiment Analysis

over a Discourse Tree and showed that the information extracted from the Dis-

course Tree can be helpful for determining the Sentiment at document level. In
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their work however, they did not attempt to learn a distributed representation for

the sub-document units. To represent EDUs, they used the bag-of-words features.

For our work, we not only apply a Recurrent Neural Net approach to learn embed-

dings for the EDUs, but we also jointly learn models for the two tasks, instead of

simply feeding a pre-computed discourse structure in a neural model for sentiment.

2.2 Learning Text Embeddings
Learning text embeddings is a fundamental step in using Neural Nets for NLP

tasks. An embedding is a fixed dimensional representation of the data (text) with-

out the use of handpicked features. As words are the building blocks of text, pre-

vious studies have created fixed dimensional vector representations for words [26]

that capture the semantic and syntactic meaning of the words. However, creating

meaningful fixed dimensional vector representations for text spans is an ongoing

challenge.

Both Socher et al. [33] and Li et al. [17] learn the embedding of a text span

in a recursive manner, given a binary tree over the text span with leaves being the

words. The words are initialized with random vector representations and the em-

bedding of a parent is computed from the embedding of its two children using a

non-linear projection. The embedding is then used for training the task under study

(Sentiment Analysis and Discourse Parsing respectively) and updated according to

how useful it was for the task.

Recently Recurrent Neural Nets (RNNs) and their variant, Long Short-Term

Memories (LSTMs) have become a more popular alternative for learning the em-

bedding of a sentence ([15] and [29]).

In [15], an encoder RNN encodes a sentence into a fixed vector representation

that is then used by a decoder RNN to predict the following and preceding sen-

tences and based on how good the predictions were, updates both the decoder and

encoder RNNs. Once training is done, the encoder RNN can be used on its own

to create an embedding for any text span. In their work, Kiros et al. [15] applied

skip thought vectors to Sentiment Treebank sentences to see if the representations

learned could directly be used for determining the sentiment of a sentence. Their

8



results showed that representing a sentence with the skip-thought vectors without

taking its structure into consideration would not improve the performance beyond

the results Socher et al. [33] had achieved. In this project, we have used the

encoder RNN to represent our EDUs but we further compress the resulting embed-

dings with a neural based compressor to limit the number of parameters.

2.3 Joint models
When training a neural model, the weights are usually initialized with random

numbers taken from a uniform distribution. However, in their work, [7] argue that

Pre-training a neural model helps initialize a neural network with better weights

that prevent the network from getting stuck in local minima and results in better

generalization and can enhance the performance of the model. And this general

idea has been successfully applied in several scenarios (e.g., [5], [32] ). For exam-

ple, Chung et al. [5] used auto-encoders as a Pre-training mechanism and showed

that Pre-training can lead to better performance compared to the same model with

no Pre-training. In our work, we use the trained weights of one neural model (e.g.

sentiment) as an initialization form for another task (e.g. discourse structure) to

see if the features learned for one can be helpful for the other.

Neural Multi-tasking was originally proposed by [6], who experimented with

the technique using deep convolutional neural networks. In essence, the basic idea

is that a network is alternatively trained with instances for different tasks, so that

the network is learning to perform all these tasks jointly. In [6] a model is trained

to perform a variety of predictions on a given sentence, including part-of-speech

tags, chunks, named entity tags, semantic roles, semantically similar words and the

likelihood that the sentence makes sense using a language model. They showed

that multitasking using a neural net structure can improve the generalization of the

shared tasks and result in better performance. Following up on this initial success,

many researchers have applied the neural multi-tasking strategy to several tasks,

including very recent work in vision [14] and NLP (e.g., text classification [18]

and the classification of implicit discourse relations [19]).

Liu et al [18] showed that a multi-tasking system can improve the performance
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of a task with the help of other related tasks. The goal is to learn representations

for phrases, text spans and sentences using Recurrent Neural Nets (RNNs) through

supervised training of four related tasks. They proposed three multi-task models as

shown in Figure 2.1. In the first model (Model-I in the Figure), there is only one,

shared RNN for all tasks (but producing different outputs). In the second model

(Model-II in the Figure), each task has its own RNN but each RNNs shares the hid-

den representations at each time step with the other RNNs at the same time step.

In the last model (Model-III in the Figure), each task has its own RNN but each

RNN is connected to a mutually shared RNN to share hidden representations at

each time step.

Experimental results on each of the three Multi-task models showed signifi-

cant improvements compared to the individual model. The amount of improvement

on varied among tasks and datasets. The first model resulted in an average of 2%

improvement, while the second model resulted in an average of 2.3% improve-

ment. The average improvement for the third model with added Pre-training and

fine tuning was 2.8%.

In their work [19], Liu et al studied implicit discourse relation classification

using Mutli-task learning of four related tasks. As can be seen from Figure 2.2,

their Neural based model consists of a Convolutional layer that compresses the au-

gument pairs of different tasks into low-dimensional vector representations. Each

task owns a unique representation and a shared representation connecting all tasks.

The two are then concatenated and mapped into a task specific representation. They

then attach additional surface-level features and the resulting vector representation

is fed to each task’s Neural Net.

10



Figure 2.1: Three architectures for modelling text with multi-task learning.
(Figure adapted from [18])
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Figure 2.2: Architecture of Multi-task Neural Networks for Discourse Rela-
tion Classification (Figure adapted from [19])

Their Multi-tasking model is trained over four different tasks:

• Implicit PDTB Discourse Relation Classification using Penn Discourse Tree-

bank

• Explicit PDTB Discourse Relation Classification using Penn Discourse Tree-

bank

• RST-DT Discourse Relation Classification using RST-DT

• Connective Word Classification using New York Times Corpus

Their experimental results show that a multi-task model achieves significant im-

provements over individual models. The amount of improvement is different among

different relations ranging from a minimum of %2 to a maximum of 16% improve-

ment in classifying each implicit relation .

[29] have also used multitasking and Deep Neural architectures for Semantic

Dependency Parsing. In its basic form as shown in Figure 2.3, their model included

12



a layer of bi-directional Long Short Term Memories (BiLSTM) for representing

the sentences, followed by two layers of Deep Neural Networks to predict depen-

dency relations in a parse tree. In this work, they explored two multitask learning

approaches. In the first approach, parameters of the BiLSTM part of the model

were shared among the tasks. In the second approach, higher-order structures were

used to predict the graphs jointly. Their work on a jointly trained multitask system

showed statistically significant improvements over an individual model. However,

the improvement was rather small, from 87.4% to 88%.

Figure 2.3: Illustration of the architecture of the basic model. (Figure adapted
from [29])

In all these projects we notice that Multi-tasking benefits all the tasks in which

it was applied but we also observe that the benefit varies from task to task and

model to model with some tasks getting more benefit out of multi-tasking than

others.

13



Chapter 3

Corpora

For the task of Discourse Parsing, we use RST-DT ([3], [4]). This dataset contains

385 documents along with their fully labeled Discourse Trees. The annotation is

based on the Rhetorical Structure Theory (RST), a popular theory of discourse

originally proposed in [21]. All the documents in RST-DT were chosen from Wall

Street Journal news articles taken from the Penn Treebank corpus [24]. Since we

are focusing only on sentence-level discourse parsing, the documents as well as

their Discourse Trees were first preprocessed to extract the sentences and sentence-

level Discourse Trees. The sentence-level Discourse Trees were extracted from the

document-level Discourse Tree by finding the sub-tree that exactly spans over the

sentence. This resulted in a dataset of 6846 sentences with well-formed Discourse

Trees, out of which 2239 sentences had only one EDU. Since sentences with only

one EDU have trivial Discourse Trees, these sentences were excluded from our

dataset, leaving a total of 4607 sentences.

For the task of Sentiment Analysis, we use the Sentiment Treebank [33]. This

dataset consists of 11855 sentences along with their syntactic parse trees labeled

with sentiment labels at each node. For this work, since our models label sentiment

over a Discourse Tree, we had to preprocess the datasets in the following way. For

each sentence in the Sentiment Treebank dataset, a Discourse Tree was created us-

ing [13]. Next, for each node of the discourse tree, a sentiment label was extracted

from the corresponding labeled syntactic tree by finding a subtree that exactly (or

almost exactly) matches the text span represented by the node in the discourse tree.

14



Relation percentages Relation percentages
elaboration 33.29 temporal 2.38
attribution 23.00 condition 1.91
same-unit 10.53 comparison 1.52

joint 5.62 manner-means 1.43
enablement 4.21 evaluation 1.10
background 4.13 summary 0.78

contrast 3.97 topic-comment 0.12
cause 3.48 topic-change 0.03

explanation 2.44

Table 3.1: Distribution of RST-DT relations

Exact match was not possible when the syntactic and the discourse structures were

not fully aligned, which happened in 31.9% of the instances. In this case, an ap-

proximation of the sentiment was computed by considering the sentiment of the

two closest subsuming and subsumed syntactic sub-trees.

Both datasets were highly unbalanced across different classes. In the case of

RST-DT, the discourse relations outlined in [21], were further grouped under 16

classes (also outlined in [21]). Table 3.1 shows the distribution of each of these

16 classes of relations across RST-DT at each node of the sentence level discourse

trees for sentences with more than one EDU. Notice that after adding the appro-

priate nuclearity labels (explained in Section 1.1) to these sets, we get a total of

41 different sets of relations since some of the relations can only take one of the

three forms of “-NS”, “-SN” or “-NN”. From this table we can see that some of

the relations are very infrequent and some hardly ever appear at the sentence level.

Figure 3.1 shows the distribution of sentiment labels of Sentiment Treebank

sentences at all levels of the Discourse Tree created over them as described above.

As we can see from the figure, the majority of text spans in Sentiment Treebank

are “neutral”, followed by “positive” and “negative” labels. “very negative” and

“very positive” labels are much more infrequent than others.
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Figure 3.1: Distribution of sentiment labels over Sentiment Treebank sen-
tences at all nodes of created Discourse Trees
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Chapter 4

Joint Models

Our framework consists of three main sub parts. Given a segmented sentence, the

first step is to create meaningful vector representations for all the EDUs. This is

discussed in the first section. Next, we devise three different Recursive Neural Net

models, each designed for one of discourse structure prediction, discourse relation

prediction and sentiment analysis. In section 4.2, we discuss the structure of these

Neural Nets in detail. Finally, we join these Neural Nets in two different ways:

Multitasking and pre-training. The final section of this Chapter talks about these

two ways of joining the Neural Nets.

4.1 Learning Text Embeddings
One of the most challenging aspects of designing effective Neural Nets is to have

meaningful representations for the inputs. Since we refrain from hand picking fea-

tures, and choose to feed text spans consisting of multiple words to the Neural Nets

are our inputs, it is very important to come up with vector representations that are

generalizable but also meaningful for the two tasks that we approach.

Initially, we considered directly applying the Skip-thought framework [15] to

each text span to get generic vector representations for them, since the original

Skip-thought vectors were shown in [15] to be useful for many NLP tasks. How-

ever, given the size of our datasets (only in the thousands of instances), it was

clear that using 4800-dimensional Skip-thought vectors would have created an
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Figure 4.1: The Sentiment Neural Compressor

over-parametrized network prone to over-fitting. Based on this observation, in or-

der to simultaneously reduce the dimensionality and to produce vectors that are

meaningful for our tasks, we devised a compression mechanism that takes in the

Skip-thought produced vectors and compresses them using a Neural Net. Figures

4.2 and 4.1 show the structure of these compressors for our two different tasks.

The sentiment neural compressor (Figure 4.1) takes as input, the skip-thought

produced vector representations for all phrases of the Sentiment Treebank in the

training set. For example, consider a phrase i with skip-thought produced vector

Pi ∈ R4800. The Sentiment Neural Compressor learns compressed vector P′i ∈ Rd

through

P′i = f (W.Pi) (4.1)

where f is a non-linear activation function such as relu and W ∈ Rd×4800 is the

matrix of weights. This Neural Net uses the sentiment of phrase i for supervised

learning of the weights.

Similarly, the Discourse Parsing neural compressor (Figure 4.2) takes the skip-

thought produced vector representations for two EDUs ei, e j that are connected

in their Discourse Tree and learns the compressed vectors e′i and e′j, each with d
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Figure 4.2: The Discourse Neural Compressor

dimensions where

e′i = f (W1.ei)

e′j = f (W1.e j)
(4.2)

where f is again a non-linear activation function such as relu and W1 ∈ Rd×4800

is the matrix of weights. Note that the same set of weights are used for both EDUs

because we are looking for a unique set of weights to compress an EDU.

4.2 Neural Net Models
Following [33]’s idea of Sentiment Analysis using recursive Neural Nets, we de-

signed three Recursive Neural Nets for each task of Discourse Structure prediction,

Discourse Relation prediction and Sentiment Analysis. All these three Neural Nets
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Figure 4.3: The Discourse Structure Neural Net

are classifiers.

The Structure Neural Net takes in the compressed vector representation (∈ Rd) for

two Discourse Units and learns whether they will be connected in the Discourse

Tree (Figure 4.3). In this process, it also learns the vector representation for the

parent of these two children. So for a parent p with children cl and cr, the vector

representation for the parent is obtained by:

p = f (Wstr[cl,cr]+bstr) (4.3)

where [cl,cr] denotes the concatenating vector for the children; f is a non-

linearity function; Wstr ∈ Rd×2d and bstr ∈ Rd is the bias vector.

The Relation Neural Net takes as input the compressed vector representation for

two Discourse Units that are determined to be connected in the Discourse Tree and

learns the relation label for the parent node. The Relation Neural Net is the same

in structure as the Structure Neural Net in Figure 4.3.
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The Sentiment Neural Net takes as input the compressed vector representation

for two Discourse Unit that are determined to be connected in the Discourse Tree

and learns the sentiment label for the parent node. This Neural net also shares the

same structure as the one in Figure 4.3.

4.3 Individual Models
Before joining the models using pre-training or multi-tasking, each task is trained

individually as a baseline. Algorithm 1 describes the training process for an indi-

vidual model (before joining) which is a standard 10-fold cross validation with the

addition of a Neural Compression step.

Algorithm 1 Training an individual Neural Net

for i← 0 to 10 do
train set← load the training set for fold i

test set← load the test set for fold i

train set← Train Neural Compressor on train set, and compress its vectors

test set← Compress test set vectors using the trained Neural Compressor

Train the recursive Neural Net on train set

Test the recursive Neural Net on test set

end for

At test time, for the task of Sentiment Analysis, given a sentence, with its Dis-

course Structure tree, each node of the discourse tree is labeled with a sentiment

label representing the sentiment of the text span the node corresponds to.

However, for the task of Discourse Parsing, given a sentence a the discourse

tree needs to be created and labeled with discourse relations. To build the most

probable tree, a CKY-like bottom-up parsing algorithm that uses dynamic pro-

gramming to compute the most likely parses is applied [13].
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4.4 Joint Models
Our hypothesis in creating a joint model is that the accuracy of prediction obtained

in a joint design would be higher than the accuracy of prediction coming from in-

dependent Neural Nets applied to each task. We explore two ways of creating a

joint model. For both approaches, we train three neural nets (Discourse Structure,

Discourse Relation and Sentiment Neural Nets) that interact with one another for

improved training. The input to the Structure net are all possible pairs of text spans

that can be connected in a Discourse Tree. The input to the Relation and Sentiment

nets are the pairs of text spans that are determined to be connected by the Structure

net.

Inspired by Multitasking [6], our goal is to find a representation for the input that

will benefit all the tasks that need to be solved. Since the first layer in a Neural

Net learns relevant features from the input embedding, in this approach, the first

layer is shared between the three Neural Nets and training is achieved in a stochas-

tic manner by looping over the three tasks. As shown in Figure 4.4, at each time

step, one of the tasks is selected along with a random training example for that

task. Afterwards, the neural net corresponding to this task is updated by taking a

gradient step with respect to the chosen example. The end product of this design

is a joint input representation that could benefit both Sentiment Analysis and Dis-

course Parsing.
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Figure 4.5: Multi-tasking Network

Figure 4.4: Multi-tasking

Inspired by Pre-training Neural Nets [7], in this approach we study how the
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parameters of one Neural Net after training can be used as a form of initialization

for the network applied to the other task. As shown in Figure 4.6, in this setting,

we first fully train the Discourse Structure Neural Net, then the weights from this

trained net are used to initialize the Discourse Relation Neural Net and once this

net is fully trained, its weights are used to initialize the weights of the Discourse

Structure Neural Net again. After another round of training the Discourse Structure

Neural Net, its weights are used to initialize the Sentiment Neural Net. After train-

ing the Sentiment Neural Net, its weights are again used to initialize the Structure

Neural Net. We experimented with 2,3 and 10 iterations using 10-fold cross vali-

dation on the datasets and achieved best results with 3 iterations, which appears to

be a good compromise between accuracy and training time. Algorithm 2 describes

the training process for the Pre-training setting. Notice that in this setting, we

need both Sentiment and Discourse Neural Compressors, where each one would

be trained once on their relevant set of data before entering the training loop.

Figure 4.6: Using the weights of one network as a form of pre-training for
another network
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Algorithm 2 Training Model in Pre-training setting

1: for i← 0 to 10 do
2: sentiment train set← load the sentiment training set for fold i

3: sentiment test set← load the sentiment test set for fold i

4: discourse train set← load the discourse training set for fold i

5: discourse test set← load the discourse test set for fold i

6: sentiment train set← Sentiment Neural Compressor.train(sentiment train set)

( compresses its vectors as well)
7: sentiment test set← Sentiment Neural Compressor.compress(sentiment test set)

8: discourse train set←Discourse Neural Compressor.train(discourse train set)

( compresses its vectors as well)
9: discourse test set←Discourse Neural Compressor.compress(discourse test set)

10: for j← 0 to pre train itr do
11: Structure Neural Net.train(discourse train set)

12: Relation Neural Net.train(discourse train set)

13: Structure Neural Net.train(discourse train set)

14: Sentiment Neural Net.train(sentiment train set)

15: end for

16: Discourse Neural Net.test(discourse test set)

17: Sentiment Neural Net.test(sentiment test set)

18: end for
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Chapter 5

Training and Evaluating The
Models

All the neural models presented in this project were implemented using the Ten-

sorFlow python package [1]. We minimize the cross-entropy error using the Adam

optimizer and L2-regularization on the set of weights. For the individual models

(before joining), we use 200 training epochs and a batch size of 100.

We evaluate our models using 10-fold cross validation on the sentiment tree-

bank and on RST-DT. All the experiments were based on manual Discourse Seg-

mentation. In Table 5.1 and Table 5.3, a star indicates that there is statistical sig-

nificance with a p-value less than 0.05. The significance is with respect to the joint

model vs the model before joining.

For the task of Discourse parsing, the three predictions are: whether two dis-

course units should be connected (span), what relation holds between them (re-

lation) and which one is the nucleus (Nuclearity). For these three sub tasks, the

metrics used to evaluate the model are Precision, Recall and F score proposed by

Marcu [22]. Since we are using manual discourse segmentation, Precision, Recall

and F score are the same and so we only show the F score.

The results for Discourse Parsing are shown in Table 5.1. We have used the 41

relations outlined in [21] for training and evaluation of the Relation prediction.

From the results, we see some improvement on Discourse Structure prediction

when we are using a joint model but the improvement is statistically significant
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Approach Span Nuclearity Relation
Discourse Parser 93.37 73.38 57.05(Before Joining)

Joined Model 94.35 74.92 58.82Pre-training
Joined Model 94.31 75.91* 60.91*Multi-tasking

Table 5.1: Discourse Parsing results based on manual discourse segmenta-
tion

Relation
Setting

Individual Pre-training Multi-tasking

Comparison 18.97 20.87 27.08
Contrast 15.19 17.74 20.83
Cause 7.6 8.11 8.61

Average 13.92 15.57 18.84

Table 5.2: Contrastive Relation Prediction results under different training
settings

only for the Nuclearity and Relation predictions. The improvements on the Rela-

tion predictions were mainly on the Contrastive set ([2]), specifically the class of

Contrast, Comparison and Cause relations as defined in [21]. The result for each

of these relations under different training settings are shown in Table 5.2. Notice

that the accuracies may seem low but because we train over 41 classes of rela-

tions, a random prediction results in 2.43%. Among the contrastive relations, the

Problem-Solution did not improve due to the fact that this relation is hardly seen

at the sentence level. This confirms our hypothesis that knowing the sentiment of

the two Discourse Units that are connected in a discourse tree can help with the

identification of the discourse relation that holds between them.

For the task of Sentiment Analysis, the results are shown in Table 5.3. To train
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the model, we use the five classes of sentiment ({very negative, negative, neutral,

positive, very positive}) used in [33]. We measure the accuracy of prediction in

two different settings. In the fine grained setting we compute the accuracy of exact

match across five classes. In the Positive/Negative setting, if the prediction and the

target had the same sign, they were considered equal1. The huge difference in ac-

curacy between these two settings signals that distinguishing between very positive

and positive and distinguishing between very negative and negative is very hard.

The results of sentiment shown in Table 5.3 are also consistent with our hypothesis.

When jointly trained with Discourse Parsing, we can get a better performance on

labeling nodes of the Discourse Tree with sentiment labels compared to an individ-

ual sentiment analyzer applied to a Discourse Tree.

Interestingly, if we compare the two joint models across both tasks it appears

that Multi-tasking does better that Pre-training in all cases except for discourse

structure. A possible explanation is that by transferring weights from one network

to another (as done in Pre-training), the neural net starts learning with a possibly

better initialization of the weights. However Multi-tasking performs a joint learn-

ing at the finer granularity of single training instances and so an improvement in

learning one task immediately affects the next.

All results in Table 5.1 and 5.3 were obtained by setting the dimension d of the

compressed vectors to 100. Experimentally, we found that the performance of the

model was rather stable for d ∈ {1200,600,300,100} and was substantially lower

for d ∈ {50,25}.
In terms of actual runtime, Pre-training and the individual models are an order

of magnitude faster than the Multi-tasking model. This is because even though

they require a larger number of epochs to converge (200 for individual, vs 6 for

Multi-tasking), they can be trained in parallel.

Notice that training and testing of the networks is done on Sentiment Treebank for

sentiment analysis and on RST-DT for discourse parsing. [13]’s Discourse parser

was run on Sentiment Treebank to get the sentiment annotation at the granular-

ity required for the joint model with discourse. However, having a gold dataset of

sentiment labels corresponding to discourse units could further improve the results.

1Notice that this is different from training a classifier for binary classification, which is a much
easier task (see [2])

28



Approach Fine grained Positive/Negative
All Root All Root

Sentiment Analyzer 43.37 40.6 52.86 51.27(Before Joining)
Joined Model 42.46 40.36 53.82 53.15Pre-training
Joined Model 45.49* 44.82* 55.52* 54.72*Multi-tasking

Table 5.3: Sentiment Analysis over Discourse Tree
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Chapter 6

Discussion

Several differences between this work and previous approaches make direct com-

parisons challenging and possibly not very informative. In this section, we high-

light and explain the differences between our work and the two most recent Senti-

ment Analyzers and Discourse Parsers.

6.1 Comparison to previous Sentiment Analyzers
Socher et al. ([33]) use syntactic trees, as opposed to discourse trees, as the recur-

sive structure for training. Due to this underlying structural difference, we cannot

compare our ”All”-level results with those of his. For ”Root”-level, which repre-

sents the sentiment prediction for the whole sentence, Socher et al. reports 45.7%

fine-grained sentiment accuracy compared to 44.82% of our Multi-tasking. This

difference is unlikely to be significant while the sentiment annotation of syntactic

structure is definitely more costly than one at the EDU level because a syntactic

parse tree of a sentence has considerably more nodes than the sentence’s discourse

tree.

Bhatia et al. ([2]) focuses on document level Sentiment Analysis, using bag-of-

word features for EDUs. While in future, our work can be extended to document

level sentiment analysis, the model we use learns the distributed representations of

the EDUs, which will remain a key difference between our work and that of Bhatia
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et al. Furthermore, Bhatia et al. train a binary model while assuming the discourse

tree as given. In our approach, we train a 5-class model while joinly learning the

discourse tree.

6.2 Comparison to previous Discourse Parsers
Since our work focuses on sentence-level Discourse Parsing, we cannot compare

with Li et al. ([17]) because they only report overall results without differentiating

sentence vs document level.

Our model is outperformed by CODRA ([13]) which achieves better perfor-

mance on sentence level Discourse Parsing. While we believe that with more

training data, as it has been shown with other NLP tasks, we would eventually

outperform CODRA, the primary goal of our work is not to beat the state of the

art on each single task, but to show how the two tasks of Discourse Parsing and

Sentiment Analysis can be jointly performed in a neural model.
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Chapter 7

Future Work

From incorporating more data, to more complicated models and even benefiting

from other relevant tasks, there is so much that can be done to improve the re-

sults and to increase generalization of these models. Below we will discuss some

possible avenues for future work.

7.1 Improving Corpora
In this work, we used a pre-existing Discourse Parser to parse the sentences of

Sentiment Treebank into Discourse Trees and then tried to label the nodes of the

produced discourse trees with sentiment labels through a matching process. Pre-

existing discourse parsers are not perfect and introduce some error. Furthermore,

to that, the matching process described in Chapter 3 is also error prone. The best

way to go about this is to either use crowd-sourcing for producing correct discourse

trees and sentiment labels or to use multiple pre-existing discourse parsers to pro-

duce high quality discourse trees (see [12]) and follow it up with crowd-sourcing

to label each node with more accurate sentiment labels.

7.2 More Data
The amount of data greatly affects the performance of a Neural Nets. With more

data, networks can better learn the patterns, and the results are more reliable. In this

project, the number of training instances for the Structure Neural Net was 8639, for
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Approach Sentence Level Document Level
Manual Segmentation Automatic Segmentation Automatic Segmentation

Span 95.4 80.1 83.84
Nuclearity 88.6 75.2 68.90
Relation 78.9 66.8 55.87

Table 7.1: CODRA’s Discourse Parsing results at sentence-level and
document-level, based on manual and automatic segmentation

Relation Neural net was 7892 and for Sentiment Neural net was 5381, while the

number of parameters that need to be trained for each network are around 20,000.

Using methods that can augment the datasets [12] could help with the issue of

small dataset size.

7.3 Recursive Neural Nets coupled with Recurrent
Neural Nets

Granted more data, one could learn the representation for the EDUs using a variant

of Recurrent Neural Nets that are jointly trained with the Recursive model. This

solution can eliminate the need for a Neural Compressor applied to Skip-thought

vectors because text embeddings for EDUs can be learned in any desired dimension

directly. A similar model is described by Peng et al. [29] and shown to be helpful

in learning task-specific meaningful representations.

7.4 Document Level Discourse Parsing and Sentiment
Analysis

It is relatively easier to perform sentence-level discourse parsing and sentiment

analysis than the same tasks performed on multiple sentences or at document level.

As an example, the results achieved by CODRA [13] (also shown in the Table 7.1)

indicates that document-level discourse parsing is much harder than sentence level

discourse parsing. Using neural nets, a similar behaviour may be present but more

data, better vector representations of text spans as well as experimenting with more

complicated models can help minimize the drop.

It would also be interesting to observe how the performance of Sentiment
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Analysis would be affected at the Document level using Multi Tasking Neural Net-

works. Just as determining the sentiment of sentences is harder than determining

the sentiment of words, determining the sentiment of documents is harder than de-

termining the sentiment of sentences. Bhatia et al. [2] reported an 84.1% accuracy

on document level binary Sentiment Analysis. However, in their work, they used a

vector constructed from bag-of-words features to represent the EDUs. As a possi-

ble future work, one could look at the fine-grained (5 class) document level Senti-

ment Analysis and the effects of learning the text span embeddings when scaled to

documents.

7.5 Simultaneous Pre-training and Multi-tasking
As another future avenue, one could combine a form of pre-training with Multi-

tasking. Under that setting, (possibly unsupervised) pre-training can be used to

initialize the weights in a better way which can then be followed by a loop of

multi-tasking for each task to benefit from the other tasks’ features.
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Chapter 8

Conclusions

Discourse Parsing and Sentiment Analysis are two fundamental NLP tasks that

have been shown to be mutually beneficial. Evidence from previous work indi-

cates that information extracted from Discourse Trees can help with Sentiment

Analysis and likewise, knowing the sentiment of two pieces of text can help with

identification of discourse relationships between them. In this thesis, we show how

synergies between these two tasks can be exploited in a joint neural model. The

first challenge entailed learning meaningful vector representations for text spans

that are the inputs for the two tasks. Since the dimension of vanilla skip-thought

vectors is too high compared to the size of our corpora, in order to simultaneously

reduce the dimensionality and to produce vectors that are meaningful for our tasks,

we devised task specific neural compressors, that take in Skip-thought vectors and

produce much lower dimensional vectors.

Next, we designed three independent Recursive Neural Nets classifiers; one

for Discourse Structure prediction, one for Discourse Relation prediction and one

for Sentiment Analysis. After that, we explored two ways of creating joint mod-

els from these three networks: Pre-training and Multitasking. Our experimental

results show that such models do capture synergies among the three tasks with the

Multi-tasking approach being the most successful, confirming that latent Discourse

features can help boost the performance of a neural sentiment analyzer and that la-

tent Sentiment features can help with identifying contrastive relations between text

spans.
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In the short term, we plan to verify how syntactic information could be explic-

itly leveraged in the three task-specific networks as well as in the joint models.

Then, our investigation will move from making predictions about a single sentence

to the much more challenging task of dealing with multi-sentential text, which

will likely require not only more complex models, but also models with scalable

time performance in both learning and inference. Next, we intend to study how

pre-training and multitasking could be both exploited simultaneously in the same

model, something that to the best of our knowledge has not been tried before.

Finally, as another venue for future research, we plan to explore how sentiment

analysis and discourse parsing could be modeled jointly with text summarization,

since these three tasks can arguably inform each other and therefore benefit from

joint neural models similar to the ones described in this thesis.
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