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Exploring Malicious Meter Inspection in

Neighborhood Area Smart Grids
Zhifeng Xiao, Yang Xiao, and David Hung-Chang Du

Abstract—In smart grids, smart meters may potentially be at-

tacked or compromised to cause certain security risks. It is chal-

lenging to identify malicious meters when there are a large number
of users. In this paper, we explore the malicious meter inspection

(MMI) problem in neighborhood area smart grids. We propose a

suite of inspection algorithms in a progressive manner. First, we
present a basic scanningmethod, which takes linear time to accom-

plish inspection. The scanning method is efficient when the mali-

cious meter ratio is high. Then, we propose a binary-tree-based in-
spection algorithm, which performs better than scanning when the

malicious meter ratio is low. Finally, we employ an adaptive-tree-

based algorithm, which leverages advantages of both the scanning
and binary-tree inspections. Our approaches are tailored to fit both

static and dynamic situations. The theoretical and experimental re-

sults have shown the effectiveness of the adaptive tree approach.

Index Terms—Accountability, advancedmetering infrastructure
(AMI), attack, malicious meter inspection, security, smart grid,

smart meter.

I. INTRODUCTION

S MART grids have received significant attentions in recent

advances [1]–[6]. A smart grid delivers electricity from

providers to users, and it uses two-way digital communications

to control appliances at users’ homes; this saves energy, re-

duces costs, and increases reliability and transparency. How-

ever, security in smart grids is also becoming a significant con-

cern. New vulnerabilities are introduced when new hardware

and software techniques (e.g., advanced metering system and

digital networks) are brought in. One of the serious issues is

energy theft or malicious attacking, which has been a chronic

problem and still exists in smart grid. For example, hackers who

compromise a meter can immediately manipulate the amount of

service or fabricate generated energy meter readings [7]. It has

been reported that annual losses due to theft of service in the

United States alone are estimated as 6 billion dollars [9]. There-

fore, it is imperative to develop countermeasures to prevent en-

ergy theft in smart grid.

Back in the 20th century, power providers employed meter

readers to do a door-to-door meter reading. There are many
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drawbacks of artificial meter reading, such as high time cost

and labor cost, low accuracy, error-prone reading, etc. Ad-

ditionally, there is no evidence pointing to the cheater who

falsifies or manipulates the reading data. In other words, if a

meter is tampered and the reading value is less than the ac-

tual amount, the power company is unable to detect the theft

behavior. Advanced Metering Infrastructure (AMI) is devel-

oped to tackle some of these issues. The goal of AMI is to

provide automatic measurement and transmission of the meter

reading. However, AMI could not ensure non-repudiation of

meter reading as well, where non-repudiation refers to a state

where one party cannot deny what its activities were. The root

problem of non-repudiation lies in the way of collecting the

reading values of smart meters. In order to acquire the service

amount of each user, the power provider has to rely on the dig-

ital communication network for data transmission. Since the

reading values are generated in the user end, an attacker or an

energy thief still has multiple means to tamper with them. The

most common methods [12] of energy theft include: metering

tampering, meter switching, wire partial bypass of the meter in-

side the meter enclosure, complete bypass of the meter from the

low-voltage grid, and direct connection to the primary voltage

grid with a pirate distribution transformer, etc. The original

reading may be altered before it is sent to the provider. Since

the smart meter may be the only source for the power provider

to acquire the service amount, no matter if the meter reading

is accurate or falsified, the power provider has no means to

verify the correctness of the meter’s reading report.

To solve this issue, we have proposed a mutual inspection

scheme [8], [23] which installs a redundant meter in the provider

end to inspect each user. This means that for each individual

power line, there is one smart meter on each end. The difference

between the two reading values should be within a certain range.

Otherwise, a dispute will arise, indicating that the smart meter

may be under attack.

One limitation of the mutual inspection scheme is its cost.

Adding a redundant meter for each user will increase the

budget on both hardware and management. The cost issue is

magnified in the metropolitan area (e.g., the New York City,

Beijing, Tokyo, etc); the most common living style in big cities

is an apartment building assembling multiple apartments. A

large building could consist of hundreds of apartment cells.

According to mutual inspection, the power provider should

install a redundant smart meter (referred to as an inspector) at

the provider’s end of the power line for inspection purposes.

Thus, the number of inspectors is equal to the number of users.

In this paper, we consider the situation in which the number

of inspectors is far less than the number of smart meters to be

checked.
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Our main contributions are summarized as follows: Firstly,

we propose the malicious meter inspection (MMI) problem in

this paper. To our knowledge, our work is the first time in which

the MMI problem is formulated. Secondly, we investigate the

MMI problem (including static and dynamic cases) in a smart

grid of a neighborhood area. The goal of this paper is to reduce

inspection cost and maintain high efficiency at the same time.

Thirdly, we propose a suite of algorithms to solve the MMI

problem in both static and dynamic cases. The algorithms we

adopt in this paper are based upon an inspection tree. We also

find out that the binary-tree-based inspection is not necessarily

better than the naïve scanning approach. As a result, we pro-

pose an adaptive-tree-based inspection scheme that can collect

heuristic information and adjust the inspection strategy in real

time. We analyze and give the performance bounds for each al-

gorithm. Finally, we give both numeric and experimental results

for the discussed algorithms. It turns out that the adaptive tree

approach is a decent choice in general circumstances.

The rest of this paper is structured as follows: Related works

are presented in Section II. The malicious meter inspection

problem is formularized in Section III. Static and dynamic

inspections are discussed in Section IV and Section V, respec-

tively. We evaluate the algorithms in Section VI and conclude

this paper in Section VII.

II. RELATED WORK

Energy theft is the main incentive to compromise a smart

meter. McLaughlin et al. [12] demonstrate that not only is

energy theft possible in the Advanced Metering Infrastructure

(AMI) system but that the AMI commodity devices can be

taken advantage of by adversaries. There are three classes of

attacks based on when and where the data for the amount of

service is manipulated. They include: 1) while it is recoded, 2)

while it is at rest in the meter, and 3) as it is in flight across the

network.

Today’s energy theft detection models generally fall into two

categories [11]: peer comparison and characteristic analysis.

Peer comparison models group residential and commercial

customers with similar homes and businesses in similar geo-

graphical and environmental settings. If a customer’s actual

usage deviates from the expected usage, it may indicate in-

correctness in energy metering. Characteristic analysis, on the

other hand, attempts to model the consumption pattern for an

account; thus, any anomalies not following the pattern may

be indicative of energy theft. In this area, machine learning

techniques (e.g., SVMs [10]) can be leveraged to build funda-

mental patterns and detect anomalies. However, these analytical

methods may not be properly used as evidence of energy theft

because a deviation from expected normal usage can be caused

by reasons other than energy theft. For example, one needs to

consider the trend of energy usage in the entire area or other

legitimate changes. In this paper, our method differs from the

early analytical methods in the way that we target to isolate the

compromised meter(s) with undeniable evidence, which can be

used as proof of misbehavior.

Bandim et al. [15] employ a central observer meter, which

measures the overall energy consumption of a group of N end

users. By taking samples at different moments, there will

TABLE I
NOTATIONS

be equations with unknown constants (e.g., the accuracy

coefficients) so that the equation set is solvable. We argue that

the assumption that an accuracy coefficient is constant may not

hold because it is limited by the attack model. If an accuracy

coefficient is a variable, which is highly possible if an attacker

changes its strategy, then the method would not work. There are

also some other related work [1]–[26].

In this paper, we provide a comprehensive solution that

covers multiple attack models with undeniable evidence to

identify the malicious meters.

III. MALICIOUS METER INSPECTION PROBLEM

Notations for this paper are given in Table I. In general, we

use a capital letter to name a set and a corresponding lower case

letter to denote an element in that set.

Smart grid model: Consider an apartment building that con-

sists of users (i.e., each apartment represents a user) that com-

pose a user set . Each user has one meter installed to measure

the service amount. In this paper, the terms, ‘user’ and ‘meter,’

are interchangeable since they represent the same thing. In our

setting, there is a head inspector, which is also a smart meter, to

monitor the entire building all the time. In reality, it is reasonable

and affordable to have one central monitor for each building. If

there is any meter reading error, the head inspector can detect

it by comparing its own reading with the summation of all re-

ported readings. If the difference is larger than a threshold, the

head inspector will report an abnormal condition to the provider.

Attack model: McLaughlin et al. [12] have investigated the

attackmodels of energy theft with an attack tree, which has cate-

gorized the approaches to commit energy theft. Based upon their

security analysis and case study on an experimental test-bed, it

is practically viable to tamper with a smart meter’s measured

data. In this paper, however, we need to point out that although

energy theft may be the main incentive of a meter attack, it is not

the sole motive. In this paper, we consider two kinds of attack

models, which have covered the ones discussed in [12]. (1) In-

dependent-meter Attack: The target is only one smart meter,

which could be attacked by external adversaries or be manipu-

lated by malicious users. For the case of energy theft, it is the

user’s intent to compromise the meter. Apart from that, external

attackers may increase the reading data so that victims will have

excessive power bills. Note that in this attack models, multiple
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Fig. 1. An inspector box located outside each apartment building.

meters can be attacked independently. (2) Collaborate-meter

Attack: In this case, victims are multiple meters that are con-

trolled or compromised by some criminal organizations. The

purpose of a Collaborate-meter attack is to use the behavior of

a meter group to mask the anomaly of an individual meter. For

example, to bypass the head inspector, a malicious user that con-

trols multiple meters may decrease his own reading data and

increase other meters’ reading data. The total demand of these

meters does not change, and head inspector is unable to detect

any misbehavior. We need to point out that this attack may be

specific to our smart grid model.

In this paper, we provide a full solution for the independent-

meter attack. The problem of the Collaborate-meter attack will

be addressed in our future work.

A. Problem Statement

For inspection purposes, we assume that a device called the

inspector box, which is located between the head inspector and

endmeters, exists. Such an inspector box is capable of managing

three things: 1) each power line will be connected to an end user

at all times to prevent an outage; 2) the inspector box contains

a number of inspectors, and it is effortless to add or remove

inspectors; 3) it is viable to assign any user combination with

any number to one inspector, and this can be done manually or

automatically. Fig. 1 describes a possible look for the inspector

box with one inspector.

The job of the head inspector is to detect that a reading

anomaly exists in the building although it is still unclear which

ones are malicious. A definite answer can be given only if a

test is carried out by one inspector on one user meter. With one

inspector, it takes tests to identify a complete set, , under a

one-by-one test scheme. To reduce the number of tests, we can

either 1) increase the number of inspectors because multiple

inspectors can do a parallel test, or 2) use a better test scheme.

In this paper, we develop a multi-step strategy to identify the

compromised meter(s) with a limited number of inspectors.

There are two parameters for method evaluation: (1) The

time spent on identifying the malicious meters (i.e., set ).

In this problem, we abstract the time as the number of steps

(denoted as ); In each step, the inspection will last for a

while because it is attempting to identify all malicious meters.

(2) The number of inspectors (denoted as ), excluding the

head inspector.

Fig. 2. PullDown operation.

Malicious Meter Inspection Problem (MMI): in the smart

grid model, given inspectors, the objective is to minimize

the number of steps (i.e., ) needed to identify a complete .

Based upon the variability of the malicious user set, , we

will discuss two types of inspection: static inspection and dy-

namic inspection. Static inspection handles the case that does

not change during the entire inspection process; dynamic in-

spection considers a changeable in the inspection process.

In this paper, we investigate MMI in both static and dynamic

inspection.

B. MMI and Group Testing

To some extent, the MMI problem is similar to the group

testing problem [14], which was invented by R. Dorfman in

World War II in order to facilitate the procedure of identifying

syphilis in blood samples from millions of draftees. Du et al.

have summarized the group testing problem and its variations

in [13]. A plenty of prior works have been done regarding the

algorithm improvements, problem variations, special case dis-

cussions, etc. We discover that theMMI problem and the group

testing problem have certain overlaps in definition. However,

the distinction is also obvious. In conventional group testing

problems, the defectives will never change once the item set

is given. Nevertheless, in the MMI problem, the number of bad

meters may increase or reduce during inspection, which is more

challenging to identify all of them within a short amount of

time. The MMI problem can be regarded as a variation of group

testing with dynamic feature. Furthermore, our proposed solu-

tions are different from existing group testing methods.

IV. STATIC INSPECTION

In static inspection, set does not change during inspection.

In reality, could change in a long period. However, in a short

period, can be regarded as static. Therefore, we first study the

case of static inspection.

A. Scanning Approach—A Brute-Force Strategy

When set is static, the naïve solution is to scan every meter

once. will be eventually identified after all of the meters are

checked one by one. There are two extreme cases. 1)

and . In this case, we deploy inspectors, which do the

inspection job in parallel so that each user meter will be checked

in one step; 2) and . In this case, we use one

inspector to test a single end meter at one step so that it takes

steps to test all users.

The advantage of scanning is that the step complexity, , is

bounded by the number of users (i.e., ). In the real world, is

unknown. If is far less than , scanning may not be efficient

because it spends a lot of time checking the good meters, which

wastes time and inspector resources. By taking advantage of the
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Fig. 3. (a) An example of binary inspection with , , and ; (b) , , and .

TABLE II
PROBING

smart grid property, we have designed a tree-based inspection

scheme, which employs a tree as a logic structure to identify

the compromised meters.

B. Binary-Tree-Based Inspection

With the assistance of an inspector box, we can model the

inspection process as a binary tree in which each node rep-

resents one time of inspection (i.e., one step). In addition, each

leaf node connects with a smart meters being checked. With the

binary tree, we can show that when an inspector is deployed in

an internal node, it covers all meters in its subtrees. For example,

in Fig. 3(a), if node is an inspector, it is able to inspect meters

1, 2, 3, and 4, which all belong to the subtrees of node . An

internal node can tell whether there is any anomaly in the sub-

tree, but it does not know exactly which one is bad; that means

the inspection should continue. On the other hand, although an

inspector in a leaf node can only examine one meter, it gives ev-

idence showing a meter’s real status. In Fig. 3 and other related

figures where the inspection tree is applied, symbol ‘X’ means

an anomaly is detected (we call the node dirty), and ‘O’ means

the meter is working correctly (we call the node clean). Addi-

tionally, the light blue circle means the node is actually checked

while the dark blue circle means the node does not need to be

checked because its parent indicates its status. A node’s status

can be determined by probing (as shown in Table II).

In Table II, we define a probing operation that describes how

an inspector checks the correctness of meters. In the algorithm,

function returns the reading at node , and function

returns the set containing all meters in the subtrees

of node . is a threshold that is basically determined by the

power loss during transmission. Specifically, denotes

the threshold of user . According to electricity knowledge,

the amount of lost power depends on the wire resistance, the

transmission voltage, and the power demand of user. Also, the

wire resistance depends on the cable material, cable length, and

environment factors like temperature. Since some factors (e.g.,

the power demand and cable length) vary for different users,

each user will have a threshold which is also a variable. A

concrete model of threshold will not be discussed since it is not

the focus of this paper. If the difference between and the

sum of reported readings from user meters is larger than the

sum of the threshold values, then the node is considered ‘dirty’.

The execution of probing will be logged in a tamper-evident

way as evidence, which will be presented during the process of

forensics.

1) Building a Binary Inspection Tree: In this paper, the tree

is built when needed. In other words, when an internal node is

probed clean, then its subtree is not built since all users under its

inspection are clean; when an internal node is probed dirty, then

the node forks two branches for further inspection. Given a user

set , we build a binary tree with the meters randomly picked

as leaf nodes. For any , we have . When

, the binary tree is complete. Otherwise, it is incomplete.

The tree-building process is described as follows:

� If , then a complete binary tree is built with height

. The tree has leaf nodes, which correspond to

the meters in .

� If , the binary tree is built to be incomplete.

We first build a complete binary tree with leaf nodes,

then the rest nodes can be added to the tree one by

one starting from the leftmost leaf node. In order to main-

tain the property that each leaf node represents a meter, we

introduce a PullDown operation (as shown in Fig. 2) when

a new meter is added. After the tree is built, the status of a

leaf node can be assigned from left to right.

2) Case 1: , and : This case may not be

realistic since it is difficult to determine how many meters are

dirty before inspection initiates. However, it presents the basic

idea of the inspection scheme. In Fig. 3(a), root is detected

dirty due to meter 2. The inspection is performed in a top-down

pattern.

Based upon Algorithm BI_basic (shown in Table III), we can

determine the upper bound and lower bound of . Since the

height of the binary tree is , we have

. The lower bound and upper bound can

be achieved when the dirty node is the leftmost and rightmost

one, respectively. Note that the purpose of this simple case is to

demonstrate the idea of a tree-based inspection. We will discuss

more general cases later.
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TABLE III
BI_BASIC AND BI_V1

Theory 1: AlgorithmBI_basic, is the optimal algorithmwhen

and with if and only if each

meter is equally likely to be a bad meter.

Proof: From Algorithm BI_basic, we have

. From the information theory point

of view, the uncertainty of the problem is the entropy ,

which is equivalent to the number of yes-or-no questions

that are needed to accurately determine the outcome of a random

event . Based on entropy and information theory, we have: 1)

and 2) only if the random event

is uniformly distributed (i.e., each meter is equally likely to be

a bad meter).

3) Case 2: is Unknown, : The only difference

between case 1 and case 2 is that the number of dirty meters is

unknown prior to inspection. Therefore, all children of a node

need to be probed. Fig. 3(b) shows an example of this case. Note

that node e does not need to be probed in case 1. The inspection

process is described in Table III-BI_v1. The BI_v1 algorithm, a

recursive algorithm, is not necessarily faster than the sequential

scanning; for example, in Fig. 3(b), we have , which

is more than . We define two nodes as siblings if and only

if they share a common parent.

Lemma 1: For algorithm BI_v1, when and is

unknown (i.e., ), we have the following: The lower bound

of is , and the lower bound can be

achieved only if and if , the two dirty leaf nodes

must be siblings. The upper bound of is ,

and the upper bound can be achieved only if and if

for every pair of leaf nodes that are siblings, at least one of them

must be dirty.

Proof: We first prove the lower bound. If , there

will be one probing in the root node; for the rest of the nodes,

there will be two nodes probed in each level of the tree until the

leaf nodes are reached. Therefore, the total number of steps is

. If and if the two dirty nodes

are siblings, then still holds because no

extra probe is needed. If and if the two dirty nodes are

not siblings, then the probing process will fork before it reaches

leaves, which cost additional probing steps. If , more

probing will be needed in each level. Therefore, the proof of the

first part completes.

We then prove the upper bound. The upper bound is lim-

ited by the tree size because each node in the tree represents

a probing. We use mathematic induction to show that no matter

whether the tree is complete or not, the tree size is .

When , there is only one node in the tree, and the tree

size is . Assume that when , the tree size

is . We need to show that when , the tree

size is . The fact is that every time we

add a meter, we actually add 2 nodes to the tree (one leaf and

one internal node) due to the PullDown operation (as shown in

Fig. 2). Therefore, after adding one leaf node, the tree size is

, and our claim still holds. Since each

node could be a time of probing, it will need at most times

to find the complete . The upper bound can be achieved only if

for every pair of leaf nodes that are siblings, at least one of them

must be dirty. Let us consider that when all leaves are dirty, all

the internal nodes need to be probed. If we change one meter of

any two meters that are siblings to be clean, the total probing

times (i.e., ) will not change. However, if we change both

sibling meters to clean, then will be reduced by two since

these twometers will skip probing because that their parent node

is clean; this decreases . Therefore, the proof of the second

part completes.

From Lemma 1, we know that BI_v1 can be worse than the

scanning approach in some cases. However, it is still not clear

when and how BI_v1 will be better or worse. The key question

we need to answer is “given that out of meters are dirty,

how to determine ”.

We also define six operations: one-round pairing, one-round

depairing, one-level pairing, one-level depairing, whole-tree

pairing, and whole-tree depairing. Both one-round pairing and

one-round depairing work on nodes within the same level of

the tree.

One-round pairing is a three-step process of finding two dirty

nodes that are in the same level and that have clean siblings,

switching one dirty node (and its subtree) with the other dirty

node’s clean sibling node (and its subtree) so that two dirty

nodes become siblings, and two clean nodes becomes siblings,

and adjusting the related non-leave nodes’ states (dirty or clean)

in higher levels to correct states accordingly. Note that when

two nodes are switched, their subtrees are switched as well.

One-level pairing is an iterative process of one-round pairing

in one level until there are not nodes in the level to conduct

any one-round pairing. Starting from the leave level, whole-tree

pairing is an iterative process of one-level pairing, level by level

up until one-level pairing has been been done for all levels. Note

that whole-tree pairing may produce different results depending

on the ways of choosing two dirty nodes to pair. For example, in

Fig. 3(b), by switching node and node , we finish one-level

pairing in the leave level.

One-round depairing, one-level depairing, and whole-tree de-

pairing are reversed processes of one-round pairing, one-level

pairing, and whole-tree pairing, respectively, although the re-

sults may not be the original settings depending on the ways of

choosing two dirty nodes to do one-round depair.

In other words, one-round depairing is a three-step process

of finding two sibling dirty nodes and two sibling clean nodes,

switching one dirty node (and its subtree) with one clean node
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(and its subtree) among them so that each of the two dirty nodes

has a clean sibling, and adjusting the related non-leave nodes’

states (dirty or clean) in higher levels to correct states accord-

ingly. One-level depairing is an iterative process of one-round

depairing in one level until there are not nodes in the level to

conduct any one-round depairing. Starting from the leave level,

whole-tree depairing is an iterative process of one-level de-

pairing, level by level up, until one-level pairing has been done

for all levels.

Lemma 2: For algorithm BI_v1, given an arbitrary binary

inspection tree with dirty leaves among leaves, for the

result setting of whole-tree pairing reaches the minimum.

Proof: Let , in which denotes the number

of probes in level . Considering level , we write the following

,

in which denotes the sum of number of probes for all

levels but level .

First, we study the effect of one-round pairing in level . Be-

fore we do any one-round pairing, we need to find two dirty

nodes with clean siblings. This means that all four nodes will

be probed when BI_v1 is applied. After one-round pairing, two

dirty nodes become siblings which still need probing, and two

clean nodes become siblings which do not need probing any

more. Therefore, each one-round pairing reduces the number of

probes by 2 for the current level, i.e., . In addition,

since after a one-round pairing, one dirty node in the immediate

upper level will become clean, and the statuses for the rest nodes

in that level remain unchanged. Therefore, the number of probes

in the immediate upper level will never increase. For the same

reason, the number of probes for all upper levels will never in-

crease. Moreover, one-round pairing in a higher level will not

affect the number of probes in lower levels because the subtree

structure of a node in the higher level will not change. In other

words, the number of probes for each of the subtrees of nodes

in the higher level remains the same. Therefore, after a time of

one-round pairing in level i, we have , and

will not increase.

Now, once we finish one-level pairing in level i, is min-

imized because no more one-round pairing can be done in the

level. Thus we have . We start from

the leave level, every time we finish pairing in a level, we go

one level higher than the current level, and perform pairing it-

eratively, until we finish all the levels. When the whole-tree

pairing is done, for every reaches the minimum, i.e.,

. Therefore, also reaches the minimum.

The reason we choose a bottom-up process instead of a top-

down process is for proof convenience.With bottom-up process,

we first have after one-level pairing

for level (i.e., the leave level); then after one-level pairing for

level , we have , and

will not change due to the fact that high level pairing

would not affect the number of probes for low levels. Therefore,

we can obtain after the whole-tree pairing.

However, if we choose a top-down process, we will first have

after one-level pairing for level 1 (i.e.,

the top level), and then ;

however, after finish level 3, we can be sure that is ob-

tained, but the value of and may be further reduced be-

cause the number of dirty nodes in higher levels are reduced.

Thus it is not easy to determine whether the numbers of probes

for higher levels can reach the minimum during the pairing

process. In other words, equation is diffi-

cult to obtain when we do a top-down process for pairing.

For example, in Fig. 3(b), once the statuses of node and

node are switched, node and will not be probed, and will

be probed regardless of its status; also, node becomes clean,

which may or may not reduce the number of probes, depending

on the status of g’s sibling. In this example, since ’s sibling

is clean, the fact that becomes clean will also reduce .

Lemma 3: For algorithm BI_v1, given an arbitrary binary

inspection tree dirty leaves among leaves, for the result

setting of whole-tree depairing reaches the maximum.

Proof for Lemma 3 is omitted because the proof is similar

to the proof of Lemma 2 except that every time a one-round

depairing is finished, will be increased at least by 2.

Lemma 4: For algorithm BI_v1, given an arbitrary binary

inspection tree with dirty leaves among leaves, we have

, in which is the tree height, g(m) is the number of 1 s in m’s

binary representation. We also have

, in which .

Proof: 1). Given such

that meters from to are all dirty. P1 is one possible result

of a whole-tree pairing operation, because if a binary inspection

tree is built based upon P1, there will be no one-round pairing

that can be possibly done for the whole tree. Therefore, we can

calculate based on P1. Let define the number

of probes needed to find out all dirty meters in a tree built

from P1 with height . can be expressed by recurrence:

, in which

is an odd number, and is the tree height, i.e.,

. The tree consists of three parts (see Fig. 4(a)):

denotes part 1, which is a subtree full of dirty nodes;

denotes part 2; and denotes part

3. We can analyze the three parts separately. Note that part 1 is a

binary tree full of dirty meters, thus its size is equal to the steps

that are needed. We then have for part 1

where is the number of dirty meters in this subtree. Also there

are meters for part 2. Part 3 is the top part of inspection

before it reaches part 1 and part 2, it takes 1 probe (the root

node) and 2 probes for other levels (if any); therefore, it takes

steps for part 3. To calculate

part 2 , we need to solve the recurrence. Based

on the tree property, it is straightforward to obtain the following:
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Fig. 4. Example of meter arrangement. (a) An example of the best case; (b)
The worst case.

, , , and

, , and .

By solving the recurrence with the recurrence tree method [16],

we have . Fig. 4(a) shows

an example of .

2). If is not a power of 2, let , a general

structure of the worst case is shown in Fig. 4(b), in which we

can find a integer such that the top levels of the tree are

full of dirty node, and the th level has exactly m nodes.

We will first show that this structure is the result of a whole-

tree depairing operation. In Fig. 4(b), since the top levels are

full of dirty nodes, no more one-level depairing can be done

in the top levels; also, we can ensure that every node in

level has at least one dirty child, which means there is no way

to do one-round depairing in the th level; in addition,

each node in the th level has only one dirty leaf in its

subtree, which means no one-round depairing operation can be

done in their subtrees. Therefore, this structure can be the result

of a whole-tree depairing. Now we can calculate based

on the structure. For the top p levels, The number of probes is

; for the rest levels, each level will be probed by 2 m

times. Therefore, we have , in which

, . Combining the former

equations, we have

We compare BI_v1 and scanning in Fig. 5. For the best case

(i.e., lower bound), BI_v1 will be better than scanning when the

dirty node ratio is less than 0.5. For the worst case (i.e., upper

bound), BI_v1 will be better than scanning when the dirty node

ratio is less than 0.13.

Fig. 5. Numeric results of BI_v1. (a) lower bound; (b) upper bound.

TABLE IV
BINARY INSPECTION VERSION 2 (BI_V2) WHEN AND IS UNKNOWN

4) Case 3: is Unknown, : When there are mul-

tiple inspectors, it is straightforward to distribute workload by

assigning the next node to be checked to an available inspector.

If we let be a function of , then the exact number of steps

is

C. BI_v2: An Improvement of BI_v1

The BI_v1 algorithm can be improved by reducing the in-

ternal node checks. BI_v2 is described as follows: if a node

is probed dirty and if node.lChild is probed clean, then node.

rChild is definitely dirty and can be skipped to save steps. For

example, in Fig. 3(b), after node and node are probed, we

can be sure that is dirty so that it can be skipped, and the next

node to be probed is node . Then, for the same reason, we can

determine that node is dirty without probing. BI_V2 is given

in Table IV.
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D. Adaptive Binary Tree Inspection

Based upon the previous analysis, we determine that the

choice of inspection scheme is dependent upon the dirty meter

ratio and dirty meter arrangement; both are unknown prior to

inspection. However, we can collect some heuristic informa-

tion during inspection. The two parameters (i.e., the ratio of

dirty meters and its arrangement) can be obtained on line, and

the inspection process can be adjusted adaptively to tune the

performance.

1) Jumping: Jumping is a strategy used to reduce probing

times. When the dirty meter ratio is high, scanning may be

preferable. By skipping some internal nodes to directly probe

their children in a lower level, jumping provides a mixing form

of binary tree inspection and scanning. Jumping range means

the number of levels skipped by jumping, which is termed by

D-Jumping; D denotes the range of Jumping. For example,

1-Jumping means it skips one level in the tree. To facilitate the

Jumping operation, the node structure is modified; each node

holds two more pointers (named parent and right): one points

to its parent, and another points to its immediate neighbor on

the right side.

2) A Heuristic Approach: To actually apply the Jumping

strategy, we develop an Adaptive Tree Inspection (ATI) algo-

rithm. The ATI method is based upon one claim: in a binary in-

spection tree, sub-trees in the same level have similarity in terms

of the dirty meter ratio and arrangement. The claim holds be-

cause the inspection tree is built in a random manner (i.e., each

leaf node is selected randomly during the tree-building process)

so that dirty meters are compactly arranged is low. ATI provides

a learning process that guides the decision-making for the next

step. Suppose that an internal node is probed and determined

as a dirty node. A decision regarding whether to do Jumping

in ’s sub-tree will be made based upon the inspection history.

There are two factors contributing to this decision:

� The dirty meter ratio : obviously, the higher is, the

higher is the probability of jumping will be.

� The similarity degree of the inspected nodes that are in

the same level with ; this factor is denoted by , which

measures the similarity degree in level . To compute ,

we assign each node with a dirty meter ratio property called

subR, which is the dirty meter ratio of the node’s subtree.

is given as the standard deviation of subRs of nodes in

the same level. Thus, the smaller is, the more similar the

nodes are.

Both and are updated during the inspection process.

Based upon the two factors and the previous analysis, the de-

cision process is described as follows:

a) when is a leaf or the parent of a leaf, Jumping is unnec-

essary since it is meaningless;

b) if , Jumping is not applied to ; the value 0.13

is from our analysis result in lemma 2.

c) if , Jumping is applied. The jumping range

D is determined by both and . In order to make

sure that , we define

. Therefore,

if is 0, the jumping will take the inspection directly

to the leaves. If , there is no need to jump

TABLE V
ADAPTIVE TREE INSPECTION

since it indicates that the history does not offer much

help.

Starting from the root, ATI does a traversal-and-probe with a

Depth-First-Search (DFS) algorithm. Specifically, ATI employs

the in-order searching order. The reason that one would use DFS

is that dirty meters will be determined in the early stage of the

entire inspection process; therefore, the information collected

during inspection will be more accurate and suggestive. Once

the traversal reaches a leaf node, we need to do probing first,

and then update the statistical information of the parent node

and the ancestors. The ATI algorithm is given in Table V:
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Fig. 6. An example of ATI.

TABLE VI
ATI TRACKING EXAMPLE

An example of ATI is given in Fig. 6. With a permutation of

[0100011010010000], we can track the process with Table VI.

It is shown that when inspection reaches nodes 5, 3, and 6, de-

cision is made about jumping. Based on the decision-making

process, jumping is not applied to both node 5 and 3 because

the history information is not sufficient. This explains why we

set the initial values of as positive infinity. When node 6 is

reached, jumping is applied. In this example, ATI merely saves

2 steps compared with BI_V1. However, when the scale gets

large, ATI will be more advantageous.

V. DYNAMIC INSPECTION

When set is dynamic, things will become more compli-

cated. For example, a previously checked meter may become

malicious and cause interference in the inspection.We introduce

another assumption for the dynamic inspection: “the detected

malicious meter will be removed from the user set immediately

so that it will not affect future inspection.” The general case of

dynamic inspection can be described as follows: there are end

meters in a building; let denote the eventual size of malicious

TABLE VII
SCANNING ALGORITHM FOR DYNAMIC INSPECTION (D-SCANNING)

meter set , and the goal is to identify the eventual malicious

meter set with inspectors.

A. Scanning Approach

The scanning approach can also be applied to dynamic in-

spection. The algorithm of the scanning approach for dynamic

inspection is given in Table VII. The inspection process is di-

vided into rounds. In each round, all meters will be checked one

by one. By the end of each round, we query the global monitor

to see if any anomaly exists. If it does, it means that new ma-

licious meters have appeared, and the scanning starts all over

again. The inspection terminates when the head inspector re-

ports a normal status after a round of inspection. For dynamic

inspection, it takes two or more rounds to finish. Whereas for

static inspection, it takes only one round because there will be

no malicious meters emerging during inspection.

B. Tree-Based Dynamic Inspection

The tree-based inspection can be applied to identify the dy-

namic malicious meter set as well. In this section, we study

the dynamic inspection based upon a binary tree (we refer to

this scheme as DBI). DBI employs and extends the idea of the

static binary-tree-based inspection. The difference between the

two is that when DBI finishes a round of inspection, it needs to

re-probe the meters that are so far clean until there are no newly

emerged bad meters in the current round. Fig. 7 shows an ex-

ample of dynamic inspection. It can be seen that the dirty meter
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Fig. 7. An example of dynamic binary-tree-based inspection with one in-
spector.

TABLE VIII
DYNAMIC BINARY INSPECTION (DBI) WITH

set has been growing from to during inspec-

tion. As a result, some nodes, which in this case is node , need

to be probed multiple times in order to identify the meters that

may be potentially dirty in future steps. In this example, the in-

spection lasts for two rounds. In the 1st round, node , , , ,

and are probed. While is being checked, and are good

nodes. After that, and become malicious. Therefore, only

and are identified in the 1st round. After removing and

from the user set, the 2nd round inspection can start based upon

a updated binary tree, which is rooted on node (because and

are removed from the tree). When there are multiple inspec-

tors (i.e., ), the workload can be evenly distributed to

each inspector.

The DBI algorithm is described in Table VIII. It can be seen

that once a malicious meter is detected, it will be removed from

the tree, which will be re-built after each round. In the algorithm,

we employ the basic version of binary inspection (i.e., BI_v1),

which can be easily replaced with better strategies.

C. Algorithm Analysis

In dynamic inspection, is the eventual size of the malicious

meter set . We let denote the number of dirty meters de-

tected in the th round. Let denote the total number of rounds

that the inspection needs to take. Based upon our assumption,

TABLE IX
TRACKING INSPECTION PROGRESSWITH SCANNING APPROACH

the dirty meters will be immediately removed from once de-

tected, and these meters will not be checked in future rounds.

We have defined the following term for better illustration.

Covered area: At a particular moment of a specific round, the

meters that have been inspected form a set called covered area;

and the meters that will be checked form a set called uncovered

area. Obviously, in the beginning of each round, no meter is in

the covered area, and by the end of each round, all of the meters

are in the covered area. Once a round is finished, all of themeters

belong to the uncovered area again. For dynamic inspection,

when there is not a dirty meter emerging in the covered area

after one round, the inspection can be terminated.

1) Scanning Approach Analysis: Let denote the number

of dirty meters detected after round i is finished. Table IX is used

to track the inspection progress of certain variables.We can then

compute the total number of steps (i.e., ) by summing up the

second column of Table IX. We have

(1)

Apparently, , and

Lemma 5: Given that the size of eventual dirty meter set is ,

we have the following bounds of for the scanning approach

with

� The upper bound of scanning approach for dynamic in-

spection is ,

and this bound can be achieved if and only if for

all , (i.e., there is exactly one dirty meter

emerging in the covered area in each round).

� The lower bound of scanning approach for dynamic in-

spection is , and

this bound can be achieved if and only if there are

dirty meters detected in the 1st round, and there is one dirty

meter emerging in the covered area in the first round.

Proof: Wewill first consider the case when . Based

upon (1) and Table IX, the total number of steps is the sum of

all elements in a sorted set (in descending order)

. If

for all , the size of set is maximal, and be-

comes . The th el-

ement in is . Now we will show that no matter

how (which is a positive integer) changes its value, the new

set will be a subset of , i.e., , which means the

summation of all elements in is maximal. We assume that

if any particular element is increased by , then

all the following elements will then be increased by . How-

ever, the smallest element will not be less than .

Therefore, is equivalent to with elements removed.
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Fig. 8. the upper bound (top) and lower bound (bottom) of with scanning
approach when .

The larger gets, the smaller the size of will be. For ex-

ample, let , and , then be-

comes ; in this case, is

obtained by removing 5 elements from . Since the fact that

always holds, we can show the conditions under which

the upper and lower bounds can be achieved: 1) the upper bound

of is the sum of all elements in because any change on

will remove elements from , and decrease , therefore

; 2) the lower

bound of can be achieved if we remove elements from

as many as we can. Apparently, when , , we

have , which is the smallest we can

get. Therefore, .

Since in above we have shown that when ,

, and , we can

infer that when , the bounds would be

and respectively because the workload will be

shared by inspectors.

The numeric results of the bounds of with scanning ap-

proach are shown in Fig. 8.

VI. EVALUATION

A. Static Inspection

The numeric performance bounds of will only be

achieved in specific conditions. In the real world, the ratio of

dirty meters and their distribution pattern remain unknown

before inspection, and the performance bound may not be

achieved in regular cases. In this section, we evaluate the

performance when the dirty meters are randomly deployed in

static inspection. We set and . Each piece of

data is based upon the average value of 30 repeats. The main

result is described in Fig. 9 from which we can see that BI_v2 is

better than BI_v1. The binary inspection approach (i.e., BI_v1

and BI_v2) is better than scanning when the dirty meter ratio is

low; however, when the ratio increases, scanning still remains

Fig. 9. Evaluation results when .

Fig. 10. The average performance of DBI_v1,DBI_v2, D-scanning, and D-ATI
when .

constant while the binary inspection is getting worse. In addi-

tion, the adaptive tree approach has a clear advantage over the

prior two approaches since it adjusts the inspection strategy

when walking the tree based upon the heuristic information.

B. Dynamic Inspection

We have determined the bounds of when different ap-

proaches are employed. However, the dynamic inspection is fea-

tured by high uncertainty. That is why it should be studied with

further evaluation. Given that is the number of user meters,

is the size of the eventual dirty meter set, and is the number of

rounds needed to finish the dynamic inspection. The evaluation

is designed to observe the average performance by adjusting the

three parameters.

In Fig. 10, we let , and the goal is to test how ,

the dirty meter ratio (i.e., ), affects the performance (i.e., .

In this test, is presented by dirty meter ratio) (i.e, )

ranging from 0.1 to 1, and the dirty meters are randomly de-

ployed in the meters. For each time of test, we fix and

test the performance by increasing from 2 to . After aver-

aging the results of 20 tests, we find out that when increases,

the overall trend is rising no matter which approach is chosen.

Comparing the different approaches, we observe that DBI_v2 is

better than DBI_v1, but their curve is close, because the minor
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Fig. 11. The number of rounds Vs. the number of steps ( , ).

optimization in DBI_v2 happens with a condition and proba-

bility. Also, both DBI v1 and v2 are much better than the scan-

ning approach due to the multi-round property in the dynamic

case. Since the dirty meters are split into multiple rounds,

for each round, the number of bad meters may be small. Adap-

tive-tree inspection presents a better performance than the pre-

vious three. We conclude that in this real world situation, scan-

ning has already lost its advantage.

To determine how rounds affect the performance, we have

designed another test, in which both and are fixed. We let

, and , and we examine the performance when

is increased from 2 to m. The result is shown in Fig. 11 in

which the curves are all climbing. For a specific , the tree-based

inspection schemes are far better than scanning; especially when

is getting larger, the performance gap between the tree-based

inspection and scanning is wider. The reason is that since both

and are constant, when r gets larger, the number of dirty

meters for each round will decrease causing the undermining of

the efficiency of te scanning approach, which only outperforms

the tree-based inspection when is sufficiently large.

VII. CONCLUSION

In this paper, we have discussed the malicious meter inspec-

tion problem in neighborhood area smart grids. We have for-

mulized the MMI problem and analyzed the solution algorithms

that are based upon an inspection tree. We have thoroughly

studied and compared the performance of each algorithm. We

have also proposed an adaptive tree inspection scheme that em-

ploys the heuristic information and can adjust the tree-walking

in real time. Based on our study, we find that static inspection is

useful in the situation that once a round of inspection completes,

the system is back to normal. Dynamic inspection is applicable

when anomaly is detected right after a round of inspection com-

pletes. Each time there will be only one algorithm running. The

smart grid operator is responsible for determining which one to

use according to the situation. Our theoretical and numeric re-

sults have shown the effectiveness of this approach.
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