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Although most melanoma cases may be treated by surgical intervention upon early diag-

nosis, a signi�cant portion of patients can still be refractory, presenting low survival rates

within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to

evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most avail-

able drug therapies and their incidence have increased over the years, therefore leading to

public health concerns about the development of novel therapies. Therefore, researches are

getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered

and sustained. In this context, important progress has been achieved regarding the roles

and the impact of cellular signaling pathways in melanoma. This knowledge has provided

tools for the development of therapies based on the intervention of signal(s) promoted by

these cascades. In this review, we summarize the importance of major signaling pathways

(mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nu-

clear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal

transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and

Notch) in skin homeostasis andmelanoma progression. Available and developingmelanoma

therapies interfering with these signaling cascades are further discussed.

Introduction
Cutaneous (skin) melanoma is one of the most aggressive and treatment-resistant human cancers [1].
Indeed, skin melanoma is characterized by a high tendency to metastasize since it is located in the basal
layer of the epidermis, which is constituted by several blood and lymphatic vessels [2,3]. In this sense,
although melanoma represents less than 5% of skin cancers, it has a high social impact which accounts
for 80% of cancer-related deaths, being highly lethal [4].
Melanoma is considered a form of malignant tumor (cancer) that affects the melanin-producing cells,

also known as melanocytes. In humans, melanocytes can be detected in the epidermis around the 50th
day of intrauterine life [5]. Embryonically, these cells migrate from the neural crest to the basal layer of
epidermis along the dorsolateral pathway [6]. As melanoma precursors, it has been suggested that the
melanocyte developmental program is frequently utilized by the tumor cells to promote its own progres-
sion [7].
Melanocytes are found across the whole body, including the skin, iris (eye), cochlea (ear), mucosa,

and others [8,9]. By distributing pigment from melanosomes (melanin-containing organelles) to ker-
atinocytes present in the skin, melanocytes has a protective role against UV radiation (UVR) [2]. The
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entire spectrum of UVR has been implicated in the pathogenesis of melanoma, since it can cause mutations in skin
cells by direct interaction with DNA or indirectly through the generation of reactive oxygen species (ROS). There-
fore, UVR has been recognized by theWorld Health Organization as carcinogenic to humans [10]. In fact, extensive
sunlight exposure (UVA and UVB radiation) is the major risk factor for cutaneous melanoma, and leads to a genetic
signature that is characteristic of this disease [9,10]. Artificial tanning, for instance, is a relatively recent social phe-
nomenon for certain societies involving high UV light exposure, which certainly adds up genotoxic effects to skin
cells and potentially leads to DNA damage [11,12].
Phenotypically, white populations with fair skin (mainly those with red hair and freckles) have higher risk of

developing melanoma [13]. However, besides environmental and phenotypic predisposition, melanoma also arises
from genetic susceptibility. Family history and the presence of nevi are some of the most important risk factors for
melanoma. Familialmelanoma is responsible for 8–12% of melanoma cases [14], being cyclin-dependent kinase in-
hibitor 2A (CDKN2A) and CDK4 the major susceptibility genes involved in this context [15]. Germline mutations
in CDKN2A are responsible for the loss of two tumor suppressor proteins, p16INK4a and p14ARF, both encoded by
the CDKN2A gene through alternative splicing [16,17], while germline mutations in the CDK4 oncogene render a
constitutively active complex between CDK4 and cyclin D1, which in turn promotes abnormal proliferation [18].
Melanocytic nevus is a benign accumulation of melanocytes that can be considered the first lesion in melanoma

progression, and can develop to melanocytic hyperplasia and ultimately dysplasia [19,20]. Dysplastic tumors can
further progress through non-invasive and invasive lesions untilmetastatic melanoma is established. This multistep
tumorigenic process results from the accumulation of genetic alterations that comprise genomic instability, activation
of oncogenes such as BRAF and RAS, as well as inactivation of tumor suppressor genes (TSGs) [21]. For instance,
allelic deletions at chromosomes 1p, 6q, 9p 11q, 17q, and others can be found inmelanoma [22]; some of these regions
harbor melanoma susceptibility genes and other TSGs [23,24], rendering their loss an oncogenic event. Oncogenes
may also be amplified in melanoma, as is the case of CCDN1,KIT and telomerase reverse transcriptase (TERT) [25].

Both the incidence and the annual mortality due to melanoma have increased dramatically during the last few
decades [26]. It is estimated that the number of cases worldwide has doubled in the past 20 years, and it has been
reported that the incidence of melanoma has increased faster than any other type of cancer (∼3.1% per year) [27,28].
Cutaneous melanoma is the fifth most frequent cancer in men and sixth in women, with an estimate of 55000 and
36000new cases in 2018 in theUnited States, respectively. Thus, it is estimated that the probability of aman developing
cancer during his lifetime is 1.72% and for a woman is 1.22% [29].

Australia andNewZealandhave the highest incidence rates of cutaneousmelanoma, reaching∼60 cases per 100000
inhabitants/year. However, these rates vary vastly amongst different populations: the United States has a rate of ∼30
cases per 100000 inhabitants per year while in Europe it is ∼20 cases per 100000 per year [8]. In Latin America,
there is a lack of data regarding the incidence and prevalence of melanoma [30]. Considering that Latin Americans
are frequently exposed to high amounts of UVR due to high altitude and tropical climate, it would be important to
better distinguish the impact of this disease in these populations.Most studies in countries such as Argentina, Brazil,
Mexico, and Colombia have been conducted in hospitalized patients and, therefore, do not reflect the incidence and
prevalence of the disease in their population as a whole [30,31]. As an example, the National Institute of Cancer in
Brazil (INCA) estimates 6260 new cases of melanoma in Brazil in 2018 [30,32].

Clinically, four main subtypes of melanoma have been described: nodular, acral lentiginous melanoma (ALM),
lentigomaligna (LM), and superficial spreadingmelanoma (SSM) [27]. Nodularmelanoma consists of raised nodules
without a significant flat portion; ALM tends to be found on the palms of the hands, the soles of the feet, and in the
nail bed; LM is generally flat in appearance and occurs on sun-exposed regions in the elderly, being related to lifetime
chronic sun exposure [27]. SSM is the most common form of melanoma, and it is frequently linked to episodes of
severe sunburn (especially at an early age). Thus, it mostly occurs on areas of the body with periodic sun exposure,
such as the trunk and proximal extremities [2,27].
Clinical staging ofmelanoma progresses from a focal (in situ) growth, followed by increasing thickness and vertical

invasion to regional lymph-node spread and, ultimately, resulting into distalmetastasis [2].Most melanoma cases are
localized at the time of diagnosis and, at early stages, may be cured by surgical resection [33,34].However, metastatic
melanoma is extremely hard to treat, being unresponsive to most of the existing therapies and associated with a
poor prognosis, with a median survival rate of 6–12 months and 5-year survival rate of less than 5% [8,27,33]. A
variety of biological mechanisms can impair the therapy for metastatic melanoma and also lead to drug resistance,
such as over-activated pro-survival signaling pathways, triggering of alternative compensatory pathways, increased
expression of therapeutic target(s), molecular heterogeneity, and up-regulation of drug transporters [35].
Analysis of The Cancer Genome Atlas (TCGA) and other genome-wide data [36,37] made possible to identify

the most frequent mutations in melanoma and other types of cancers. BRAFV600E is the most prevalent mutation in
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melanoma, being detected in 52% of cases, followed by mutations in the RAS family and neurofibromin 1 (NF1) in
approximately 30 and 14% of cases, respectively [36]. These driver mutations are almost always mutually exclusive,
making it possible to classify melanoma cases in distinct genomic subtypes: BRAF, RAS, NF1, and Triple-WT, the
latter being defined by the absence of BRAF, RAS, and NF1 mutations. Other common alterations in melanoma
include mutations in TP53, CDKN2A, and phosphatase and tensin homolog (PTEN) TSGs and in TERT promoter
[36].

Recent discoveries in cell signaling mechanisms have provided better understanding of the biology that underlies
melanoma progression, and these advances have been exploited to provide targetted drugs and new therapeutic ap-
proaches [27]. Among the genetic events that underliemelanoma development, a variety ofmutations in cell signaling
pathways components has been characterized.Many of these alterations impair receptor functions at the plasmamem-
brane and the emanating signaling cascades [2]. In the present review, we summarize the roles and altered functions
of major signaling pathways during melanoma development, also providing a detailed description of the available
and under-development treatments that may impact these cascades.

Mitogen-activated protein kinase pathway
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway,
involved in a variety of physiological programs, such as cell proliferation, differentiation, development, migration,
apoptosis, and transformation [38,39]. This pathway can be activated by a broad range of extracellular signals – growth
factors, mitogens, cytokines, and others – that will lead to temporal and tissue-dependent biological effects in the
organism. FourteenMAPKs have been identified in mammals, and these kinases are typically divided in three main
subfamilies: the extracellular signal-related kinases (ERKs), Jun N-terminal kinases (JNKs), and p38 kinases [40].
Each of these MAPKs is activated upon phosphorylation by an MAPK kinase (MAPKK or MAP2K), which in turn
is activated by an MAPKK kinase (MAPKKK or MAP3K). There are at least seven MAPKKs (MAPK/ERK kinase
(MEK) 1–7 (MEK1–7)) and several MAPKKKs described so far [41]. MAP3Ks include proteins from numerous
families, such as the Raf isoforms, 1001-amino acid protein (Tao) and Mos proteins, and others [41]. These kinases
ultimately drive the activation of ERK, JNK, or p38 MAPKs, which will prompt distinct cellular responses by further
activating specific substrates and transcription factors.
The ERK pathway is the best characterized MAPK pathway in mammalian cells and, coincidentally, it has an im-

portant impact on melanoma development and progression. In thisMAPK axis, theMAP3K role is played by the Raf
family of serine/threonine kinases, which is characterized by an Ras/GTP-binding domain [42]. Ras proteins (H-Ras,
N-Ras, and K-Ras) are small GTPases located in the plasma membrane that act as activators in several pathways
besidesMAPK. Ras oscillates between its ‘off’ GDP-bound and ‘on’ GTP-bound states [43]. This oscillation is facili-
tated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which mediates GTP
binding and GTP hydrolysis, respectively.
Upon ligand binding, receptor tyrosine kinase (RTK) undergoes dimerization and cross-phosphorylation at one

or more tyrosine residues [44], which will then serve as an assembly and activation site for downstream intracellu-
lar proteins. In the MAPK pathway, phosphotyrosine residues at the cytoplasmic domain of the receptors serve as
docking sites for the adaptor protein growth factor receptor-bound protein 2 (Grb2), which further recruits the GEF
son of Sevenless (Sos) and triggers the GTP loading of Ras (Figure 1A). Ras/GTP recruits Raf kinases to the plasma
membrane for further activation: when Ras is stimulated by GAPs, it binds to Raf and GTP is hydrolyzed into GDP,
resulting in the activation of Raf [45]. A-Raf, B-Raf, and C-Raf are upstream effectors of the MAPK pathway and
phosphorylate theMAPKKsMEK1/2. The Raf isoforms possess distinct capacity to activateMEKs, being B-Raf the
strongest activator. Phosphorylated and activeMEKs are then capable of phosphorylating ERK1/2, the final effectors
of theMAPK/ERK pathway. ERK activation results in the phosphorylation of a plethora of substrates, both in the cy-
toplasm and in the nucleus. ERK localization will determine target substrates. In the cytosol, ERK can phosphorylate
cytoskeletal proteins andmodulate cellmovement, trafficking, and adhesion [46]. In the nucleus, ERK can activate a
variety of transcription factors such as p90RSK, c-Fos, c-Myc, and c-Jun [47,48].

Activity of MAPK pathway in melanoma
Normal epidermal cells are constantly replenished to sustain the cutaneous barrier, and a few studies have shown that
MAPK pathway plays a significant role at this steady proliferative condition [49,50]. In melanocytes, MAPK is also
involved in the balance between proliferation and differentiation [51]. For instance, the microphthalmia-associated
transcription factor (MITF) is a target of ERK and regulates melanocyte functions such as melanin production, sur-
vival, and cell fate [52], which are dependent on the pattern of ERK activation. Transient activation of ERK can

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(A) (B)

Figure 1. The MAPK-ERK pathway

(A) In regular conditions, ligands such as growth factors or mitogens bind to the RTK, which is activated by autophosphorylation.

Phosphotyrosine residues recruit adaptor protein Grb2 and Sos, promoting Ras:GTP association. Activated by GAPs such as

NF1, Ras hydrolyzes GTP and activates Raf, the �rst effector kinase in the MAPK pathway. Raf then phosphorylates MEK, which

in turn phosphorylates ERK. p-ERK activates cytoplasmic and nuclear substrates. (B) In melanoma cells, mutations in Ras may

impair its capacity to hydrolyze GTP, therefore remaining activated. Loss of function mutations on NF1 are involved in the same

mechanism, promoting sustained Ras:GTP association. Mutations in B-Raf kinase are the most frequent in melanoma, causing

continued phosphorylation of MEK and downstream targets. The pathway can be targetted at any level by speci�c inhibitors.

inducemelanocyte differentiation [53,54], while sustained activation promotes melanocyte proliferation [55]. There-
fore, dysregulated MAPK signaling and sustained ERK activation are intimately related to melanoma progression.

During cancer progression, the MAPK pathway may be compromised at distinct stages (Figure 1B). Alterations
on the pathway, including mutations of certain effector molecules, may eventually lead to cascade hyperactivity and
subsequent biological effects such as cell proliferation, survival, invasion, metastasis, and angiogenesis [56,57]. The
BRAF gene is frequentlymutated in several cancers, andBRAFV600E is themost commonmutation in skinmelanoma
[36].Mutated BRAFV600E leads to an elevated kinase activity of B-Raf and sustained activation of downstream targets,
in addition to unresponsive negative feedback mechanisms [58]. The Q61 mutant Ras, the most predominant in
melanoma [59], leads to an important decrease in its intrinsic hydrolytic activity [60] and therefore a sustained active
state of Ras.Mutations in other molecules may also lead to Ras overstimulation, such as loss-of-function mutations
in NF1 [61]. Neurofibromin, the protein encoded by the NF1 gene, acts as a GAP and promotes the hydrolysis of
Ras/GTP into Ras/GDP, with consequent Ras inactivation [62]. In melanoma, most cases with altered NF1 comprise
loss-of-function mutation [36], in which neurofibromin loses its capacity to inactivate Ras and promotes sustained
stimulation of Raf and its downstream targets, leading to overstimulation of theMAPK pathway and consequent cell
growth, proliferation, and survival [63].

In addition toMITF, the AP-1 family of transcription factors (which includes c-Jun and c-Fos) is also a direct target
ofMAPK signaling, and it is highly associated with melanoma progression, proliferation, migration, apoptosis, and
cell survival [64,65]. Indeed, c-Jun is considered the most important AP-1 factor in melanoma and it can be activated

4 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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by both JNK and ERK MAPKs to promote cell proliferation [57]. Several c-Jun target genes have been implicated
in tumorigenesis and are typically deregulated in many types of cancer, including melanoma [66]. FOSL1, another
AP-1 factor, has also been related to melanoma progression by enhancing the expression of pro-tumorigenic genes,
cellmigration, and proliferation [67].

According to the TCGA data analysis, TERT promoter mutations frequently occur in melanoma, mainly in the
BRAF (75% of cases), RAS (72% of cases), and NF1 (83% of cases) subtypes [36], suggesting a link betweenMAPK
activation and TERT expression. Indeed, constitutively activeMAPK pathway promotes phosphorylation and activa-
tion of the ETS1 transcription factor by ERK (mutated TERT promoter bears ETS-binding sites) [68]. Epigenetic al-
terationsmay also contribute to alteredMAPK signaling inmelanoma, as observedwithmiR-524-5p, anmiRNA that
targets BRAF and ERK2 transcripts and is down-regulated in melanoma [69].On the other hand, other miRNAs like
miR-340 can function as tumor suppressor in melanoma by targetting distinct components of the RAS-RAF-MAPK
signaling cascade [70].

MAPK pathway as a therapeutic lead for melanoma treatment
Several compounds have been designed as therapeutic agents targetting theMAPK pathway, and these are in clinical
trials and/or already approved for therapy. Specifically, Ras, Raf, MEK, and ERK have been the bona �de targets to
be inhibited in many cancer treatments.
Sorafenib is a multi-tyrosine kinase inhibitor whose targets include B-Raf, platelet-derived growth factor receptor

(PDGFR), and vascular endothelial growth factor receptor (Figure 1B). It was the first B-Raf inhibitor to reach clinical
trials and, later, approved for renal cancer treatment [71], but failed to show antitumor activity in advancedmelanoma
when administered as single agent [72] or in combination with other therapeutic drugs [73].
In recent years, new potent specific BRAFV600E inhibitors have been developed, including dabrafenib

(GSK2118436) and vemurafenib (PLX4032]. Vemurafenib was the first B-Raf inhibitor approved by the U.S. Food
and Drug Administration (FDA) for melanoma treatment [74] and both show good response and survival rates in
metastatic melanoma [75,76]. Dabrafenib and vemurafenib associations are currently being studied in patients with
unresectable and metastatic BRAFV600E melanoma (NCT02967692, NCT01657591). CI-1040 (PD184352), a potent
MEK inhibitor, progressed to clinical trials but presented adverse effects in ∼60% of the patients [77]. Further tests
revealed poor antitumor activity and low bioavailability of CI-1040 [78]. PD0325901, a second-generation analog
of CI-1040, provided better results but, ultimately, showed higher toxicity [79]. Also, the second-generation MEK
inhibitor selumetinib (AZD6244) failed to achieve progression-free survival (PFS) in melanoma [80], despite its an-
titumor activity. New generation of MEK inhibitors, such as trametinib (GSK1120212) and MEK162, have shown
promising results in BRAF mutated melanoma [81] and are being tested in combinations in phase III clinical trials
(NCT02967692 and NCT01909453).

Despite the efforts and success ofMAPK inhibitors in cancer treatment, many patients with advancedmelanoma
still develop resistance to this chemotherapy. As a result, many MAPK inhibitors tend to be used in combina-
tion with other chemotherapeutic agents or even after cancer surgery. The mechanisms of resistance can be: (i)
MAPK-dependent, when secondary alterations in MAPK pathway take place, such as amplification or splicing of
BRAF [82], acquisition of additional activating mutations in RAS,MEK1/2, ERK1/2, or Raf isoform switching [83];
or (ii)MAPK-independent, such as altered RTK activity [84,85] and rescue of signaling by different ligands. Another
mechanism of resistance to BRAF inhibition relates to the induction of programmed death-ligand 1 (PD-L1) expres-
sion, which transmits anergy signals to effector T cells, leading to suppression of an immune response [86]. Therefore,
programmed cell death protein 1 (PD-1) receptor has been elected a therapeutic target, and antibodies against PD-1
such as PDR001 are being tested in melanoma clinical trials (NCT02807844 and NCT02404441).

Phosphoinositide 3-kinase-AKT pathway
The phosphoinositide 3-kinases (PI3Ks) compose a family of lipid kinases with regulatory roles in a broad range of
cellularmechanisms. PI3Ks are activated by diverse stimuli and/or stress-related insults, and are involved in a number
of biological processes including cell survival, cell growth, differentiation, proliferation, transcription, and translation
[87,88]. This pathway transduces signals from a variety of growth factors and cytokines, being the major downstream
effector of RTKs and G-protein-coupled receptors (GPCRs) [87]. Thus, PI3K-Akt has been associated with the de-
velopment of various diseases including diabetes mellitus, autoimmunity, inflammation, and cancer [87,89].
Three different classes of PI3Ks have been identified in mammals. PI3K Class I, the most well-characterized and

also considered the main activator of the classical PI3K-Akt pathway, is composed by heterodimers containing a
regulatory subunit (p85) and a catalytic subunit (p110]. This class is subdivided into class IA (p110α, p110β, and

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. PI3K-Akt pathway activity in normal cells/tissues

Under basal conditions, ligand binding to the RTK promotes receptor phosphorylation and activation. Activated RTK recruits the

PI3K to the plasma membrane. Class IA PI3Ks are represented and may also be activated by GPCR and the small G protein Ras.

These PI3Ks consist of a regulatory subunit (p85) and a catalytic subunit (p110). The activated p110 portion converts PIP2 into

PIP3 at the membrane. PIP3 are docking sites for the serine-threonine protein kinase Akt, a crucial node in this pathway. Akt is

phosphorylated and activated by putative PDPK1. p-Akt may elicit a wide range of downstream signaling targets that regulate cell

cycle, apoptosis, DNA repair, glucose metabolism, growth and translation. PTEN dephosphorylates PIP3 back to PIP2 and therefore

is the main negative regulator of the pathway, inhibiting Akt activation. Abbreviation: PDPK1, 3-phosphoinositide-dependent protein

kinase 1.

p110δ) and class IB (p110γ, and its regulatory subunitmay be p101, p84 or p87].Class IA enzymes can be activated by
RTKs,GPCRs and certain oncogenes such as the small proteinRas, while the class IB enzymes are exclusively activated
by GPCRs. The PI3K class II includes three different enzymes (PI3KC2α, PI3KC2β, and PI3KC2γ), consisting of a
single catalytic subunit which can be activated by RTKs, cytokine receptors, and integrins. Still, the class II enzymes
remain as the most enigmatic amongst all PI3K classes. The PI3K class III is largely recognized by its uniquemember,
named vacuolar protein sorting associated 34 (Vps34 - also known as PI3KC3), which is also the only PI3K expressed
in all eukaryotes.Vps34 is mainly a regulator of autophagy, implicated in integrating cellular responses to changes on
nutritional status [87,90].
Upon stimulation, the p85 subunit of PI3K interacts with the intracellular portion of the activated receptor. This

interaction allows the activation of the catalytic subunit which, in turn, may associate with lipids in the membrane
(Figure 2). Activated PI3K leads to the formation of phosphatidylinositol-3,4,5-trisphosphate (PIP3) by phospho-
rylating phosphatidylinositol-4,5-diphosphate (PIP2) in the plasma membrane. PIP3 constitutes a docking site for
proteins that contain a Pleckstrin homology (PH) domain and also act as a potent second messenger, essential for
the recruitment of the serine-threonine protein kinase Akt to the plasma membrane. Akt is a crucial node in this
signaling pathway, transmitting signals by phosphorylating different downstream effector targets [87,90].

Akt, also referred to as protein kinase B (PKB), is expressed as three different isoforms: Akt1, Akt2, and Akt3
[91]. These isoforms are encoded by different genes but share similar protein structures: a PH domain, a central

6 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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serine-threonine catalytic domain, and a regulatory domain. Akt normally exists in the cytosol in an inactive con-
formation and, when translocated to the plasma membrane upon PI3K activation, suffers a conformational change
that exposes two residues for phosphorylation by 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and 2
(PDPK2): Thr308 and Ser473, respectively. Once Akt is phosphorylated at both residues and fully activated, it turns
a major downstream effector of PI3K pathway, inhibiting or activating a variety of targets (Figure 2) and, therefore,
regulating important cellular behaviors such as apoptosis, DNA repair, cell cycle, glucose metabolism, cell growth,
motility, invasion, and angiogenesis [87,90].
The main target of Akt is mammalian target of rapamycin (mTOR), which has a central role in PI3K-Akt pathway

and cancerdisease [87]. Regularly,mTORplays a crucialpart in the regulation of cell growth andproliferation bymon-
itoring nutrient availability, cellular energy, oxygen levels, andmitogenic signals [87,92]. mTOR exerts its function by
forming two different complexes: mTOR protein complex 1 (mTORC1) and complex 2 (mTORC2). The first com-
plex (mTORC1), largely involved in ribosomal biogenesis and protein synthesis, is composed by the mTOR catalytic
subunit, the regulatory associated protein regulatory associated protein of mTOR (RAPTOR), protein mLST8 and
proline-rich Akt substrate 40 kDa (PRAS40) [87,92]. The mTORC2 complex consists of rapamycin-insensitive com-
panion of mTOR (RICTOR), mammalian stress-activated protein kinase interacting protein 1 (MSIN1) andmLST8,
and is involved in cytoskeleton remodeling, cell survival, and glucose metabolism [87]. Uncontrolled activation of
mTOR and its complexes mTORC1 andmTORC2 may favor tumor development, promoting cell growth and protein
synthesis [87].

Likemany other cellular cascades, PI3K-Akt signaling has regulators to timely control any persistent and long-term
activation. A main negative regulator of PI3K is the tumor suppressor PTEN, which antagonizes the PI3K activity by
its intrinsic lipid phosphatase activity, converting PIP3 back into PIP2. Loss of PTEN results in constitutive activation
of Akt, and it has been largely associated with tumor development in malignant melanoma [93].

Activity of PI3K-Akt pathway in melanoma
As previously stated, melanoma is a complex genetic disease whose initiation and progression involves mutations and
impaired function in different cell signaling pathways. The PI3K signaling cascade has been shown to be up-regulated
in different types of cancer, including melanoma, to protect the tumor tissue from stress conditions that could lead
to cell death and consequent regression [94,95]. Oncogenic events that activate PI3K-Akt may include mutations or
copy number variations in certain pathway components. Mutations in cross-talk components, such as Ras protein
family, andmutated or amplified RTK expression may also hyperactivate PI3K-Akt pathway [96].
Melanocyte function relies on the activation of the RTK c-Kit and its ligand stem cell factor (STC) within the

epidermis [5,6]. c-Kit can activate the PI3K-Akt pathway, thus being fundamental to the development of normal skin,
controllingmelanocyte permanent survival, proliferation, andmigration [97]. c-Kit and STC also regulatemelanocyte
survival in adult normal skin [5,6].
The physiological role of PI3K-Akt in melanocytes is strictly regulated. A pathway malfunction may lead to cell

cycle impairment, favoring cancer development by losing the requirement of c-Kit activation for cell survival and pro-
liferation [87,98]. Indeed, mutations and amplifications of KIT are detected in 10–15% of acralmelanomas, 20–30%
of mucosal melanomas, and 1% of other cutaneous tumors [99]. In addition, c-Kit activity is exacerbated in human
epidermis exposed to UV light [100].

Mutations in PI3K genes are relatively rare in melanoma, with a frequency of ∼3% in metastatic melanoma [101].
Akt is also mutated at low extent in melanoma [8,102]. However, Akt (mainly Akt3) is overexpressed in 43–60%
of non-familialmelanomas, and it has been implicated in disease progression, metastasis, and development of drug
resistance [95,103]. Consistently, patient survival is inversely correlated to activated Akt levels [104]. Nevertheless, a
more in-depth understanding of Akt functions in melanoma is still warranted [95].

Mutations in MTOR genes have not been fully investigated, although they are apparently frequent in melanoma
patients. A recent study, composed of 412 melanoma samples, has shown that 10.4% of these melanoma cases pre-
sented somaticMTOR mutations [105]. Interestingly, melanoma patients withMTOR mutations often have shorter
survival rates, suggesting that these mutations may lead to worse prognosis of the disease [105]. The mTORC2 com-
ponent RICTOR has also been found to be overexpressed in melanoma, where it appears to stimulate clonogenicity
[92]. AKT overexpression also increases mTOR activity, leading to unbalancedmTOR functions which are normally
regulated by nutritional bioavailability, necessary for cell proliferation [106].
In addition to point mutations, PI3K-Akt signaling may also be hyperactivated in melanoma due to loss of activity

of the negative regulator PTEN (Figure 3). PTEN function is lost in 10–30% of cutaneous melanomas, leading to

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. PI3K-Akt pathway activity in melanoma

Malignant transformation in melanocytes can require combinations of frequently seen genetic defects, which lead to melanoma

development. Thesemutants often elicit Akt over-activation, leading to constitutive pathway activation (indicated by thicker arrows).

Constitutive activation of PI3K-Akt signaling impairs cell cycle regulation, favoring tumor initiation and progression. Mutations can

be mutually exclusive or coexist. For example, mutated NRAS (NRASmut) and BRAF (BRAFV600E), from Ras-Raf-MEK-ERK pathway,

rarely occur in the same melanoma cell, whereas BRAFV600E and PTEN function loss (PTENdel) appears in 20% of melanomas.

NRASmut, a well-described mutation in melanoma cells, may also lead to hyperactivation of the PI3K-Akt pathway. PI3K mutation

itself (p110mut) is a rare condition. mTORC1mut increases protein translation and cell proliferation, favoring melanoma development.

Also, mTORC2mut enhances Akt activation, collaborating with the maintenance of constitutive activation of PI3K-Akt pathway in

cancer.

constitutive activation of PI3K pathway [107]. Interestingly, PTEN gene mutations and deletions are mutually ex-
clusive in melanoma with activating N-RAS mutation [108]. On the other hand, ∼20% of melanomas with PTEN
loss-of-function also have BRAFV600E mutations [109,110]. Despite the unclear significance of these observations,
current studies suggest that these may increase the metastatic potential of melanoma [111].

The many possible regulatory mechanisms and the variety of components of PI3K-Akt pathway illustrate its own
complexity. To inhibit this pathway in melanocytes, it has been shown that the inactivation of more than one single
pathway component is generally necessary (such as PI3K and mTOR complexes simultaneously) [92]. Otherwise,
the pathway can be reactivated at short time, even if PI3K is still inhibited. This suggests the existence of additional
feedback mechanisms downstream of PI3K, dependent on mTOR complexes [92].

PI3K-Akt pathway as a therapeutic lead for melanoma treatment
The development of drugs targetting the PI3K-Akt pathway in melanoma looks promising, but still faces numerous
challenges. Pharmacologically, there has been intense development of inhibitors against PI3K, Akt, mTORC1, dual
PI3K/mTOR, and dualmTORC1/mTORC2 [112]. Perifosine, for instance, is a synthetic oral inhibitor of Akt that has
been tested in pre-clinical and clinical trials against many types of cancer, including melanoma. This drug inhibits

8 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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the translocation of Akt to the plasma membrane, blocking its activation. However, current tests show several toxic
effects and no relevant benefits toward patient survival or disease regression [113].

PI3K-Akt inhibitors are not still available for clinical treatment, due to a number of reasons that impair their de-
velopment, which include: (i) these drugs lack consistency on their affinity toward different isoforms of signaling
proteins; (ii) different types of melanoma have different optimal target proteins, depending on the mutated gene;
(iii) the development of targetted therapies relies on specific patient portfolios; (iv) lack of appropriate markers to
assess the pharmacodynamics of these agents; (v) existence of feedback compensatory loops within and in between
cell signaling pathways that control cell proliferation and apoptosis [96,114]. In fact, this last reasoning may explain
the lack of clinical activity in melanoma for some single-agent mTORC1 inhibitors, such as CCI-779/Temsirolimus
(NCT00022464), a rapamycin derivate [115]. Rapamycin and its derivatives are well-known mTOR experimental
inhibitors [116].

While many studies support the causal role of activating BRAF and NRAS mutations in melanoma progression,
opposing data suggest that the contribution of PI3K-Akt pathway to this disease may be variable [117]. In this sense,
PI3K-Akt inhibitors might be used in combination with other agents that induce apoptosis [27], but not as single
agents. Recently, Akt3 andWee1 (a protein involved in cell cycle regulation) have been defined as putative and simul-
taneous targets to synergistically inhibit melanoma in vitro [118].Moreover, despite the limited experimentation, a
Chinese herb named Alocasia cucullata has recently shown activity to up-regulate expression levels of PTEN and
decrease phosphorylation of PI3K and Akt in vivo and in vitro, leading to an antimelanoma effect [28]. Clinically,
a PI3K-inhibitor (GSK2636771) is being tested, itself or in combination with PD-1 inhibitor Pembrolizumab, in re-
fractory melanoma patients with PTEN loss (NCT03131908).

WNT pathway
In humans,Wnt proteins compose a family of 19 highly conserved and secreted glycoproteins that act through a vari-
ety of receptors to stimulate distinct intracellular subpathways [119]. These pathways are typically involved in embry-
onic development, cell growth, migration, and differentiation [119]. The Wnt signaling is also required throughout
life for the homeostatic balance of quickly self-renewing tissues, such as intestinal crypts and hair follicles, as well as
for the regulation of bone mass [120]. Therefore, impairment of Wnt signaling cascade results in severe embryonic
malformations as well as in a broad range of other pathological conditions [119,121].
Wnt ligand-eliciting pathways may be subdivided into two main categories: the canonical pathway, which in-

cludes the intracellular transcriptional co-activator β-catenin as a central component; and alternative cascades that
lack the participation of β-catenin [122]. The canonical Wnt pathway may be activated by Wnt proteins, such as
WNT1/WNT3A (Figure 4), through the binding to Frizzled receptors (FRZD1-7) and co-receptors, lipoprotein re-
ceptor (LRP) 5 (LRP5) and LRP6 [123]. FRZDs are seven transmembrane domain (TM) cell surface receptors that
belong phylogenetically to the large family of GPCRs [124]. The LRP5/6 co-receptors stimulate the intracellular sig-
naling to further regulate β-catenin stability and context-dependent transcription [125].
Upon stimulation of canonical Wnt signaling, the cytosolic downstream mediator scaffold protein Dishevelled

(DVL) becomes activated and prevents β-catenin from degradation by inhibition of glycogen synthase kinase 3β
(GSK3β) [126]. The blocking of β-catenin degradation leads to its stabilization in the cytosol, allowing its translo-
cation in the nucleus and the association with transcription factors, such as lymphoid enhanced transcription factor
(LEF) and T-cell transcription factor (TCF) [127]. Upon binding of β-catenin to LEF/TCF, these factors become
transcriptional activators by (i) displacing their repressorGroucho and (ii) being able to recruit other transcriptional
co-activators, such as cAMP response element-binding protein (CBP) and B-cell lymphoma 9 (BLC9) [123]. In this
manner, β-catenin-containing complexes control the expression of several Wnt target genes, including c-MYC and
CCND1 [122,128].
In the absence ofWnt ligands, the activity ofβ-catenin is strictly controlled by the action of a degradation complex,

composed byGSK3β, casein kinase 1α (CK1α), and the scaffolding protein Axin. These proteins contain a regulator
of G-protein signaling (RGS) domain that interacts with adenomatous polyposis coli (APC), a large multifunctional
scaffolding protein that binds β-catenin itself. This complex is responsible for promoting the phosphorylation of
β-catenin byGSK3β and CK1α [123]. After being phosphorylated, β-catenin may be ubiquitylated by β-transducin
repeat-containing protein (β-TrCP), which leads to its proteasome degradation [129]. β-catenin processing can be
further modulated by protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), which are ubiquitously ex-
pressed serine–threonine phosphatases that interfere with the complex function by dephosphorylatingβ-catenin and
then disengaging its destruction [130,131].

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(A) (B)

Figure 4. Canonical Wnt signaling cascade

(A) When there is an absence of Wnt ligand, the cascade is ‘off’ and β-catenin is recruited to the APC and axin complex. This

allows β-catenin to be phosphorylated by CK1α and GSK3β, and then subsequently ubiquitylated by β-TrCP. Following ubiquity-

lation, β-catenin is directed to the proteasome to be degraded. Low levels of cytoplasmic β-catenin repress gene transcription of

Wnt targets by LEC and TCF. (B) In the canonical pathway, Wnt ligands binds to the FRDZ receptor and LPR5/6, which are phos-

phorylated by CK1α and GSK3β. It evokes DVL to interact with p-FRDZ, leading to the inactivation of the destruction complex,

preventing β-catenin degradation. Stabilized, β-catenin translocate into the nucleus and increases gene transcription by forming

a complex with TCF, LEF and the co-factors PYGO, BCL9, and CBP. In melanoma cells, WNT1 and WNT3A are the major ligands

responsible for the constant activation of Wnt canonical pathway, leading to β-catenin stabilization in the cytosol, which favors

melanoma progression. Abbreviations: APC, adenomatous polyposis coli; CBP, cAMP response element-binding protein; CK1α,

casein kinase 1α, DVL, dishevelled; GSK3β, glycogen synthase kinase 3β; LEF, lymphoid enhanced transcription factor; PYGO,

Pygopus; TCF, T-cell transcription factor; β-TrCP, β-transducin repeat-containing protein.

Some Wnt ligands have also been shown to interact with other transmembrane receptors types, including RTKs
and RTK-like orphan receptor (RoR) family RoR2 [132]. They can act independently of LRP5/6 and thus may acti-
vate β-catenin-independent pathways. This activation can lead to changes in cell movement and polarity, and even
antagonize theβ-catenin pathway [120,125]. FRZDs have also been shown to respond toWnt proteins in the absence
of LRP5/6, being able to elicit β-catenin-independent pathways [125]. Non-canonical Wnt pathways are diverse and,
in most of the cases, still poorly defined [133].

Activity of Wnt pathway in melanoma
The canonicalWnt pathway is responsible for controlling, to some extent, cancer cellmetabolism [122]. Inmelanoma,
Wnt/β-catenin-mediated metabolic reprogramming of the cancer cells can directly affect vessel density, and it is
strongly linked to tumor angiogenesis by directly regulating the expression of pro-angiogenic growth factors [134].
Still, in this context,Wnt regulation is poorly understood [122].

10 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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As previously stated, the canonical Wnt pathway controls the expression of c-MYC, a well-characterized
proto-oncogene [122]. c-MYC functions as a transcription factor by binding to enhancer box sequences of a num-
ber of target genes, many of which are involved in cell cycle control, including cyclins, CDKs and CDK inhibitors
[135].Metabolic events including glycolysis, nucleotide synthesis, lipid synthesis, glutaminolysis, andmitochondrial
bioenergetics are deeply controlled byMyc-driven transcriptional regulation in cancer cells, all of which are essential
for biomass accumulation and genome replication in rapidly dividing cells [136]. In fact, aerobic glycolysis has been
associated with the function ofWNT5A in melanoma cells, and this activity has been related to an increase in active
Akt signaling and high lactate dehydrogenase (LDH) levels in the serum [137].Melanoma cells primarily use glycol-
ysis as an energy source for cellmotility and, in this sense,WNT5A acts as a positive modulator by promoting both
migration and aerobic glycolysis [137].

The canonical Wnt proteins WNT1 and WNT3A are also known to be critical for melanocyte transformation
(Figure 4B) and, consequently, avoidance of cellular senescence [138].Melanoma tumors frequently exhibit constitu-
tive activation of theWnt/β-catenin pathway, presumably to induce cell proliferation, but conflicting studies on the
role of β-catenin in melanoma metastasis have been reported [119]. Paradoxically, melanoma patients with higher
β-catenin levels have shown a better disease prognosis [139], implying that the mechanisms that drive melanoma-
genesis are distinct from those that dictate its outcome. Nevertheless, in defined genetic contexts, such as in vivo
melanoma models where BRAF is mutated, PTEN is usually deleted and β-catenin is then stabilized, leading to an
increase in metastatic events [140].Moreover, at different stages of melanoma progression, the expression and distri-
bution ofWnt receptor(s)/co-receptor(s) can also define the fate of the signaling activation [120].

The canonical Wnt signaling can co-operate with MAPK signaling to regulate the expression and activity of the
master transcription regulator MITF, which is associated with melanoma cell proliferation [141]. The effects of
Wnt/β-catenin and MITF signaling is apparently context-dependent, where activating mutations and the intracel-
lular localization of β-catenin may play a role [141]. Intracellular localization of β-catenin also correlates with the
association of elements in the cellular phenotype, since membrane-associated β-catenin has been found in prolifer-
ative cells, while cytosolic β-catenin has been more detected in invasive cells [142].
Melanoma cells also present ROR2 up-regulation, which promotes invasion, metastasis, and therapeutic resistance

through distinct intracellular signaling cascades, including β-catenin-independent cascades [143]. WNT5A/ROR2
signaling induces recruitment and activation of Src kinase activity to promote metastasis [144].Moreover,WNT5A
induces depalmitoylation of melanoma cell adhesion molecule (MCAM) and, subsequently, polarizes localization
ofMCAM and CD44 (another cell adhesion molecule) to promote directionalmovement and invasion of melanoma
cells [145]. The non-canonicalWnt signaling pathway,mediated byWNT5A, has also been associatedwith increasing
metastatic potential of melanoma cells and respective tumor grades [146].

A number of other proteins, important for the positive modulation of the Wnt pathway, have recently been as-
sociated with cancer development, such as members of the R-spondin ligand family that bind to the leucine-rich
repeat containing GPCRs (LGR) 4–6 [147]. In the absence of R-spondin binding, the two homologs E3 ubiquitin
ligases ZNRF3/RNF43 target FRZD for lysosomal degradation, which is dependent on DVL. Upon LGR activation
by R-spondin, this complex inhibits the activity of ZNRF3/RNF43 and leads to the accumulation of FRZD receptors
on the cell surface. ZNRF3/RNF43 work as negative regulators ofWnt signaling since they are transcriptional targets
of this pathway [121,148]. The discovery of the R-spondin/LGR5/RNF43 signaling module and its genetic alterations
in cancer represents a breakthrough in this area. However, the frequency of RNF43 mutations in melanoma is lower
than 2%, and the mutation rate of LGF5 in cutaneous melanoma still requires further investigation [121,149].

Wnt pathway as a therapeutic lead for melanoma treatment
Wnt signaling components, mainly including FRZDs and DVL, have been considered as targets for cancer treatment
using smallmolecule inhibitors [150]. SpecificDVL inhibitors have been developed using protein–protein interaction
screens and design-based algorithms [151,152].

Some natural compounds, such as chalcones, derricin, and derricidin, are newly discovered inhibitors of theWnt
signaling pathway. Their inhibitory function is characterized by reduced amounts of nuclear β-catenin in treated
cells. Elucidating the mechanism of action of these drugs is warranted, since they may offer advantages on lowering
the risk of mutagenesis (due to their limited interaction with the DNA) [153].
Extra- and intracellular components of the Wnt pathway, including axin, APC, and β-catenin, are frequently

associated with a variety of human cancers, and therefore, antibody-based therapies have also been proposed to
target-specific pathway components [154]. OMP-18R5 (vantictumab) is an antibody that interferes in the binding
of Wnt ligands to human FRZDs. It has demonstrated activity in inhibiting the growth of a range of human tumor

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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xenograft models, and exhibits synergistic activity when co-treated with standard chemotherapeutic agents [155].
Similarly, antibody-based blockage of WNT5 induces inhibition of protein kinase C (PKC) activity and decrease in
cellular invasion [141]. Indeed, WNT5A has shown an important role in the invasive behavior of melanoma cells,
since constitutive WNT5A overexpression is able to induce actin reorganization and increased cell adhesion [156].
Moreover, a phase I study (NCT01351103) with an oral drug LGK974, which blocksWnt signaling, is being conducted
to find safe doses for melanoma and others solidmalignancies.
Another potential therapeutic strategy targettingWnt signaling relates to the development of specific peptides that

mimicWnt proteins and, therefore, lead to receptor inhibition. For instance, UM206 is a small peptide derived from
regions of high homology betweenWNT3A andWNT5A that has been demonstrated an antagonist effect on FRZDs,
therefore blocking downstream Wnt signaling [157]. This strategy has been applied in other diseases, such as heart
failure [157] and hepatocellular carcinoma [158], andmay be developed for melanoma treatment in the near future.

Nuclear factor κ-light-chain-enhancer of activated B cell
pathway
The nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) pathway was first described as a gene expres-
sion regulator in B lymphocytes [159] and, therefore, initially considered as a positivemodulator of inflammation and
immune response. NF-κB signaling is required during early development [160,161] and its molecules are evolution-
arily conserved [162], implying a broader role in other physiological activities and conditions [163]. In fact, NF-κB
activation is triggered by a diverse range of stimuli, such as cytokines (tumor necrosis factor α (TNF-α), interleukin
1 (IL-1), growth factors, bacterial lipopolysaccharide (LPS), ROS,UV, and ionizing radiation [164,165], which drives
the transcription of a variety of target genes, including interleukins, chemokines, proteases, and apoptosis-related
genes, leading to a plethora of outcomes such as stress response, immunity, cell proliferation, and apoptosis. By being
involved in the induction of proliferation genes, inhibition of apoptosis, and regulation of immune and inflammatory
responses [166], NF-κBhas been largely investigated in the context of tumor progression and immune evasion. In fact,
NF-κB has been implicated in cancer initiation, promotion, metastasis, resistance to treatment, andmay be also im-
plicated in carcinogenesis by regulating genome stability [167].On the other hand, TNF-α induced by viral infection
promotes cytolysis in fibrosarcoma cells [168] implying that, upon different stimuli, TNF-α induces apoptosis.
NF-κB comprises a family of transcription factors that act as homo- or heterodimers and, upon activation, translo-

cate into the nucleus where they interact with specific tandem DNA structures (κB enhancers) that modulate target
gene expression [169]. In the absence of stimulus, NF-κB dimers are typically sequestered and inactivated in the
cytoplasm by inhibitors of NF-κB inhibitor of NF-κB (IκB family). The IκB proteins, including IκBα, IκBβ, and
IκBε, contain multiple ankyrin repeats in their structures which are responsible for their inhibitory activity [170].
The ankyrin repeats found on IκB proteins interact with the Rel homology domain (RHD) of Rel proteins, masking
their nuclear localization signal (NLS) and therefore sequestering them in the cytosol [171].
In mammals, five NF-κB family members have been described: RelA (p65), RelB, c-Rel, p100/p52, and p105/p50

[170]. All of them share a conserved 300 amino acid N-terminal RHD, which harbors sequences that are crucial
for DNA binding, dimerization, IκB interaction, and nuclear localization [172]. The Rel proteins (i.e. p65, RelB,
and c-Rel) have a C-terminal transactivation domain (TAD) that enable interaction with different transcriptional
regulators to further induce κB-responsive gene expression [171]. In contrast, due to an IκB-like structure at their
C-terminus, p100 and p105 may serve both as precursors of NF-kB members p52 and p50, respectively, and also as
inhibitors of NF-κB dimers [173].

The p50:RelA(p65) dimer is the prototypical dimer in the canonical (or classical) pathway [174], but each combina-
tion of dimers stimulates different responses by inducing the expression of specific target genes. The canonicalNF-κB
pathway is mainly activated by TNF-α, IL-1 and Toll-like receptors (TNF-α receptor (TNFR), IL-1 receptor (IL-1R)
and TLR, respectively), and culminates in the activation of the IκB kinase (IKKα)/IKKβ/NF-κB essentialmodulator
(NEMO) complex by phosphorylation events (Figure 5). For instance, TNFR1 possesses auto-phosphorylation ca-
pacity that leads to receptor activation [175].Once activated, TNFR interacts with TNFR-associated factors (TRAFs)
2 and 5, which recruit receptor interacting protein 1 (RIP1) kinase to be phosphorylated by the receptor [175]. RIP1
can further activate p38MAPK andMAP3KMEKK3, which promote phosphorylation of the IKK complex and signal
propagation [176]. The IKK complex comprises two kinases (IKKα and IKKβ) and a regulatory and scaffold pro-
tein called NEMO (or IKKγ). The activated IKK complex phosphorylates the NF-κB-bound IκB (at Ser32 and Ser36

on IκBα, and Ser19 and Ser23 on IκBβ), targetting IκB for further polyubiquitination and proteasome-dependent
degradation.

12 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(A) (B)

Figure 5. Canonical and non-canonical NF-κB signaling pathways

The NF-κB cascade can be initiated by several types of receptors, which will trigger either the canonical or the non-canonical

pathway. When the canonical pathway is initiated by receptors such as TNFR, the activated receptor interacts with associated pro-

teins (TRAFs), which recruit RIP1 kinase to be phosphorylated by the receptor. This pathway culminates in the phosphorylation and

activation of the IKK complex formed by scaffold protein NEMO, IKKα, and IKKβ. NF-κB dimers are conjugated with inhibitor IKB

in the cytoplasm. IKK complex is responsible for phosphorylating IKB and therefore targetting it for degradation, releasing NF-κB

to translocate into the nucleus and promote transcription of target genes by binding to the κB site in the DNA. The non-canonical

pathway is initiated by other receptors, which relies on the activation of IKKα homodimer by the NF-κB inducing kinase (NIK),

assisted by TRAF. p100:RelB, the most common NF-κB dimer in this pathway, is phosphorylated on the p100 subunit, which will

be cleaved in its inhibitory domain and release active p52:RelB dimer to exert its nuclear functions. In melanoma, UV light exposure

is one of the factors that might activate NF-κB by inducing cytokines that signals through this pathway to induce a pro-in�am-

matory response. Sustained activation of NF-κB also promotes the expression of anti-apoptotic genes, as well as invasion- and

metastasis-related genes.

On the other hand, the non-canonical pathway, which is activated by lymphotoxin-β (LTβ), B-cell activating fac-
tor (BAFF) and cluster of differentiation 40 ligand (CD40L), relies on the activation of IKKα homodimer by the
NF-κB inducing kinase (NIK), assisted by TRAF [177]. In fact, the IKK subunits may assemble in distinct confor-
mations in the canonical and non-canonical NF-κB pathway. IKKα phosphorylates the C-terminus of p100, leading
to a proteasome-dependent degradation of its inhibitory domain and then producing active p52. Then, mature p52
dimerizes with Rel proteins (p52:RelB is known as a prototypical non-canonical dimer) and then translocates into the
nucleus to regulate selective immune responses, such as lymphoid organogenesis and B-cellmaturation and survival
[178].

Activity of NF-κB pathway in melanoma
NF-κB participates in epidermal homeostasis [179].UV irradiation promotes cytokine production in skin cells [180]
which, at short-term exposure, can induce an inflammatory response by releasing interleukins, granulocyte colony
stimulation factor (G-CSF), macrophage colony stimulating factor (M-CSF), transforming growth factor α (TGF-α),

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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and others [181]. Many of these cytokines have NF-κB as their downstream target/effector or may even have their
expression modulated by NF-κB itself, like the IL-1, TNF-α, and IL-6 genes. Therefore, sustained activity of NF-κB
may lead to exacerbated expression of pro-inflammatory mediators, therefore causing tissue injuries that may evolve
into organ dysfunction and eventually cancer [182].

In melanoma, NF-κB activity can lead to the induction of chemokines such as C–X–C motif chemokine ligand
1 (CXCL1), which constitutes a feed-forward mechanism by activating the IKK complex [183]. Loss of E-cadherin,
a common feature of malignant transformation, has been associated with up-regulation of NF-κB in melanoma cell
lines [184]. NF-κB largely contributes to melanoma through its function in regulating survival and apoptosis [185].
An imbalance between pro- and anti-apoptotic genes favoring the latter has been demonstrated in melanoma cells
by increased expression of RelA, p50, anti-apoptotic molecules (such as inhibitor of apoptosis (IAP) and caspase-8
inhibitory protein (FLIP)), and decreased expression of c-Rel, a pro-apoptotic regulator [186].

Deregulation of NF-κB can occur at different levels of the pathway. Constitutive activation of IKK, resulting
into continuous IκB degradation and sustained increase in NF-κB in the nucleus, has been observed in malignant
melanoma [183]. NF-κB signaling has also been shown to be influenced by other pathways that are commonly altered
in cancers, including melanoma. For instance, Akt can mediate IKKβ- and p38 kinase-dependent phosphorylation
of RelA transactivation domain, which is required for its transcriptional activity [187]. Also, p50 phosphorylation,
mediated by PI3K-Akt signaling, increases its DNA-binding capacity [188]. NF-κB signaling may also participate
in cancer invasion and metastasis by inducing the expression of adhesion molecules, such as intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesionmolecule-1 (VCAM-1), andmetalloproteinases (MMPs) [189-191].
TERT promoter mutations are key drivers of telomerase reactivation in cancer and in melanoma in particular

[192,193]. Single-residuemutations take place on two locations in the promoter [192,193] and create binding sites for
ETS family of transcription factors, which require co-operation with other binding partners to exert their transcrip-
tion activity. Non-canonicalNF-κB subunit p52 is a binding partner of ETS and, together, they interact with mutated
sites on TERT promoter and induce its activation [194]. Long-range chromatin interactions have been demonstrated
between other binding partners and a region that is more than 300 kb in size, upstream of TERT promoter [195]. This
is required for the interaction of key distal elements to the proximal promoter. Indeed, it is known that reactivated
telomerase has both canonical and non-canonical activities which may drive melanoma progression [196-198].

NF-κB pathway as a therapeutic lead for melanoma treatment
Despite its constitutive activation inmelanoma, targettingNF-κB for cancer therapeutics has been challengingmostly
due to its role in cytokine and chemokine production, therefore offering relative risks to the migration of immune
cells and immune response. However, NF-κB inhibition can promote benefits by enhancing apoptosis, and this
may be achieved by targetting cross-talk regulators within PI3K/Akt and MAPK pathways [199]. Administration
of non-steroidal anti-inflammatory drugs (NSAIDs), in melanoma in vivo models, can inhibit tumor growth with-
out causing detrimental effects [200]. Therefore, the use of NSAIDs have been considered as a potential therapeutic
approach in melanoma. Proteasome inhibitors, such as bortezomib, have been used to inhibit NF-κB by impeding
IκB degradation. These inhibitors are shown to induce enhanced apoptosis in multiple myeloma [201] and decreased
cell proliferation in melanoma in vitro [202]. Bortezomib also induces reduction in tumor growth in vivo [202] but
has shown significant toxicity after clinical trials [203,204].
Recent efforts have been directed to developing selective inhibitors of the NF-κB pathway. BMS-345541, a specific

IKK inhibitor, has been shown to reduce constitutive IKK activity and induced apoptosis ofmelanoma cells [205]. The
NBD (NEMO-binding domain) peptide can bind to NEMO and prevent its interaction with IKKα/β [206], which
is crucial for IKK complex activity and activation of NF-κB. The use of NBD peptides can promote growth arrest
and apoptosis in human melanoma cell lines [207], but neither NBD peptides nor BMS-345541 have reached clinical
trials yet.

Janus kinase-signal transducer and activator of transcription
pathway
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is involved in
various biological events in mammals, such as cell proliferation, differentiation, migration and apoptosis, exerting
fundamental role in multiple physiological process, which range from mammary gland development, lactation, adi-
pogenesis to inflammation and other immunological responses including pathogen resistance [208,209]. Evolution-
arily, it is a well-conserved pathway amongst several living species, including humans, flies, and worms, apparently
resulting from early adaptation mechanisms to facilitate intercellular communication [209,210].

14 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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In mammals, the JAK family is constituted by four members: JAK1, JAK2, JAK 3, and TYK2 [211]. All JAKs share
a tyrosine kinase domain that relates to their trans-phosphorylation activity. The receptors that trigger JAK-STAT
signaling can be activated by several ligands, including cytokines, growth factors, and hormones. The ligand binding
to the JAK-associated receptors leads to their dimerization, bringing JAKmolecules into close proximity and allowing
them to phosphorylate each other. Unlike other types of receptors, these cytokine receptors do not hold an intrinsic
kinase activity, relying on JAK’s phosphorylation activity to cover this function.Moreover, through its kinase activity,
JAKs also phosphorylate the receptor itself and their major target: the STATs [208,209].
STATs are cytoplasmic transcription factors that remain latent until tyrosine phosphorylation (and consequent

activation) by JAKs. In mammals, there are seven different types of STATs: STAT1–4, STA5A, STAT5B, and STAT6
[212].Once activated, through interaction of conserved SH2 domains, STATs form homo- or heterodimers and then
translocate to the nucleus. In the nucleus, the dimerized STATs are competent to bind DNA and to modulate specific
sets of genes, activating or repressing their transcription [208,209].
Like other signaling pathways, there are a number of intracellular components that modulate this signaling cas-

cade [209]. One of these components are the suppressor of cytokine signaling (SOCS) proteins [213]. In mammals,
the SOCS family is composed by eight members (SOCS1–7 and CIS) which all act as negative regulators of JAKs
[214]. Since SOCS expression is also stimulated by JAK-STAT activation, this feature constitutes a feedback-loop
mechanism of signaling control [214]. There are three putative ways in which SOCS may down-regulate JAK-STAT
signaling: (i) SOCS binds directly to JAKs and blocks their kinase activity; (ii) SOCS binds to phosphotyrosines along
the receptors, preventing STATs and other signal transducers from docking and then getting phosphorylated; and
(iii) SOCS promotes ubiquitination and consequent degradation of JAKs (and related receptors) by interacting with
elongin BC complex and cullin 2 [208].
Another negative regulator of JAK-STAT signaling is the protein inhibitor of activated STAT (PIAS).Unlike SOCS,

PIAS is not induced by JAK-STAT signals but, instead, it is constitutively expressed [215]. PIAS binds to activated
STAT dimers and mostly blocks their nuclear translocation by mechanisms not fully understood [216]. JAK-STAT
activity may also be down-regulated by protein tyrosine phosphatases, from which the most well-described is SHP-1.
These phosphatases act by dephosphorylating JAKs and/or their receptors, terminating the signaling activation
[208,216]. Noteworthy, the duration and intensity of the signal(s) vary according to a balance between positive and
negative pathway regulators in a cell-specific manner [209].

It has been also described that non-classical JAK-STAT pathways may act by serine phosphorylation, acetylation,
methylation, and sumoylation of diverse proteins, and controlling cellular epigenetic status [217]. Considering that
JAK-STAT signaling plays a role in such a variety of processes, it is not surprising that disturbances of this pathway
are involved with disease development, including melanomagenesis (Figure 6).

Activity of JAK-STAT pathway in melanoma
It has been reported that JAK-STAT pathway may exert a pivotal role in numerous aspects of tumor development, in-
cluding initiation, cell proliferation, differentiation, inhibition of apoptosis, enhanced invasiveness, immune surveil-
lance, and angiogenesis [218,219]. This cascade is over-activated in some types of melanoma, where STAT3 seems to
be crucial, triggering the transcription of anti-apoptotic and pro-survival genes [220,221]. STAT3 activity is typically
increased in higher cell density, and this process ismediated by JAK activation [222]. Also, STAT3 promotes growth of
advancedmelanomas and up-regulates the activity of vascular endothelial growth factor (VEGF) and basic fibroblast
growth factor (bFGF) in these cells, suggesting its role in angiogenesis [223,224].
Apart from STAT3, STAT1 has also been demonstrated to interfere melanoma development. In a mouse model

for metastatic melanoma, STAT1 knockdown impaired metastatic behavior of the cancer cells and, in melanoma
cultured cells, this knockdown decreased the migration and invasive capacity of cancer cells [225].However, another
study showed that silencing STAT1 expression is a putative mechanism by which melanoma cells evade detection by
immune cells, thereby allowing cancer proliferation [226]. Overall, it is been reported that STAT1may work as both
tumor suppressor and promoter [227].
On the other hand, persistent activation of STAT5 has been associated with antitumor immunosuppression and

increase in proliferation, invasion, and anti-apoptotic mechanisms of tumor cells [228,229]. Accordingly, STAT5B
transcripts in cutaneous melanoma metastasis have been shown to be up-regulated, while 62% of melanoma metas-
tases present increased levels of p-STAT5when comparedwith normal humanmelanocytes [230]. It has been further
suggested that a balance between STAT1, STAT3, and STAT5 expression, upon interferon-mediated activation, im-
pact the heterodimerization and transcriptionalmechanisms driven by JAK-STAT activation inmelanoma [231,232].
Thus, targetting STATs may represent a potential avenue for drug discovery towardmelanoma treatment.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. JAK-STAT pathway activation and its negative regulators

Upon ligand stimulation, JAK-binding receptors aggregate in the plasmatic membrane forming dimers and bringing JAKs into

close proximity. This allows JAKs to be trans-phosphorylated and further phosphorylate the receptor itself. The phosphorylated

receptor is a docking site to STATs, which are also phosphorylated and activated by JAKs. Phosphorylated STATs (p-STATs) form

dimers with other p-STATs, becoming active and able to translocate into the nucleus, where they stimulate gene transcription. The

JAK-STAT pathway is then an effective way to communicate extracellular signals directly to the nucleus without the need of second

messengers. This cascade may be regulated by SOCS, which blocks JAK kinase activity and also by PIAS that deactivate the STAT

dimer. In melanoma context, there is a balanced overexpression of STAT1, STAT3, and STAT5. On the other hand, there is SOCS1

silencing in melanoma cells, which constitutes a potential biomarker for the disease.

Intriguingly, the modulatory protein SOCS has been shown to exert both oncogenic and tumor suppressor roles,
depending on the cellular context [233]. In melanoma, it may serve as a marker for tumor progression since SOCS1
silencing leads to inhibition of metastasis and reversal of tumorigenic phenotype in vitro. In the near future, SOCS1
inhibition may also serve as an effective anti-melanoma immune effector [234,235].

JAK-STAT pathway as a therapeutic lead for melanoma treatment
There is an increasing interest in developing newmelanoma therapies based on themodulation of JAK-STATpathway
[236]. Although there is no specific drug approved aiming JAK-STAT downstream components, immunotherapies
against receptors that may initiate this signaling cascade have been used as main therapy or co-adjuvant in classical
chemotherapies [237].
Some of these drugs include the anti-PD-1 agents pembrolizumab and nivolumab [238]. Engagement of PD-1 by its

ligands PD-L1 or PD-L2 transduces a signal that inhibits T-cell proliferation, cytokine production, and cytolytic func-
tion. In the context of cancer, ligand binding to PD-1 onT cells functionally silences the activation of tumor-associated
T cells and leads to impaired cell survival and effector function, producing a tumor-permissive microenvironment
[239]. Therefore, the blockage of PD-1 by monoclonal antibodies favors the recognition of the cancer cell by target-
ting effector T cells to induce T-cell-mediated cytotoxicity of malignant cells [239,240]. In this manner, the anti-PD1
nivolumab has shown 43% of 2-year survival rates in advancedmelanoma patients [240].

16 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Furthermore, aberrantDNAmethylation in SOCS genes have been reported in interferonγ response inmelanoma,
reaching 75% in SOCS1, 44% in SOCS2, and 60% in SOCS3 [241]. In this manner,DNAmethylation and epigenetic
mechanisms have been well studied to search for potential biomarkers and new therapies for melanoma [241]. There
are clinical trials under recruiting status (NCT02816021) that will investigate the potential synergistic effects of hy-
pomethylating agents, such as azacitidine, with pembrolizumab in melanoma patients [241]. Pembrolizumab has
also been tested in combination with atacitinib, a JAK1 inhibitor, to treat advanced solid tumors including advanced
melanoma (NCT02646748).
In human melanoma cell lines and primary cultures, curcumin, the primary bioactive component isolated from

turmeric and used as dietary spice [242], induces apoptosis andmodulates cellular responses to immunotherapeutic
cytokines by suppressing STAT3 phosphorylation [243,244]. Further studies are necessary in order to confirm the
role of curcumin as a potential new antitumorigenic and chemopreventive agent.

TGF-β pathway
TGF-β signaling has important roles in embryogenesis and tissue homeostasis, regulating cell proliferation, migra-
tion, differentiation, and the synthesis of extracellular matrix [245-247]. Particularly in the skin, TGF-β is important
for the wound healing process, especially in burn wounds [248]. TGF-β is also characterized by other cellular func-
tions, such as cell growth, adhesion, recognition, cell fate determination, and apoptosis [249,250].
The TGF-β superfamily of ligands is evolutionarily conserved in metazoans [251].More than 30 TGF-βmembers

have been described in humans, and they can be divided into different families as TGF-βs, bone morphogenetic
proteins (BMPs), and Nodal. These ligands are secreted as precursor molecules that require enzymatic cleavage (by
furins and other proprotein convertases) to process ligand pro-domains [252]. The mature ligands are prone to form
homo or heterodimers and interact with two types of serine/threonine kinase receptors to initiate the signaling. Some
ligands also require the presence of co-receptors for proper downstream signaling: TGF-β2, for instance, requires
TGF-β receptor type III (TβRII)[253], and Nodal signaling is facilitated by Cripto-1 [254].

In humans, distinct type I and type II TGF-β receptors have been described. Type I receptors comprise TβRI, ac-
tivin receptor IB (ActRIB/ALK-4), activin receptor IA (ActRIA/ALK-2), activin receptor IC (ActRIC/ALK-7), activin
receptor L1 (ActRL1/ALK-1), BMP receptor IA (BMPRIA/ALK-3) and BMP receptor IB (BMPRIB/ALK-6); while
type II members are TβRII, activin receptor II (ActRII), activin receptor IIB (ActRIIB), BMP receptor II (BMPRII)
and anti-Müllerian hormone receptor II (AMHRII) [255]. These receptors form heterotetrameric complexes with
varied combinatins of two type I and two type II receptors and, by doing so, they signal to different transcriptional
targets [247].

Smads are intracellular mediator proteins that participate on the TGF-β signaling, transducing the signal from
the receptors to the nucleus. The N-terminal DNA binding domain, present in the Smad molecules, recognizes a
consensus sequence containing CAGAC in theDNA, also known as Smad-binding elements (SBE) [256]. Smads can
be divided in three functional classes: the first one is composed by substrates of the TGF-β receptor phosphorylation
(receptor-regulated Smads, or receptor-regulated Smads (R-Smads); Smad1, 2, 3, 5, and 8); the second associates with
R-Smads to transduce the signal to the nucleus (co-mediator Smad or Co-Smad; Smad4); and the third subfamily
relates to the inhibitory Smads (I-Smads; Smad6 and 7), which act as antagonists of other Smads [251].

Upon ligand binding, type II receptor phosphorylates the type I receptor, exposing its Smad-binding site and en-
abling R-Smad activation by phosphorylation [257]. The receptor activation, driven by distinct TGF-β ligands, in-
duces different transcription factor responses. For this, TGF-βs, Activins and Nodal activate Smad2 and 3, while
BMP and growth and differentiation factors (GDFs) activate Smad1, 5, and 8 [247]. Phosphorylation of R-Smads is
facilitated by a protein called Smad anchor for receptor activation (SARA), which interacts with Smad2 and Smad3
and recruits them to the receptor. The phosphorylation of Smad2 and 3 disrupts the association with SARA, enabling
them to associate with Smad4 to form a dimer that is now capable of translocating into the nucleus, with the aid of im-
porting nuclear factors [258,259]. The Smad complex activatesDNA-binding nuclear cofactors such as histone acetyl
transferases (HATs), p300, andCBP to initiate transcription of target genes and can eventually inhibit gene expression,
depending on binding partners that may recruit histone deacetylases (HDACs) (Figure 7A) [249,256]. To keep the
pathway in check, inhibitory Smad6 and 7 provide a negative feedback control of TGF-β signaling. I-Smads may act
by distinct mechanisms: (i) binding to R-Smads and Smad4, and preventing their binding to the receptor or to each
other; (ii) targetting the receptor for ubiquitin-dependent degradation; (iii) inducing receptor dephosphorylation;
and (iv) inhibiting Smad-dependent promoter activation [249,260-264].
Activated TGF-β receptors can further stimulate other pathways in a Smad-independent manner, and these path-

ways can also activate Smads (like theMAPK pathway). These pathways are often altered in human tumors, in which
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(A) (B)

Figure 7. TGF-β signaling pathway in melanoma

(A) Overview of TGF-β signaling. The ligands belonging to the TGF-β superfamily bind to type II receptor, which interacts with and

phosphorylates type I receptor. R-Smads are phosphorylated by activated receptors and Co-Smad form a dimer with p-R-Smad,

which then translocates into the nucleus and associates with DNA-binding cofactors to initiate transcription of target genes. (B) In

melanoma, TGF-β ligands or Nodal can activate TGF-β signaling through Smad 2/3 to induce invasion, progression, andmetastasis,

and also inhibit antitumor immune response. Nodal overexpression is often related to Lefty down-regulation.

deregulated activation increase their tumorigenic effects. For instance, TβRI can phosphorylate ShcA, promoting
formation of ShcA-Grb2–Sos complex and further activation of Ras and ERK1/2. On the other hand, ERK1/2 can
also phosphorylate R-Smads. TGF-β receptor can also induce Lys63-linked polyubiquitylation of TRAF6, activating
TGF-b-activated kinase 1 (TAK1) and the IKK complex. PI3K and Akt can also be activated by TGF-β receptors
and, in particular, Akt is able to regulate Smad3 activity either by sequestering it on the cytosol or by preventing its
phosphorylation and degradation. Both Smad and non-Smad pathway activation seems important for epithelial to
mesenchymal transition (EMT), which is associated with tumor metastasis and fibrosis [265].

Activity of TGF-β pathway in melanoma
In the context of melanoma, TGF-β has been largely implicated in disease progression, antitumor immune response,
invasiveness, and tissue remodeling [266]. Moreover, melanoma cells often metastasize to bone structures, and this
ability has been also correlated to TGF-β expression [267]. Intriguingly, TGF-β signaling has opposing roles during
carcinogenesis. At earlier stages, it has a tumor suppressive role by stimulating pro-apoptotic genes in response to
oncogenic mutations [256,268,269]. In contrast, at more advanced stages, TGF-β signaling may act as promoter of
tumor growth, since melanoma cells acquire resistance to TGF-β antiproliferative activity but inducing normal Smad
signaling [270]. This effect may be due to the high expression of SKI and Sno proteins in melanoma cells, which are
capable of interfering with Smad-dependent transcription of p21, responsible for cell cycle arrest [271].
The three TGF-β isoforms (TGF-β1, TGF-β2, and TGF-β3) are encoded by distinct genes and exert similar bi-

ological functions, such as growth inhibition and immunosuppression (Figure 7B) [272]. TGF-β isoforms 1, 2, and
3 have distinct expression profiles, depending on the cell type and/or tumor grade. Melanocytes normally express
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more TGF-β1 and do not express significant levels of TGF-β2 and TGF-β3, while advanced primary andmetastatic
melanomas express high levels of TGF-β2 and TGF-β3, therefore enabling a distinction between healthy and trans-
formed cells [273]. TGF-β2 also seems to be more related to progression and tumor invasion than to initiating events
[274], since patients with metastatic melanoma show increased plasma levels of both TGF-β1 and TGF-β2 [275].
In addition, TGF-β1 was capable of influencing tumor stroma (derived from human melanoma) into SCID mice,
inducing fibroblasts to producematrix in the tumor, decreasing cell death and necrosis and, consequently, promoting
higher tumor growth andmetastasis [276].

TGF-β is also able to repress antitumor immune response by (i) suppressing T-cell differentiation into effector T
cell, (ii) enhancing regulatory T cells (Tregs) and inducing FOXP3, (iii) suppressing the generation of tumor-specific
cytotoxic T lymphocytes (CTLs), and B-cell and NK-cell proliferation and function, and (iv) promoting differentia-
tion of type IImacrophages (M2), which has anti-inflammatory and tissue remodeler response [277].

Nodal is crucial for normal development, but its expression is normally ceased in adulthood [278]. Lefty, which is a
feedback inhibitor of Nodal ligands, is also crucial for normal development [279]. Still, aggressive melanoma, which
has capacity of invasion, migration, and vasculogenic mimicry [280], has been shown to present high expression of
Nodal (Figure 7B), which is correlated with advanced tumor progression and a metastatic phenotype. Thus, Nodal
has been suggested as a biomarker for melanoma progression and even a promising target for metastatic melanoma
[281].

TGF-β pathway as a therapeutic lead for melanoma treatment
Drugs that are capable of inhibiting TGF-β signaling have been considered as adjuvants for both chemotherapy and
radiotherapy treatments in a broad range of cancers.Mechanistically, TGF-β inhibitors may affect the signaling cas-
cade at different levels: (i) by targetting the receptor phosphorylation, (ii) by inhibiting the expression of TGF-β
members, or (iii) by disturbing the binding of TGF-β ligands to respective receptors [282-285].
SD208 is a TGF-β receptor I kinase inhibitor that blocks the biological effects of TGF-β1 and TGF-β2 [283].

SD208 is known as a potent inhibitor ofmigration and invasion, even enhancing the immunogenicity of certain tumor
cells (glioma) by reducing the TGF-β bioactivity [283]. In vivo, SD208 has prevented the development of osteolytic
bone metastases originated frommelanoma and, in pre-established bone lesions, the size of metastases reduced after
treatment with this inhibitor [267].

GC1008 is an anti-TGF-βmonoclonal antibody capable of neutralizing all human isoforms of TGF-β, and it has
demonstrated a prominent anticancer activity. However, phase I clinical trials (NCT00356460) have shown side ef-
fects, including the development of keratoacanthoma lesions and squamous cell carcinomas in melanoma patients
(following the blockade of TGF-β). These adverse events occurred after patients received either a complete treatment
or when the maximum dose of GC1008 was administered [284,285].

Knockdown procedure (gene silencing) is another approach considered to treat TGF-β-overexpressing tumors.
In particular, abnormal TGF-β2 expression has been related to invasiveness, metastasis, and tumor progression of
melanoma [274,286], thus proving to be a potential therapeutic target. Trabedersen/AP-12009 is a phosphorothioate
antisense oligodeoxynucleotide that targets TGF-β2mRNA, which has been shown to suppress TGF-β2 expression
and then reverses the TGF-β2-mediated immunosuppressive activity of human pancreatic cancer cells. It has also
reduced metastasis and angiogenesis in vivo [287]. Targetted treatments for patients with anaplastic astrocytoma,
glioblastoma, pancreatic carcinoma, malignant melanoma, and colorectal carcinoma are currently being tested in
phase I clinical trials (NCT00844064) [288].
Another approach utilized against TGF-β-overexpressing tumors relates to the autologous tumor cell vaccine

called FANGTM/VigilTM (Gradalis), which incorporates a plasmid encoding granulocyteM-CSF (GM-CSF) (enhanc-
ing dendritic cell (DC) maturation and consequent tumor antigen presentation to T cells) and a novel bifunctional
shRNA interference (bi-shRNAi) directed against pro-protein convertase furin, thus down-regulating TGF-β1 and
β2 and reverting immunosuppressive response [282]. VigilTM was tested as single agent for the treatment of ad-
vancedmetastaticmelanoma or in combinationwith PD-1 inhibitor Pembrolizumab in phase 2 trials (NCT01453361,
NCT02574533), and has demonstrated no major side effects [273].

Notch pathway
The Notch pathway is another highly conserved cellular pathway, present in most of the multicellular organisms, that
plays an important role in cell fate determination, proliferation, differentiation, and survival [289]. The Notch signal-
ing cascade modulates a broad range of cellular processes, including cell cycle arrest regulation, apoptosis/survival,
differentiation, and stem cell maintenance, as well as the cross-talk with hypoxia response [290,291]. Consequently,
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Figure 8. Overview of the Notch signaling pathway

Initially, the Notch receptor is translocated to the trans-Golgi network as a full-length protein which is cleaved to formmembrane-at-

tached heterodimeric receptor. The signaling cascade initiates after binding of the ligands JAG1 and 2 or DSL 1, 3, and 4 to the

Notch receptor between neighboring cells. This binding initiates two successive proteolytic cleavages that culminate in the release

of the NICD, which is translocated into the nucleus, where it interacts with the transcription factors. In normal skin, Notch signaling

is expressed in all epidermal layers and is fundamental to keratinocyte differentiation. The downstream effectors of Notch-mediated

epidermal homeostasis include Hes, Hey, p21, Keratin1/10, and Involucrin Abbreviation: DSL, Delta/Serrate/Lag-2 domain.

aberrant Notch function has been involved in a series of human diseases, including developmental disorders, neu-
rodegenerative diseases, and cancer (e.g. T-cell leukemia, multiple sclerosis, lymphoma, melanoma) [292-294].

The Notch protein family is composed by cell surface receptors that transduce signals by interacting with the trans-
membrane ligands Delta-like (DLL) and Jagged (JAG) on neighboring cells [295] (Figure 8). In mammals, a total of
fourNotch receptors (Notch1-4) and five ligands have been characterized (DLL1, 3, 4, and JAG1 and 2) [296,297]. The
Notch receptors are composed by twomajor domains: an extracellular domain (Notch extracellular domain (NECD))
and an intracellular domain (Notch intracellular domain (NICD)), interconnected by a TM. The NICD possesses two
NLS motifs at the C-terminal of the Notch TM, hich are responsible by the nuclear entry [298].
All Notch receptors are synthesized as full-length proteins that undergo successive proteolytic cleavages, culmi-

nating in the release of NICD, which will act in the nucleus. Notch ligands located in neighboring cells have a
Delta/Serrate/Lag-2 (DSL) domain that mediates ligand-receptor binding and, therefore, promotes Notch signaling
activation [296,299]. The triggering mechanism of the canonical Notch signaling involves proteolytic cleavages at
three sites of the Notch protein: S1, S2, and S3 [300] (Figure 8). The first cleavage (S1) is mediated by furin-like
convertases, which occurs in the trans-Golgi network during Notch secretion process. This cleavage generates two
subunits (NECD and NICD) interconnected by the TM [7]. These processed subunits are then transported to the
plasma membrane, where they associate as non-covalently bound heterodimers to form the functionalNotch recep-
tor. Following ligand binding to the receptor, the latter undergoes the second cleavage (S2) which is catalyzed by
a member of A disintegrin and metalloproteases (ADAMs) family (ADAM17 or ADAM10), also known as tumor
necrosis factor-α converting enzyme (TACE). S2 cleavage promotes the dissociation of the membrane-tethered in-
tracellular Notch domain from the extracellular domain. This intracellular domain is a constitutive substrate for the
final S3 cleavage [301], culminating in the release of soluble and active NICD [300], which is targetted to the nucleus
by its NLS. S3 is regulated by a presenilin-dependent γ-secretase protease complex, which consists of an integral
membrane protein complex [296]. After translocating to the nucleus, NICD binds to CSL (transcriptional repressor

20 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(RBPJk/CSL)), a transcriptional repressor that acts as aDNA-binding adaptor and helps to recruit the adaptor protein
Mastermind-like (MAML), which in turn summon the transcriptional co-activator p300 and other components of
the transcription machinery [295,301-303].
The transcriptional activation complex, composed byCSL, NICD,MAML, and p300, regulates the transcription of

downstream genes such asHES1 andHEY [301,304]. TheHes family of repressors act downstreamofNotch signaling
pathway, antagonizing the expression of a variety of transcription factors, such as Ascl1, Atoh1, andNeurog3, whose
function is to maintain cells in an undifferentiated state [291]. Hes repressor genes such as HES1 play fundamental
roles in maintaining progenitor cells in an undifferentiated state [305]. The concomitant existence of transcriptional
activators and repressors downstream of Notch signaling cascade play a crucial role in the diverse outcomes of this
pathway.
A number of studies have also demonstrated the existence of non-canonical activation of Notch signaling in diverse

cell types [306,307]. At least three types of non-canonicalNotch activation have been described, whichmay depend or
not on: (i) ligand interaction, (ii) γ-secretase activity, and (iii) the action of RBPJk/CSL complexes [308]. Both RBPJ-
and Hes-independent non-canonical cascades have important functions downstream of Notch signaling, although
the exact molecular events mediating these subpathways are not fully understood [291].

Notch signaling may also interact with other pathways such as PI3K, mTORC2,Wnt, NF-κβ, YY1, or HIF-1α, at
cytoplasmic and/or nuclear levels [308].Direct interactions of NICDwith IKKα in the NF-κB pathway or LEF1 in the
Wnt pathway have been reported, and that Notch can activate integrin via Ras, independent of binding RBPJ [304].
Whilemany normal cellular processes (e.g. homeostatic regulation ofmelanocytes) require canonicalNotch signaling
[309], many pathological conditions including cancer and activation of the immune system are associatedwith Notch
non-canonical signals [308].However, these non-canonical cascades still require more detailed understanding [308].

Activity of Notch pathway in melanoma
In healthy skin, Notch signaling is expressed in all epidermal layers and is fundamental for keratinocyte differentia-
tion [302]. More than that, Notch signaling affects a broad range of cellular activities. These activities are impacted
by the cross-talk with signaling pathways involved in different cellular events, which include cell cycle arrest, apop-
tosis, and survival [291]. An example of the versatile function of Notch pathway is related to epidermal development,
where Notch signaling is able to stimulate the differentiation of granular cells into spinous cells and, at the same time,
prevents their premature differentiation [309]. These diverse results and versatility of functions can be explained by
the concomitant existence of a transcriptional activator and a repressor downstream of Notch [291]. In fact, Notch
exerts roles in both proliferation and differentiation during epidermal homeostasis, since Notch pathway participates
in the formation of the epidermal barrier, by promoting detachment of basal membrane cells, and activating differ-
entiation genes and terminal keratinocyte differentiation by inducing the expression of the cell cycle-related factor
p21 [302]. Alternatively, Notch signaling (via Hes1 transcription factor) maintains the survival of melanoblasts and
melanocyte stem cells by preventing apoptosis initiation [310]. Both epidermal andnon-epidermalmelanocytes origi-
nate frommelanoblasts, and it has beendemonstrate thatNotch signaling is essential for themaintenance of epidermal
melanocytes, playing a putative role in the adaptation of melanoblasts to the epidermal environment [291,310].

Notch signaling is capable of regulating many aspects of melanomagenesis. Comparative analyses of common
melanocytic nevi, dysplastic nevi, and melanomas have demonstrated an increased expression of Notch1, Notch2,
and their ligands, indicating that a positive regulation of these components can be related to the melanoma pro-
gression [311]. An essential role for Notch pathway has been validated in melanoblast development as well as in
melanoma progression [312]. In particular, Notch1 has been considered a primary tumorigenic factor in melanoma
[313].Melanomas re-express Notch1 and depend on the respective signaling for their growth and survival. In addi-
tion, the up-regulation of Notch1 and its target genes occurs in metastatic melanoma [314].

The interaction with other signaling cascades, such asMAPK, PI3K-Akt, NF-κB, and p53 [315], may contribute to
the plural effects of Notch inmelanoma. The amplification ofNotch signalingmay occur by increasingγ-secretase ac-
tivity or by inducing the expression of Notch ligands, and potentially leads to inhibition of apoptosis [316]. Transcrip-
tional targets of Notch signaling which are responsible for angiogenesis, proliferation, metastasis, and cell survival in
tumor cells includeHes,Hey, Cyclin D1, NF-κB, STAT3, and p21.

Notch pathway as a therapeutic lead for melanoma treatment
Considering the effects ofNotch overexpression inmelanoma development, themanipulation of this pathway appears
to have a great therapeutic value. Several strategies to inhibit Notch pathway have been used against melanoma and
other types of cancers [317]. Recent evidences have also suggested that Notch signaling is one of the most important
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cellular pathways in drug-resistant tumor cells [318]. In fact, down-regulation of Notch pathway may induce drug
sensitivity, leading to increased inhibition of cancer cell growth, invasion, andmetastasis [318]. For instance, the use
of hairpin RNA targettingNOTCH2 have shown potential to reduce tumor invasion and growth in uvealmelanoma,
a common intraocular malignant tumor in adults [7,319].
Two major classes of Notch inhibitors are currently in early clinical development: γ-secretase inhibitors

(GSIs) and monoclonal antibodies (mAbs) against Notch receptors or their ligands [320]. The inhibi-
tion of Notch by γ-secretase inhibitor has been shown to decrease melanoma growth [316]. The GSI
N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) (Calbiochem) [314] is able to block
the processing and further activation of all four different Notch receptors, leading to apoptotic vulnerability in
melanoma cells [316]. In addition, a number of compounds targetting γ-secretase, the enzyme responsible for the
S3 cleavage of Notch, are currently being tested as anticancer drugs. A recent study has shown encouraging evidence
of antitumor activity in phase I clinical trial for GSI RO4929097 [321]. RO4929097 is a selective γ-secretase small
molecule inhibitor with antitumor activity, tested for phase I clinical trials in combination with cediranib, a multiki-
nase vascular endothelial growth factor receptor (VEGFR) inhibitor, in patients with solid tumors and/or melanoma
[321]. The preliminary results of this study demonstrated evidence of antitumor effect with prolonged cancer stabi-
lization in some patients [321].

Combinatorial treatments with GSIs and chemotherapy drugs for recurrent and advanced stage melanoma have
been evaluated in phases I and II clinical trials. The GSI RO4929097, when co-administered with cisplatin, vin-
blastine, and temozolomide (NCT01196416), promotes greater elimination of tumor cells [322]. A terminated study
(NCT01120275) demonstrated that RO4929097 is well tolerated by patients, and most side effects included nausea,
fatigue, and anemia [323]. Although GSIs have shown great promise to treat cancer by inhibiting the Notch path-
way, their prolonged use is associated with severe side effects, including gastrointestinal toxicity [320]. Another class
of agents under development relates to ligand- and receptor-specific antibodies [324]. Experimental evidences have
demonstrated that Notch inhibition by specific mAb against either Notch1 or Notch2 alleviates toxic effects, rather
than simultaneously inhibiting both Notch receptors [320]. Notch signaling can also be interrupted due to pertur-
bation of ligand/receptor interactions [319]. In endothelial cells, for instance, decoys leading Notch inhibition can
indeed disrupt tumor growth and angiogenesis.

Conclusion
It is clear that major signaling pathways have a seminal role in the development and maintenance of melanoma tu-
mors. Some punctual mutations such as BRAFV600E and Q61-mutant RAS have already been identified as favoring
melanocytes to become cancer cells, therefore alterations in MAPK signaling components seem to have a primary
influence on melanoma development. This pathway is also a target of new FDA approved drugs to treat metastatic
melanomas. Furthermore, melanoma may trigger the over-activation of other pathways such as phosphoinositide
3-kinase (PI3K)-Akt (by reducing PTEN activity), and Wnt through non-canonical cascades, to facilitate differen-
tiation and nutrition as well as blocking apoptotic signals in tumor cells. JAK-STAT signaling components, such as
STATs, are also up-regulated in melanoma. NF-κB signaling is crucial to inflammatory responses, and inflammation
has been associated with a pro-tumorigenic microenvironment, therefore promoting melanoma progression. Inter-
estingly, the TGF-β pathway plays opposing roles in early and late stages of carcinogenesis, as tumor suppressor and
tumor promoter, respectively. Nevertheless, the embryonic morphogen Nodal, a member of the TGF-β superfamily,
is overexpressed in malignant melanoma and has a role in aggressiveness, being a great candidate for therapeutic tar-
get. Notch signaling plays a role in epidermalmelanocyte maintenance, and aberrant expression of its components is
reported not only in melanoma but in several other cancers. Experimental and clinical studies have been extensively
performed to find druggable targets in each one of these pathways. It is important to reiterate that all these pathways
interact to each other (via cross-talk) to create a new homeostatic status for the melanoma cells to further progress.
These more complex interactions include new and yet poorly studied mechanisms to promote drug resistance and
survival, which makes the drug development process more challenging. Nevertheless, as melanoma cells utilize dif-
ferent signaling circuitries to perpetuate the disease, increasing knowledge in this area seems equally essential to the
rationale design of combined drugs, by possibly focussing on several nodes from distinct pathways, at the same time,
to a more effective blockage of melanomagenesis.
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251 Massagué, J. (1998) TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791, https://doi.org/10.1146/annurev.biochem.67.1.753

252 Harrison, C.A., Al-Musawi, S.L. and Walton, K.L. (2011) Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily

ligands. Growth Factors 29, 174–186, https://doi.org/10.3109/08977194.2011.608666
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