

The University of Manchester Research

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

DOI: 10.1080/07900627.2019.1591941

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

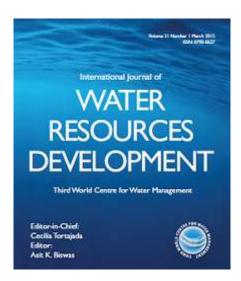
Basheer, M., Sulieman, R., & Ribbe, L. (2019). Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty. *International Journal of Water Resources Development*, 1-26. https://doi.org/10.1080/07900627.2019.1591941

Published in:

International Journal of Water Resources Development

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.


General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Journal:	International Journal of Water Resources Development
Manuscript ID	CIJW-2018-0349.R3
Manuscript Type:	Original Paper
Keywords:	Nile Basin, storage dams, satellite-based rainfall products, satellite- based reservoir monitoring, water-energy nexus, coordination

SCHOLARONE [™]
Manuscripts

2 3 4 5 6 7 8	1 2
9	3
10 11 12 13 14	4 5
15 16 17 18	6 7
19 20 21	8
22 23 24 25	9
26	10
27 28 29 30 31	11
30 31 32 33 34 35 36 37 38	
37 38 39 40 41	
42 43 44 45 46	
47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

Exploring management approaches for water and energy in the data scarce Tekeze-Atbara Basin under hydrologic uncertainty

- Mohammed Basheer^{a, b*}, Rayyan Sulieman^{a, c}, Lars Ribbe^{a, d}
- 4 *a Institute for Technology and Resources Management in the Tropics and Sub-tropics*
- 5 (ITT), Technische Hochschule Köln, Betzdorferstr. 2, 50679, Cologne, Germany
- 6 ^b Current affiliation: School of Mechanical, Aerospace, and Civil Engineering, The
- 7 University of Manchester, Manchester, United Kingdom
- 9 *Corresponding author's email: <u>mohammedadamabbaker@gmail.com</u>
- 10 ^c email: <u>rayyotop@gmail.com</u>
- 11 ^d email: <u>lars.ribbe@th-koeln.de</u>

Exploring management approaches for water and energy in the datascarce Tekeze-Atbara Basin under hydrologic uncertainty

15	This study examines management approaches for hydropower generation and
16	irrigation and domestic water supply for Tekeze-Atbara, a transboundary river
17	between Ethiopia, Eritrea, and Sudan, under above- and below- normal
18	hydrologic conditions considering current and future water demand scenarios.
19	Satellite data are used to substitute unavailable or inaccessible ground
20	meteorological and dam data. Based on three examined coordination scenarios,
21	the analysis finds that coordinating the management of the Sudanese dams would
22	bring significant benefits to water supply and energy generation. An optimisation
23	analysis is necessary to reveal the full value of coordination of dams in Tekeze-
24	Atbara Basin.

Keywords: Nile Basin; storage dams; satellite-based rainfall products; satellitebased reservoir monitoring; water-energy nexus; coordination

27 Introduction

Access to sustainable water, energy, and food sources has become a major concern in the modern-day especially under the ongoing rapid changes in the natural and human environments. The demands for water, energy, and food in the Eastern Nile Basin (ENB) countries (Figure 1) are speedily growing due to population growth, economic development, and urbanisation (NBI, 2012). From 1990 to 2017, the total population of the ENB countries increased from around 134 to 260 million (UN, 2017) and the Human Development Index of the individual countries grew at different rates except for South Sudan (UNDP, 2018). Moreover, around 80 million of the population of the ENB countries lived in urban areas in 2017 compared to approximately 38 million in 1990 with the expectation to reach about 217 million by 2050 (UN, 2018). On the other hand, climate change is expected to exhibit large-scale changes in the elements of the hydrologic cycle such as precipitation and runoff (IPCC, 2008; N. Stern, 2006). For

2
3
4
5
3 4 5 6 7 8 9 10
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
24
25
20 27
27
20
29
31
32
33
34
34 35 36
36
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 60
60

40 East Africa, several studies projected an increase in precipitation (Shongwe, Van 41 Oldenborgh, Van Den Hurk, & Van Aalst, 2011), whereas others reported a decrease 42 (Souverijns, Thiery, Demuzere, & Lipzig, 2016). Moreover, river flow has been 43 projected to increase in large parts of East Africa coupled with more frequent 44 successions of floods and a decrease in the severity of droughts (Cole, Elliott, & Strobl, 45 2014; Shongwe et al., 2011). In light of the above pressures and challenges, fulfilling 46 the present and future water, energy, and food demands requires consistent plans and 47 targets for water management (García-Vera, 2013), efficient and optimally-operated 48 energy generation systems (Boadi & Owusu, 2017; Peng, Xu, & Liu, 2016), and 49 enhanced agricultural practices (Amekawa, 2009; Møller, Drews, & Larsen, 2017; 50 Pradhan, Sijapati, & Bajracharya, 2015). Further, understanding the interdependences of 51 water, energy, and food systems is imperative for their sustainable management (Al-52 Saidi & Elagib, 2017; Liu et al., 2017). Several studies investigated the nexus of water, 53 energy, and food in a variety of contexts and spatial and temporal scales and concluded 54 the importance of their joint management (Bazilian et al., 2011; Chirisa & Bandauko, 55 2015; Engström et al., 2017; Kurian, 2017; Larsen & Drews, 2019; Lindström & Granit, 56 2012).

57 Tekeze-Atbara River, the last major tributary of the Nile River before it ends in 58 the Mediterranean Sea, is geographically shared between Ethiopia, Eritrea, and Sudan 59 (Sutcliffe & Parks, 1999). Numerous studies have been published for the Nile Basin on 60 the management of water and energy resources under a variety of scenarios and climatic 61 conditions. However, few focused on or tested water management strategies for Tekeze-62 Atbara Basin. A recent study by Digna, Mohamed, van der Zaag, Uhlenbrook, & Corzo 63 (2017) reviewed 36 published and unpublished simulation and optimisation models that 64 have been developed between 1958 and 2016 on management and planning of the Nile

65	water resources (e.g. Arjoon, Mohamed, Goor, & Tilmant, 2014; Block & Strzepek,
66	2010; Goor, Halleux, Mohamed, & Tilmant, 2010; Guariso, Haynes, Whittington, &
67	Younis, 1981; Guariso & Whittington, 1987; Jeuland, 2010; King & Block, 2014; Lee,
68	Yoon, & Shah, 2012; Levy & Baecher, 1999; McCartney & Menker Girma, 2012; Satti,
69	Zaitchik, & Siddiqui, 2015; Stedinger, Sule, & Loucks, 1984; Wheeler et al., 2016;
70	Whittington, Waterbury, & Jeuland, 2014; Whittington, Wu, & Sadoff, 2005; Y. Zhang,
71	Block, Hammond, & King, 2015). The study revealed that 10 of the 36 reviewed Nile
72	models included Tekeze-Atbara in their modelling domains. Nevertheless, only one of
73	the ten models, i.e. Abreha (2010), examined scenarios to quantify trade-offs between
74	energy generation and water supply for Tekeze-Atbara Basin. A number of other studies
75	have been recently published on modelling the water resources of the Nile Basin of
76	which three were limited to the Blue Nile Basin (Basheer et al., 2018; Mekonnen, Duan,
77	Rientjes, & Disse, 2018; Stamou & Rutschmann, 2018), one to the White Nile Basin
78	(Basheer & Elagib, 2018b), one to Tekeze-Atbara Basin (Abera, Asfaw, Engida, &
79	Melesse, 2018), three to the ENB (Digna et al., 2018; Mulat, Moges, & Moges, 2018;
80	Wheeler et al., 2018), and one covered the whole Nile Basin (Jeuland, Wu, &
81	Whittington, 2017). Apart from Abera et al. (2018), none of the recent studies focused
82	on testing management scenarios for Tekeze-Atbara Basin. Abera et al. (2018)
83	developed a monthly model for Tekeze-5 Dam (see Figure 1) to optimise its operation
84	for hydropower production under Representative Concentration Pathway (RCP) 4.5 and
85	8.5 climate scenarios. They found that climate change would increase hydropower
86	production from the dam by 25 to 30%. Previous studies that focused on Tekeze-Atbara
87	Basin, as reviewed above, helped to improve the understandings on the management of
88	water and energy in the Basin. Nevertheless, they relied on monthly models and
89	consequently simplified some elements of the river system that vary from day to day

Page 5 of 60

90

1

and inherently influence water supply and hydropower generation (e.g. dam outlet

1	
2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

91 capacities, dam operating rules, tailwater elevation) (World Bank, 1980). Moreover, 92 they used deterministic hydrologic conditions to drive their model simulations. 93 In light of what has been mentioned above, this study explores the implication of 94 three coordination scenarios for cascade dams in Tekeze-Atbara Basin for hydropower 95 generation and irrigation and domestic water supply. Tekeze-Atbara River was selected 96 herein because there is still little scientific understanding of it, as reviewed above, 97 although it contributes roughly 15% of the annual flow of the Nile as measured at 98 Aswan near the Sudanese-Egyptian border. Moreover, it suffers from metrological and 99 hydrologic data-scarcity, which enables presenting alternative sources and innovative 100 methods to obtain data. In this study, a daily river basin model is developed, calibrated, 101 and validated for Tekeze-Atbara for the period 1984-2016 to include river flow, 102 irrigation water demands, domestic water demands, and hydropower storage dams. The 103 model simulates rainfall-runoff of sub-basins with limited/unavailable data, water 104 allocation to hydropower and water supply, and irrigation water demands of future 105 schemes. Due to the few operating rainfall stations in the study area, point-to-pixel 106 evaluation is conducted for five long-term Satellite-based Rainfall Products (SRPs), and 107 the best performing one is used as a boundary condition to the rainfall-runoff 108 component of the model. Satellite imagery is used to derive the past reservoir water 109 levels of Tekeze-5 Dam because no data about them were accessible for this study. The 110 present analysis examines 36 scenarios which result from the combinations of three dam 111 coordination levels (business as usual, coordination within Sudan, and sub-basin 112 coordination), two water demand scenarios (current and future), and six starting water 113 levels for Tekeze-5 Dam. Each of the scenarios is examined across 50 above-normal 114 and 50 below-normal stochastic hydrologic sequences that are developed by

bootstrapping from the historic flow record. The present analysis is not meant to quantify the costs and benefits of coordination in Tekeze-Atbara Basin, as the examined scenarios do not include the full expected future water demands, nor is an optimisation model used to modify the operation of the river system. However, the examined scenarios are hoped to inform the decision makers of the Tekeze-Atbara Basin and other basins on the importance of coordinated management of river systems especially under sustained above- or below-normal hydrologic conditions which are anticipated to occur before the middle of the 21st century (Hirabayashi, Kanae, Emori, Oki, & Kimoto, 2008; IPCC, 2008). The remaining part of this paper is composed of four main sections: the first gives an overview of Tekeze-Atabra Basin and its water-related infrastructures; the second deals with the methodology used for this study; the thrid analyses and discusses the results; the fourth draws conclusions based on the other three sections.

e.

127 Study area

128 General features

The study area encompasses Tekeze-Atbara Basin. Figure 1 shows the extent and general characteristics of the study area. Tekeze-Atbara Basin is located in north-eastern Africa and is geographically shared between Ethiopia, Eritrea, and Sudan. The basin covers an area of around 231,000 km² of which approximately 51% is in Sudan, 39% is in Ethiopia, and 10% is in Eritrea. Tekeze-Atbara River starts in north-western Ethiopia at an altitude of above 4,500 m asl, where it is known as Tekeze River, and flows northwest through the rugged topography of Ethiopia while small tributaries join the mainstem from Ethiopia and Eritrea. The river enters Sudan at around 580 m asl where it is called Setit River. Around 70 km downstream the Ethiopian-Sudanese border, Upper Atbara, a main tributary that originates in Ethiopia, joins Setit River to form

2		
2 3 4	139	Atbara River. After that, Atbara continues northwest through the relatively flat terrain
5 6	140	of Sudan, gets joint by small streams, and merges with the Main Nile in Atbara Town at
7 8 9	141	around 350 m asl. The Main Nile continues northwards through North Sudan and Egypt
9 10 11	142	and ends in the Mediterranean Sea.
12 13 14	143	[Figure 1 near here]
15 16	144	The average annual flow of Tekeze-Atbara River is around 12,800 Mm3, which
17 18 19	145	accounts for approximately 15% of the average yearly flow of the Nile measured at
20 21	146	Aswan near the Sudanese-Egyptian border. On average, the current annual water
22 23	147	abstraction and reservoir evaporation in Tekeze-Atbara Basin account for around 1,900
24 25 26	148	and 800 Mm3, respectively. High inter- and intra-annual variability characterises the
20 27 28	149	flow of Tekeze-Atbara (Zaghloul, El-Moattassem, & Rady, 2007) with around 92% of
29 30	150	the annual flow occurring from July to October (see Figure 2). Based on Köppen Geiger
31 32	151	climate classification, the study area comprises temperate (Cwb), tropical (Aw), and
33 34 35	152	arid (BSh and BWh) climates (H.E Beck et al., 2018).
36		
37 38	153	[Figure 2 near here]
39 40 41 42	154	Dams and hydropower
43 44	155	Figures 1 and 3 show the locations of the three currently operating dams in the study
45 46 47	156	area and Table 1 reports their main attributes. The construction of Khashm Elgirba Dam
48 49	157	in Sudan, the oldest dam on Tekeze-Atbara River, was completed in 1964 to provide
50 51	158	irrigation water to New Halfa Scheme through headworks located on the left side of the
52 53 54	159	dam (World Bank, 1980). Both the dam and the irrigation scheme were built to resettle
55 56	160	50,000 Sudanese that have been displaced as a result of the construction of the Egyptian
57 58	161	High Aswan Dam which has a reservoir that extends around 150 km inside Sudan
59 60	162	(Salman, 2016). According to the Ministry of Water Resources, Irrigation, and

Electricity of Sudan, around 50% of the original storage capacity of Khashm Elgirba has been lost due to sedimentation from 1964 to 1985 whereas roughly 6% has been lost from 1986 to 2009. Khashm Elgirba Dam also serves in hydropower generation in two ways (Institute of Hydrology, 1978; Sudanese Hydro Generation Co Ltd, 2011): (1) downstream releases can be passed through two 5.3-MW Kaplan turbines; (2) water diversion to New Halfa Scheme and Town can be passed through three 2.4-MW pump-turbines when the reservoir water level is at least two meters higher than the water level in the diversion canal. The three pump-turbines are also used to pump water from the reservoir to the diversion canal when the reservoir water level drops below the canal water level (Institute of Hydrology, 1978). [Table 1 near here] In 2009, Ethiopia completed the construction of Tekeze-5 Dam, the second tallest double curvature concrete arch dam in Africa, to generate hydropower through four 75-MW Frances turbines (Abera et al., 2018; Adera, 2015; Tekeze Inauguration Bulletin, 2009; Welde, 2016). In 2015, the construction of Upper Atbara and Setit Dam Complex (UASDC) was completed at a location right upstream the confluence of Upper Atbara and Setit Rivers (see Figure 1). The latter River is called Tekeze in Ethiopia as

International Journal of Water Resources Development

explained in the previous section. UASDC crosses both Upper Atbara and Setit Rivers
to form a common reservoir (Sloff, Omer, Heynert, & Mohamed, 2015). The dam was
built to generate hydropower through four 80-MW turbines, to provide irrigation water
to a future irrigation scheme called Upper Atbara, and to supply Gedarif Town with
domestic water through a pipeline that is currently under construction (Zoellner, Scheid,
& Mukthar, 2017). The dam body includes two sets of outlets: (1) a powerhouse and a
spillway that release water to Upper Atbara River and (2) a spillway that discharges into

187 Setit River. Lastly several dams are planned for construction on the Ethiopian side of

1 2		
2 3 4	188	Tekeze-Atbara River (Digna et al., 2018). However, they were not included in this
5 6	189	study.
7 8 9 10	190	[Figure 3 near here]
11 12 13 14	191	Irrigation and domestic water users
14 15 16	192	Figures 1 and 3 illustrate existing water abstractions on Tekeze-Atbara in addition to
17 18	193	planned abstractions in the basin part of Sudan. The information available to us on
19 20 21	194	future irrigation and domestic water users in the Ethiopian and Eritrean parts of the
22 23	195	basin were not enough to estimate their water demands and therefore were not
24 25 26	196	considered. New Halfa, located in Sudan, is the only existing large-scale irrigation
26 27 28	197	scheme that withdraws water from Tekeze-Atbara River. The scheme has an area of
29 30	198	around 185,000 ha and was constructed during the 1960s to resettle the Sudanese
31 32	199	population that has been displaced due to the construction of the High Aswan Dam as
33 34 35	200	explained in the previous section. The scheme is located downstream Khashm Elgirba
36 37	201	Dam on the west bank of the river. A diversion canal is used to supply New Halfa
38 39	202	Scheme and Town with irrigation and domestic water, respectively, from Khashm
40 41 42	203	Elgirba Reservoir. Furthermore, Upper Atbara Irrigation Scheme is planned to be
43 44	204	constructed downstream Khashm Elgirba Dam on the east bank of the river. According
45 46	205	to the Ministry of Water Resources, Irrigation, and Electricity of Sudan, the scheme is
47 48 49	206	expected to have an area of around 300,000 ha and will likely be supplied with
50 51	207	irrigation water through headworks on the right side of Khashm Elgirba Dam. Lastly, a
52 53	208	pipeline is currently under construction to provide 450,000 residents of Gedarif Town
54 55 56 57 58 59	209	with domestic water from the reservoir of UASDC (Zoellner et al., 2017).

211 Model description

To examine management approaches for hydropower generation and irrigation and domestic water supply, a daily river basin model was developed, calibrated, and validated for Tekeze-Atbara for the period 1984 to 2016 to include hydropower dams. large-scale irrigation schemes, significant domestic water users, and major inflows and water losses. Figure 3 shows a schematic of the model developed for this study. The model simulates rainfall-runoff of sub-basins with limited/unavailable data (i.e., sub-basins 1 to 7), water allocation to hydropower and water supply, and irrigation water demands of future schemes. The baseline model includes five main elements: three dams (i.e., Tekeze-5 Dam, UASDC, and Khashm Elgirba Dam) and two water consumers (i.e., New Halfa Irrigation Scheme and Town). Furthermore, the baseline model includes eight inflow nodes (sub-basins 1 to 7 and Upper Atbara), evaporation losses from storage reservoirs, and transmission losses from river reaches. Upper Atbara Irrigation Scheme and Gedarif Town were included in future scenarios as explained in a following section. The data used in developing and driving the model and their sources are outlined in the following section.

Several methods were employed in modelling rainfall-runoff of sub-basins 1 to 7 including simple canopy interception, average monthly evapotranspiration, soil deficit and constant loss calculations for infiltration, and Snyder unit hydrograph (HEC, 2000). It is worth mentioning that all the parameters of the seven sub-basins were spatially lumped. FAO Penman-Monteith equation (G. Allen, Pereira, Raes, & Smith, 1998) was used to estimate the irrigation water demands of the planned Upper Atbara Scheme. It was assumed that Upper Atbara Scheme has a soil type similar to New Halfa Scheme (i.e., clayey soil; The World Bank, (1980)) due to their proximity. Figure S2 in the

online supplementary data shows the estimated irrigation water demands of Upper
Atbara Scheme. Fixed lag times and loss percentages were used to model channel travel
time and losses, respectively. Furthermore, average monthly evaporation coefficients
were applied to estimate evaporation losses from the storage reservoirs. The calibration
and validation criteria of the model are presented in a following section.

In this study, several modelling tools were utilised to simulate the different processes. The Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS; HEC (2000)), CropWat (FAO, 2015), and RiverWare (Zagona, Fulp, Shane, Magee, & Morgan, 2001) were used to model rainfall-runoff, irrigation water demands, and water allocation to hydropower generation and water users, respectively. Figure S3 in the online supplemental data displays the linkages between the three modelling tools used in this study.

247 Data used

Daily data of river water levels at Kubor Station were obtained from the Ministry of Water Resources, Irrigation, and Electricity of Sudan (MoWRIE) for the period 1984 to 2007. The water levels were used together with the concurrent rating curves to create a river flow time series for the station. MoWRIE also provided river flow data for Bardana and Rumela stations for the period 2008 to 2016, river flow data for Hamadiet Station for 2013 to 2016, and reservoir water levels for UASDC for 2015 and 2016 (note that UASDC became operational in 2015). The inflow of Upper Atbara River for 1984 to 2014 was compiled from Kubor Station (1984-2007) and Rumela Station (2008 to 2014). Moreover, the observed flow at Hamadiet Station (2015-2016), the observed outflow from, and water levels of, UASDC (2015-2016), and evaporation losses from UASDC were used to estimate the inflow of Upper Atbara River for 2015 and 2016 using water balance. For Khashm Elgirba Dam and UASDC, the geometry and monthly

	260	evaporation coefficients of the reservoirs, the outlet capacities, the specifications of the
	261	hydropower turbines, the downstream discharge-water level relationships, and the
	262	operating rules were obtained from MoWRIE. Apart from the operating rules, similar
)	263	data were attained for Tekeze-5 Dam from Wheeler et al. (2016) and the Eastern Nile
<u>)</u> }	264	Technical Regional Office (ENTRO) of the Nile Basin Initiative (NBI). The method
1 5	265	used to derive the past reservoir water levels of Tekeze-5 Dam, explained in a following
5 7	266	section, utilises Landsat satellite images of the United States Geological Survey
))	267	(USGS). Furthermore, MoWRIE provided intermittent outflow data for Khashm Elgirba
2	268	Dam from 1984 to 2014, current water demands of New Halfa Scheme and Town,
} 	269	future water demands of Gedarif Town, and the design cropping pattern and irrigation
)) 7	270	efficiency of Upper Atbara Scheme. Due to poor coverage of Tekeze-Atbara Basin with
3	271	rainfall stations, five daily SRPs that cover the model period were evaluated, and the
)	272	best-performing one was used as a boundary condition to model the inflow from sub-
<u>2</u> 3 1	273	basins 1 to 7 (Figure 3). The evaluated SRPs are: Africa Rainfall Climatology Version
5	274	2.0 (ARC2; Novella & Thiaw (2013)), Climate Hazards group Infrared Precipitation
7 3	275	with Stations version 2.0 (CHIRPS V2.0; Funk et al. (2014)), Multi-Source Weighted-
) 	276	Ensemble Precipitation version 2.0 (MSWEP 2.0; Hylke E Beck, Dijk, Levizzani,
<u>)</u> }	277	Schellekens, & Miralles (2017)), Precipitation Estimation from Remotely Sensed
1 5	278	Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-
5 7 5	279	CDR; Ashouri et al. (2015)), and Tropical Applications of Meteorology Using Satellite
))	280	Data and Ground-Based Observations version 2.0 (TAMSAT-2; Tarnavsky et al.
2	281	(2014)). Daily rainfall data from seven ground stations for the period 1984 to 2007 were
} 	282	used to evaluate the performance of the SRPs (Figure 1 shows the stations). The ground
5 7	283	rainfall data were obtained from the Sudan Meteorological Authority and ENTRO.
3	284	More information about the evaluation method of the SRPs is provided in the next
)		

1 2		
2 3 4	285	section of this paper. The seven sub-basins (see Figure 3) were delineated based on the
5 6	286	90-m resolution topographic data of the Shuttle Radar Topography Mission (SRTM;
7 8 9	287	Jarvis, Reuter, Nelson, & Guevara (2008)). The global monthly evapotranspiration data
9 10 11	288	of the Moderate Resolution Imaging Spectroradiometer Global Evapotranspiration
12 13	289	Project (MOD16; Mu, Zhao, & Running (2011)), which covers the period 2000 to 2014,
14 15	290	were used to estimate the average monthly evapotranspiration from the seven sub-
16 17 18	291	basins. The climatic parameters required to estimate the irrigation water demands of
19 20	292	Upper Atbara Scheme were acquired from New_LocClim (FAO, 2014; Grieser,
21 22	293	Gommes, & Bernardi (2006)), a database developed by the Food and Agriculture
23 24 25	294	Organization of the United Nations.
25 26 27	295	Key data utilised in this study are provided in the online supplementary file
28 29	296	(namely water abstractions, dam operating rules, and reservoir geometry and
30 31 32	297	evaporation coefficients).
33		
34 35	298	Evaluation of Satellite-based Rainfall Products
36 37 38	299	Point-to-pixel evaluation was conducted to assess the daily performance of the five
39 40	300	selected SRPs (i.e., ARC2, CHIRPS V2.0, MSWEP 2.0, PERSIANN-CDR, and
41 42	301	TAMSAT-2) through the period 1984 to 2007. This method compares satellite-
43 44 45	302	estimated rainfall at locations of ground rainfall stations with the concurrent rainfall
46 47	303	records of the stations. This method is suitable for regions with sparse rainfall stations
48 49	304	(Basheer & Elagib, 2018a), and therefore was selected for this study. R programming
50 51 52	305	language (R Core Team, 2015) was used to download the SRPs and to carry out the
53 54	306	evaluation. To measure the disparity between the satellite estimates and the ground
55 56	307	observations, three metrics were used: the Root Mean Square Error (RMSE; Equation
57 58 59	308	1), the Mean Bias Error (MBE; Equation 2), and the coefficient of determination (R ² ;
60	309	Equation 3). Whereas RMSE shows the magnitude of the average error and can take any

value from zero (indicates no error) to $+\infty$ (signals a high error), MBE describes the direction of error bias and varies between $-\infty$ and $+\infty$ (both indicate a high error), with no error at zero. R² measures how well the estimated values correlate with the observed values and varies from zero (total disagreement) to one (perfect correlation). To assess the detection skills of the SRPs, four categorical metrics were selected, which are based on dichotomous evaluation of each time step within the assessment period (rainy/non-rainy). The selected categorical metrics are the Probability Of Detection (POD), the False Alarm Ratio (FAR), and the Equitable Threat Score (ETS). In order to calculate the three selected categorical metrics, a threshold of 0.1 mm/day was used to classify each time step within the evaluation period into the following: a hit, h, when rainfall was both observed at the station and estimated by the Satellite-based Rainfall Product (SRP); a miss, m, when rainfall was observed at the station but not estimated by the SRP; a false alarm, f, when rainfall was estimated by the SRP but not observed at the station; or a null, n, when rainfall was neither observed at the station nor estimated by the SRP. Equations 4, 5, and 6 were used to calculate POD, FAR, and ETS, respectively. POD gives the fraction of observations that were successfully detected and ranges from zero, indicating no observation was detected, to one, indicating all observations were detected. On the other hand, FAR measures the fraction of estimations that were not observed. It ranges from zero, which indicates that all estimations were observed, to one, which indicates that all estimations were not observed. Lastly, ETS gives the portion of observations and estimations that were correctly detected, adjusted for the number of hits (He; Equation 7) that would be expected by random chance. It varies from -1/3, which is the worst value, to one, which is the perfect value.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (E_i - O_i)^2}$$
(1)

 (2)

(7)

335
$$MBE = \frac{1}{n} \sum_{i=1}^{n} (E_i - O_i)$$

336
$$R^{2} = \frac{\left(n\left(\sum_{i=1}^{n} O_{i}E_{i}\right) - \left(\sum_{i=1}^{n} O_{i}\right)\left(\sum_{i=1}^{n} E_{i}\right)\right)^{2}}{\left(n\left(\sum_{i=1}^{n} O_{i}^{2}\right) - \left(\sum_{i=1}^{n} O_{i}\right)^{2}\right)\left(n\left(\sum_{i=1}^{n} E_{i}^{2}\right) - \left(\sum_{i=1}^{n} E_{i}^{2}\right)\right)^{2}}$$
(3)

$$POD = \frac{H}{H+M} \tag{4}$$

$$FAR = \frac{F}{H+F}$$
(5)

$$ETS = \frac{H - H_e}{H + M + F - H_e}$$
(6)

$$H_e = \frac{(H+M)(H+F)}{N}$$

Where O_i is the ith observed value, E_i is the ith estimated value, n is the number of data pairs, H is the total number of hits, M is the total number of misses, F is the total number of false alarms, and N is the total number of nulls.

Based on the above procedure, ARC2 was selected as the overall best performing SRP
in the study area and was used as an input to model rainfall-runoff of sub-basins 1 to 7.
The supplementary data to this article provides and discusses the results of the
performance evaluation of ARC2, CHIRPS V2.0, MSWEP 2.0, PERSIANN-CDR, and
TAMSAT-2.

49 Satellite-based reservoir water level estimation

For this study, no ground data were accessible on the filling approach or the steady
operation of Tekeze-5 Dam. Therefore, Landsat satellite images were used together with
the elevation-area table of Tekeze-5 Reservoir to derive a time series of the reservoir
water level from the filling commencement until the end of 2016. To achieve that, the

4 5		
6	255	I and act improves downloaded for the named from January 2007 to
7	355	• Landsat images were downloaded for the period from January 2007 to
8 9 10	356	December 2016. The images were filtered based on cloud cover, sun azimuth,
10 11 12	357	and clarity over the area of Tekeze-5 Reservoir. Accordingly, 71 images were
13 14	358	selected for use through the period January 2007 to December 2016.
15 16	359	• For the 71 images, the reservoir water surface was classified, and the reservoir
17 18 19	360	area was calculated.
20 21	361	• The elevation-area table of Tekeze-5 Reservoir was used to determine the water
22 23 24	362	levels that correspond with the 71 area values which were derived in the
24 25 26	363	previous step. To this end, the reservoir water level was known at 71 timesteps.
27 28	364	• Linear interpolation between the 71 values of reservoir water level was
29 30 31	365	performed to create a daily water level time series for Tekeze-5 Reservoir.
32 33 34	366	Figure 4 shows the surface area of Tekeze-5 Reservoir once every year from the
35 36	367	start of the filling until 2016. The figure also displays the time series of the reservoir
37 38	368	water level that was derived based on the steps mentioned above. Figure 4 illustrates
39 40 41	369	that Tekeze-5 Reservoir was 54% full by the end of 2009, a result that agrees with
42 43	370	information reported by Tekeze Inauguration Bulletin (2009) that the filling was 52%
44 45	371	complete by the end of 2009. The evidence from Figure 4 shows that the filling of
46 47 48	372	Tekeze-5 Reservoir started in August 2007 and the reservoir reached the Full Supply
49 50	373	Level (FSL) in September 2011. In this study, the satellite-estimated water levels of
51 52	374	Tekeze-5 were used as a target to model the operation of the dam throughout the filling
53 54 55	375	period (i.e., from August 2007 to September 2011). From October 2011 onwards, it was
56 57	376	assumed that Tekeze-5 Dam is operated to target a fixed power level while maintaining
58 59	377	the reservoir at a water level higher than the Minimum Operating Level (MOL) and

lower than FSL. This assumption was because the primary purpose of the dam is energy production. Several power targets were tested for the period October 2011 to December 2016, and one was selected based on the correspondence between the modelled and the satellite-estimated water levels in that period. Accordingly, a 300-MW power target was selected (see Figure S4 in the online supplemental data). Therefore, the following operating policy was adopted for Tekeze-5 Dam: targeting a constant power rate of 300 MW while maintaining the reservoir water level between the MOL and the FSL.

[Figure 4 near here]

386 Model calibration and validation

The model was calibrated and validated at Khashm Elgirba Dam utilising intermittent outflow data that were available for this study. Whereas the calibration period extends from 1984 to 1999, the validation period covers 2000 to 2016. The physical parameters of sub-basins 1 to 7 in addition to the travel times and loss percentages of river reaches constitute the parameters used to calibrate the model. For basins 1 to 7, the calibration parameters are the initial and maximum storage of plant canopy, the initial and maximum deficit of soil moisture, the constant infiltration rate of soil, the standard lag, and the peaking coefficient (HEC, 2000). The model performance was assessed based on quantitative comparison of the observed and simulated outflows from Khashm Elgirba Dam using six statistical metrics: Nash-Sutcliffe coefficient of Efficiency (NSE; Equation 8), R² (Equation 3), MBE (Equation 2), RMSE (Equation 1), POD (Equation 4), and FAR (Equation 5). NSE can take any value from one to $-\infty$ with one indicating perfect prediction ability, zero indicating that the prediction of the model is as good as the mean observed data, and negative values showing that the mean observed data is better than the model prediction.

$$NSE = 1 - \frac{\sum_{i=1}^{n} (E_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O_i})^2}$$
(8)

Where O_i is the ith observed value, E_i is the ith estimated value, n is the number of data pairs, and $\overline{O_i}$ is the mean of observed values.

The flow of Tekeze-Atbara River is characterised by high intra-annual variability with around 92% of the annual flow occurring from July to October (see Figure 2.a). For this reason, the model performance was assessed in two different periods in the year: July to October and November to June. Whereas NSE was used to measure the perdition ability of the model in relation to the mean observed data, R^2 was used to show the fraction of variation in the observed data that could be explained by the model. MBE and RMSE were used to indicate the magnitude and direction of error in the model estimations; POD and FAR were used to assess the skill of the model in detecting flow events. To calculate POD and FAR, a threshold of 0.5 Mm3/day was used to classify each calibration or validation time step into a hit, h, when flow was both observed and estimated, a miss, m, when flow was observed but not estimated, a false alarm, f, when flow was estimated but not observed, or a null, n, when flow was neither observed nor estimated.

Scenarios analysed

This study aims to explore management approaches for water and energy in Tekeze-Atbara Basin under prolonged above- and below-normal hydrologic conditions. For this purpose, 36 scenarios were examined (see Figure S5 in the online supplemental data). The scenarios result from the combinations of three dam coordination levels, two demand scenarios, and six starting water levels of Tekeze-5 Dam. Each of the scenarios was subject to 50 above-normal and 50 below-normal hydrologic sequences that have a

425 20-year length. The combinations of the scenarios and the hydrologic sequences result426 in a total of 3600 simulations.

Three dam coordination scenarios were examined in this study: business as usual, coordination within Sudan, and sub-basin coordination. Tables S1 to S3 in the online supplemental data report the operating rules of Khashm Elgirba Dam, UASDC, and Tekeze-5 Dam in the three coordination scenarios. In the business as usual scenario, it was assumed that the operation of the three dams would continue as of their current operation. Currently, the primary purpose of Tekeze-5 Dam and UASDC is hydropower generation whereas Khashm Elgirba Dam is operated for water supply and energy generation. Moreover, measures are taken in the operation of UASDC and Khashm Elgirba Dam to control reservoir sedimentation by flushing and seasonal fluctuation of water levels (World Bank, 1980). In the scenario of coordination within Sudan, the original operating rules of Tekeze-5 and Khashm Elgirba dams were sustained, and the operation of UASDC was amended by allowing it to make extra water releases to meet the downstream water supply deficits. In the sub-basin coordination scenario, Khashm Elgirba Dam and UASDC were operated like in the case of coordination within Sudan while Tekeze-5 Dam was set to make extra water releases to cover the downstream water supply deficits when the other two dams are unable to satisfy the water demands. The rationale behind the selection of the three scenarios is exploring three levels of coordination: (1) unilateral operation of dams which may result in water supply shortages, (2) in-country coordination to reduce water supply shortages, and (3) sub-basin coordination to further lower water supply deficits. We acknowledge that the selected dam operation scenarios are not optimal nor do they reflect the exact path to coordination for Tekeze-Atbara Basin. However, the present analysis would shed light on the potential benefits and costs of coordination within a highly understudied basin

and would pave the way for further examinations. It is important to mention that the operating rules of Tekeze-5 Dam, UASDC, and Khashm Elgirba Dam in the three scenarios are based on the current operation of the three dams, thus do not vary across dry and wet years. In this study, two demand scenarios were examined: a current demand scenario with only New Halfa Scheme and Town included as water consumers; a future demand scenario with New Halfa Irrigation Scheme and Town, Upper Atbara Irrigation Scheme, and Gedarif Town incorporated in the system. Although Ethiopia has agricultural development plans involving Tekeze-Atbara Basin, their data were inaccessible for this study. Moreover, little information is published about them as revealed by a review of the literature. In order to develop demand scenarios that include the Ethiopian part of the basin, one needs to know the areas, locations, and cropping patterns of planned irrigation schemes. While we acknowledge not considering the future water demands of Ethiopia as a limitation, we believe that the analysed scenarios would be an addition to the literature and a starting point for future studies. Because Tekeze-5 is a multi-year storage dam, six scenarios for the initial water level of the dam were examined: 1,096 m asl (i.e., MOL), 1,100 m asl, 1,110 m asl, 1,120 m asl, 1,130 m asl, and 1,140 m asl (i.e., FSL).

In this study, 50 above-normal and 50 below-normal hydrologic sequences with a 20-year length were stochastically generated based on the historic flow record. A 20-year extent was chosen to exemplify prolonged above- or below-normal conditions. To create the hydrologic sequences, the Standardized Streamflow Index (SSFI; Modarres (2007)) was calculated for the total annual flow for 1984 to 2016 (Figure 2.b). Positive and Negative SSFI values were used to classify the years into above- and below-normal years, respectively. SSFI was selected due to the normality in the distribution of the historic annual river flow data explained by a low skewness coefficient of 0.58. After

the years were classified, 50 above-normal (below-normal) hydrologic sequences with a 20-year length were created by repeating the following process 50 times: the bootstrap method (Efron, 1992) was used to resample from the historic above-normal (below-normal) years 20 times with replacement. This method was used due to its simplicity and the absence of clear serial correlation or dependence in the historic above- or below-normal years (Ebtehaj, Moradkhani, & Gupta, 2010; Noguchi, Gel, & Duguay, 2011). Figure S6 in the supplementary data shows the hydrologic sequences generated in this study.

Results and discussion

Model performance

Figure 5 shows the observed and simulated outflow from Khashm Elgirba Dam in the calibration and validation periods. The evidence from Figure 5.a shows that the model corresponds well with the hydrologic cycle in both the calibration and validation periods. The scatter plots (Figures 5.b and 5.c) show a fair distribution of points around the one-to-one line confirmed by the slope values of the regression lines which are around 0.8 and 0.9 in the calibration and validation periods, respectively. This characteristic suggests no systematic error in the estimates of the model. [Figure 5 near here] Table 2 reports the values of the performance metrics for the calibration and

494 validation periods. For July to October, the values of NSE and R² indicate good to very
495 good performances in the calibration and validation periods based on the
496 recommendations of M. Stern, Flint, Minear, Flint, & Wright (2016) for performance
497 ranking of models. The values of MBE for July to October reveal overall overestimation

498 by the model. The high RMSE values of July to October, compared to MBE, are due to

the tendency of the metric to magnify the error amounts. This attribute of RMSE has been highlighted by Elagib, Alvi, & Mansell (1999) among several others. POD and FAR values for July to October show that the model detected a high fraction of the observed flow days and falsely estimated flow in a small number of days. This good detection capability from July to October is because it is easier for the model to capture flow events in the flood season than in the dry season. The values of MBE and RMSE show less perdition error from November to June than from July to October. For November to June, the model correctly detected more flow events in the validation period than in the calibration as shown by POD, falsely identified fewer flow events in the validation period than in the calibration period as explained by FAR, and had less estimation error in the calibration period than in the validation period as revealed by MBE and RMSE. The values of NSE and R^2 for November to June suggest that low portion of the variation in the observed flow can be explained by the variation in the modelled flow. This is partly due to the high falsely detected flow days as shown by FAR. Overall, the model showed better performance in the validation period than in the calibration period using all metrics except RMSE and MBE.

[Table 2 near here]

516 Water supply and hydropower generation in Sudan

517 This section presents the water supply shortages and hydropower generation in Sudan 518 with the two demand scenarios, the three dam operation scenarios, and the above- and 519 below-normal hydrologic conditions. It was found that the initial reservoir water level 520 of Tekeze-5 has minor impacts on water supply shortages and hydropower generation in 521 Sudan. This was due to the operating policy of Tekeze-5 Dam which is based on a 522 constant power target (see Tables S1 to S3 in the online supplemental data). Therefore,

the results presented herein are only for an intermediate initial water level of the Dam (i.e., 1120 m asl).

Figures 6.a to 6.d illustrate the probability of exceedance of the annual water supply shortages of Sudan with the current and future water demand scenarios under above and below-normal hydrologic conditions. Figure 6.a reveals that business as usual operation of dams with the current water demands under below-normal hydrologic conditions results in water supply shortages in Sudan that range from 19 to 1,425 Mm3/year. Under the same circumstances, shifting from business as usual to coordination within Sudan reduces the probability of exceedance for the water supply shortages that range between 0 and 175 Mm3/year. Moreover, it was found that shifting from coordination within Sudan to sub-basin coordination of dams has low impacts on Sudan's water supply shortages (i.e., slightly reduces the probability of exceedance for the shortages that lie between 610 and 690 Mm3/year; see Figure 6.a). Along the same lines, Figure 6.b shows that business as usual operation of dams under above-normal hydrologic conditions and with the current water demands produces supply shortages in Sudan that range from 0 to 182 Mm3/year with around 10% probability of exceeding 60 Mm3/year. Shifting to coordination within Sudan reduces the maximum annual supply shortages to 8 Mm3 with only 0.3% probability of having water shortages (Figure 6.b). The evidence from Figure 6.b suggests no difference between supply shortages in the coordination within Sudan and the sub-basin coordination scenarios. On the other hand, a water supply shortage range of 21 to 2,160 Mm3/year was found with the future water demand scenario under below-normal hydrologic conditions and business as usual operation of dams (see Figure 6.c). Shifting to coordination within Sudan or sub-basin coordination lessens this range to 0 to 2,070 Mm3/year with a 70% probability of occurrence of water supply shortages compared to a 100% in the case of business as

usual. Furthermore, Figure 6.d illustrates that business as usual operation of dams under above-normal hydrologic conditions and with the future water demand scenario results in low annual supply shortages that range from 0 to 290 Mm3 with around 10% probability of exceeding 77 Mm3/year. Moreover, coordinating the operation of dams within Sudan or across the basin results in nearly similar shortages with around 3.5% probability occurrence. As Figures 6.a and 6.c show, under below-normal hydrologic conditions, shifting from coordination within Sudan to sub-basin coordination produces minor benefits in terms of reduction in water supply shortages. This result can be explained by the limited storage in Tekeze-5 Reservoir which occurred due to water scarcity in below-normal conditions. Further, Figures 6.b and 6.d also suggest no difference between water supply shortages in the coordination within Sudan and the sub-basin coordination scenarios. This is because the water supply shortages were nearly eliminated in the scenario of coordination within Sudan. The latter finding signals that sub-basin coordination would positively impact water supply in the basin in above-normal conditions should Ethiopia implements its irrigation plans. Regarding hydropower generation in Sudan, the following was noted (see Figures 6.e to 6.h): an insignificant difference in annual energy generation across the three dam operation scenarios; a profound diffrence in daily energy generation across the three dam operation scenarios; a slightly higher annual energy generation with the current demand scenario than with the future demands scenario; a considerably higher annual energy generation under above-normal hydrologic conditions than under below-normal hydrologic conditions. It was found that the annual energy generation of Sudan under below-normal hydrologic conditions (Figures 6.e and 6.g) ranges from 100,000 to 1,220,000 MWh with a coefficient of variation of around 0.24. However, this range

572	increases under above-normal hydrologic conditions (Figures 6.f and 6.h) to between
573	865,000 to 1,500,000 MWh with a coefficient of variation of approximately 0.07.
574	[Figure 6 near here]
575	To sum up, shifting from business as usual to coordinated operation of dams
576	within Sudan decreases the water supply shortages considerably in above- and below-
577	normal hydrologic conditions and with both water demand scenarios. The three dam
578	operation scenarios have insignificant impacts on the annual energy generation of Sudan
579	and considerable impacts on the daily distribution of energy generation. The annual
580	energy generation increases significantly in above-normal hydrologic conditions
581	compared to below-normal hydrologic conditions with less variability in energy
582	generation in the former than the latter.
583	Hydropower generation in Ethiopia
584	Figure 7 demonstrates the total annual energy generation of Ethiopia from Tekeze-5
585	Dam under the two demand scenarios, the above and below-normal hydrologic
586	conditions, and the two operation settings of Tekeze-5 Dam. The results presented in

587 Figure 7 are based on a 1120 m asl initial water level for Tekeze-5 as little difference

589 Figure 7 shows that the demand and dam operation scenarios have insignificant impacts

was found in the results of the six initial reservoir water levels. The evidence from

590 on annual and daily energy generation from Tekeze-5 Dam. It was found that energy

591 generation from the dam ranges between 110,000 and 2,370,000 MWh/year in below-

592 normal hydrologic conditions. In above-normal hydrologic conditions, the results show

- 593 a minimum annual energy generation of around 1,170,000 MWh and a maximum of
- around 2,370,000 MWh. This increase in the minimum is due to water abundance in
- by above-normal conditions compared to below-normal conditions. It is worth mentioning

that 2,370,000 MWh is the maximum possible amount of energy that could be generated from the dam annually. Figure 7 demonstrates less variability in annual energy generation in above-normal conditions than in below-normal conditions. This variability decrease can be confirmed with a coefficient of variation of 0.06 and 0.4 in the aboveand below-normal hydrologic conditions, respectively.

[Figure 7 near here]

602 Conclusions

Coordinated management of water and energy systems is more urgent now than ever especially in arid regions with seasonal, dammed, transboundary rivers. While understanding the uniqueness of each river is key to the sustainable management of water and energy resources (H. Zhang & Li, 2018), the unavailability/inaccessibility of ground hydrologic and/or meteorological data has for long hindered the optimal management of the two resources. This study explores in-country and transboundary management strategies for water supply and hydropower generation under prolonged above- and below-normal hydrologic conditions for Tekeze-Atbara, a transboundary river between Ethiopia, Eritrea, and Sudan, that suffers a scarcity of ground data (unavailability and inaccessibility). To achieve that, a daily river basin model is developed for Tekeze-Atbara for the period 1984 to 2016 to include hydropower dams, large-scale irrigation schemes, significant domestic water users, and major inflows and water losses. To overcome the data scarcity issue of the study region, satellite-based rainfall and evapotranspiration data are used as inputs to the model. Moreover, satellite imagery is used to estimate reservoir water levels where no data are available. In this study, 36 scenarios are examined across 50 above-normal and 50 below-normal hydrologic conditions that are generated using the bootstrap method. The scenarios

result from combinations of dam operating settings, water demand scenarios, and initialsystem conditions.

Based on certain scenario assumptions, the results revealed that coordinating the operation of the Sudanese dams in the study area would have positive impacts on irrigation and domestic water supply under both above- and below-normal conditions. Even though this in-country coordination would have insignificant impacts on annual hydro-energy generation in Sudan, it implies changes in daily energy generation which require adjusting the energy mix on the country level. On the other hand, the assumed sub-basin coordination of dam operation resulted in slight improvements in water supply and hydropower generation in the basin compared to coordination within Sudan only. Nevertheless, sub-basin coordination is anticipated to have significant positive impacts in above-normal hydrologic conditions with future irrigation in Ethiopia added to the system. It is important to note that any positive outcomes of coordination would support trust-building between riparian countries which often happens in small steps over a long period (Huisman, Jong, & Wieriks, 2000; Uitto & Duda, 2002). Mutual trust is instrumental to international cooperation (Raadgever, Mostert, Kranz, Interwies, & Timmerman, 2008) especially in a hydro-politically complex basin like the Nile. This study has some limitations that can be addressed by future research. Landsat satellite images were used to estimate the historic water levels of Tekeze-5 Reservoir. Landsat has a 30 m spatial resolution, a 21-day temporal resolution, and a varying cloud cover and sun azimuth. Future studies could use other sources of satellite imagery that have better characteristics and apply cloud and shadow removal techniques (Helmer & Ruefenacht, 2005; Lin, Tsai, Lai, & Chen, 2013; Tseng, Tseng, & Chien, 2008) to enable estimating reservoir water levels more accurately and at finer time

644 intervals. The daily model developed for this study uses monthly evaporation

645	coefficients to estimate reservoir evaporation and therefore assumes a constant daily
646	evaporation rate for each month. This assumption is used in reality to operate the three
647	dams in Tekeze-Atbara Basin and most dams in the Nile Basin. Notwithstanding this
648	limitation, the daily model developed herein certainly adds value over a monthly model
649	as it simulates several daily processes that inherently impact water supply and
650	hydropower generation (e.g. tailwater level, dam release capacity, dam operating rules)
651	(World Bank, 1980). In this study, the above- and below-normal hydrologic sequences
652	were generated based on the historic river flow record. This approach, however,
653	overlooks the non-stationarity in the climate system which has been revealed by several
654	studies on East Africa as a temperature rise (Nadir Ahmed Elagib, 2010; Nadir Ahmed
655	Elagib & Mansell, 2000; IPCC, 2008) or a change in precipitation (Shongwe et al.,
656	2011; Souverijns et al., 2016) and river flow (Cole et al., 2014; Gebremicael, Mohamed,
657	Zaag, & Hagos, 2017; Gizaw, Biftu, Gan, Moges, & Koivusalo, 2017). Whereas the
658	increase in temperature would increase evaporation and/or transpiration from reservoirs
659	and irrigatted lands, the increase (decrease) in precipitation and river flow would
660	increase (decrease) hydropower generation (Cole et al., 2014) and enhance (negatively
661	affect) water supply. A 20-year length was chosen for the hydrologic sequences to
662	exemplify prolonged conditions. Further research could test hydrologic sequences with
663	different lengths and generate sequences based on climatic projections. Furthermore, the
664	future demand scenario considered herein did not include the agricultural development
665	plans of Ethiopia because little data were available to us about them. Digna et al. (2018)
666	reported a potential irrigation area in Ethiopia of around 45,000 ha that is yet to be
667	exploited. Irrigation water abstractions in Ethiopia would certainly impact water supply
668	and hydropower generation in the basin. While the findings of this study show that
669	raising the level of coordination would produce benefits to water supply, an

optimisation model is necessary to quantify the full value of coordination. Such an optimisation model should consider future dams and water users in Ethiopia in addition to the economic, social, and environmental impacts of the water infrastructures in the basin. Lastly, the extent of this study was limited to the Tekeze-Atbara Basin to explore possible management approaches for water and energy in the basin. However, it is essential to conduct a similar analysis for the whole Nile Basin to shed light on possible cooperative management approaches on a larger scale. Last of all, meeting the current and future demands for water and energy necessitates coordinating the management of river basins. Sustainable and efficient management of water and energy systems should consider all the relevant social, economic, and environmental aspects on the local, national, and regional levels. Research on innovative management approaches for water and energy resources is

682 highly needed, especially in data-scarce regions.

683 Acknowledgements

684 The authors would like to thank the Sudan Meteorological Authority, the Ministry of Water
685 Resources, Irrigation, and Electricity of Sudan, and the Eastern Nile Technical Regional Office
686 for supporting this study. Also, thanks to the National Oceanic and Atmospheric
687 Administration, the University of Reading, the U.S. Geological Survey (USGS), and the
688 Climate Hazards Group of the University of California for making the satellite data easily
689 accessible. Moreover, thanks to the Deutscher Akademischer Austauschdienst (DAAD) for
690 funding the M.Sc. research of the second author from which this study benefited.

691 References

Abera, F. F., Asfaw, D. H., Engida, A. N., & Melesse, A. M. (2018). Optimal operation
of hydropower reservoirs under climate change: The case of Tekeze reservoir,
Eastern Nile. *Water*, *10*(3). https://doi.org/10.3390/w10030273

Abreha, Y. G. (2010). *Tradeoff between hydropower generation, environmental flow*

and irrigation: Tekeze river,Nile River Basin, Ethiopia. UNESCO-IHE Institute for

2	<i></i>	
3 4	697	Water Education.
5 6	698	Adera, A. G. (2015). Hydrological Analysis of Tekeze Hydropower System in the
7 8	699	Current and Future Climate. Norwegian University of Science And Technology.
9 10	700	Al-Saidi, M., & Elagib, N. (2017). Towards understanding the integrative approach of
11 12	701	the water, energy and food nexus. Science of the Total Environment, 574(2017),
13 14	702	1131-1139. https://doi.org/10.1016/j.scitotenv.2016.09.046
15	703	Amekawa, Y. (2009). Reflections on the growing influence of good agricultural
16 17	704	practices in the Global South. Journal of Agricultural and Environmental Ethics,
18 19	705	22(6), 531-557. https://doi.org/10.1007/s10806-009-9171-8
20 21	706	Arjoon, D., Mohamed, Y., Goor, Q., & Tilmant, A. (2014). Hydro-economic risk
22 23	707	assessment in the eastern Nile River basin. Water Resources and Economics, 8,
24 25	708	16-31. https://doi.org/10.1016/j.wre.2014.10.004
26 27	709	Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D., Knapp, K., Cecil, D., Prat, O.
28	710	(2015). PERSIANN-CDR: Daily precipitation climate data record from
29 30	711	multisatellite observations for hydrological and climate studies. Bulletin of the
31 32	712	American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/BAMS-D-
33 34	713	13-00068.1
35 36	714	Basheer, M., & Elagib, N. A. (2018a). Performance of satellite-based and GPCC 7.0
37 38	715	rainfall products in an extremely data-scarce country in the Nile Basin.
38 39	716	Atmospheric Research, 215(1 January 2019), 128–140.
40 41	717	https://doi.org/10.1016/j.atmosres.2018.08.028
42 43	718	Basheer, M., & Elagib, N. A. (2018b). Sensitivity of Water-Energy Nexus to dam
44 45	719	operation: A Water-Energy Productivity concept. Science of The Total
46	720	<i>Environment</i> , 616–617(March 2018), 918–926.
47 48	721	https://doi.org/10.1016/j.scitotenv.2017.10.228
49 50		
50 51	722	Basheer, M., Wheeler, K. G., Ribbe, L., Majdalawi, M., Abdo, G., & Zagona, E. A.
52 53	723	(2018). Quantifying and evaluating the impacts of cooperation in transboundary
54	724	river basins on the Water-Energy-Food nexus: The Blue Nile Basin. Science of the
55 56	725	Total Environment, 630, 1309–1323.
57 58	726	https://doi.org/10.1016/j.scitotenv.2018.02.249
59 60	727	Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D.,

2		
3 4	728	Yumkella, K. (2011). Considering the energy, water and food nexus: Towards an
5	729	integrated modelling approach. Energy Policy, 39(12), 7896-7906.
6 7	730	https://doi.org/10.1016/j.enpol.2011.09.039
8 9	731	Beck, H, Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E.
10 11	732	F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km
12 13	733	resolution. Scientific Data. https://doi.org/10.1038/sdata.2018.214
14 15	734	Beck, H. E., Dijk, A. I. J. M. Van, Levizzani, V., Schellekens, J., & Miralles, D. G.
16 17	735	(2017). MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by
18	736	merging gauge, satellite, and reanalysis data. Hydrology and Earth System
19 20	737	Sciences, 589-615. https://doi.org/10.5194/hess-21-589-2017
21 22	738	Block, P., & Strzepek, K. (2010). Economic Analysis of Large-Scale Upstream River
23 24	739	Basin Development on the Blue Nile in Ethiopia Considering Transient
25 26	740	Conditions, Climate Variability, and Climate Change. Journal of Water Resources
27	741	Planning and Management, 136(2), 156–166.
28 29	742	https://doi.org/10.1061/(ASCE)WR.1943-5452.0000022
30 31	743	Boadi, S. A., & Owusu, K. (2017). Impact of climate change and variability on
32 33	744	hydropower in Ghana. African Geographical Review.
34 35	745	https://doi.org/10.1080/19376812.2017.1284598
36 37	746	Chirisa, I., & Bandauko, E. (2015). African Cities and the Water-Food-Climate-Energy
38 39	747	Nexus: an Agenda for Sustainability and Resilience at a Local Level. Urban
40 41	748	Forum, 26, 391-404. https://doi.org/10.1007/s12132-015-9256-6
42 43	749	Cole, M. A., Elliott, R. J. R., & Strobl, E. (2014). Climate change, hydro-dependency,
44	750	and the african dam boom. World Development, 60, 84–98.
45 46 47	751	https://doi.org/10.1016/j.worlddev.2014.03.016
48	752	Digna, R. F., Castro-Gama, M. E., van der Zaag, P., Mohamed, Y. A., Corzo, G., &
49 50	753	Uhlenbrook, S. (2018). Optimal operation of the Eastern Nile System using
51 52	754	Genetic Algorithm, and benefits distribution of water resources development.
53 54	755	Water (Switzerland), 10(7). https://doi.org/10.3390/w10070921
55 56	756	Digna, R. F., Mohamed, Y. A., van der Zaag, P., Uhlenbrook, S., & Corzo, G. A.
57	757	(2017). Nile River Basin modelling for water resources management – a literature
58 59 60	758	review. International Journal of River Basin Management, 15(1), 39-52.
60		

2 3 4	759	https://doi.org/10.1080/15715124.2016.1228656
5 6 7 8 9 10 11 12	760	Ebtehaj, M., Moradkhani, H., & Gupta, H. V. (2010). Improving robustness of
	761	hydrologic parameter estimation by the use of moving block bootstrap resampling.
	762	Water Resources Research, 46, 1–14. https://doi.org/10.1029/2009WR007981
	763	Efron, B. (1992). Bootstrap Methods: Another Look at the Jackknife. In S. Kotz & N. L.
13	764	Johnson (Eds.), Breakthroughs in Statistics: Methodology and Distribution (pp.
14 15	765	569–593). New York, NY: Springer New York. https://doi.org/10.1007/978-1-
16 17	766	4612-4380-9_41
18 19	767	Elagib, N. A. (2010). Trends in intra-and inter-annual temperature variabilities across
20 21	768	Sudan. Ambio, 39(6), 413-429. https://doi.org/10.1007/s13280-010-0042-3
22 23	769	Elagib, N. A., Alvi, S. H., & Mansell, M. G. (1999). Correlationships between clearness
24	770	index and relative sunshine duration for Sudan. Renewable Energy, 17(4), 473-
25 26 27	771	498. https://doi.org/10.1016/S0960-1481(98)00773-3
28 29	772	Elagib, N. A., & Mansell, M. G. (2000). Recent trends and anomalies in mean seasonal
30	773	and annual temperatures over Sudan. Journal of Arid Environments, 45(3), 263–
31 32	774	288. https://doi.org/10.1006/jare.2000.0639
33 34	775	Engström, R. E., Howells, M., Destouni, G., Bhatt, V., Bazilian, M., & Rogner, H. H.
35 36	776	(2017). Connecting the resource nexus to basic urban service provision – with a
37	777	focus on water-energy interactions in New York City. Sustainable Cities and
38 39 40	778	Society, 31, 83–94. https://doi.org/10.1016/j.scs.2017.02.007
40 41 42	779	FAO. (2014). The Water-Energy-Food Nexus at FAO: Concept Note. Retrieved from
43	780	http://www.gwp.org/PageFiles/4/The Water-Energy-Food Nexus at FAO - Concept
44 45	781	Note (FAO, 2014).pdf
46 47	782	FAO. (2015). CropWat. Retrieved November 30, 2016, from
48 49	783	http://www.fao.org/nr/water/infores_databases_cropwat.html
50 51	784	Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Rowland, J., Verdin,
52 53	785	A. (2014). A Quasi-Global Precipitation Time Series for Drought Monitoring. U.S.
54	786	Geological Survey Data Series, 832, 4.
55 56 57	787	https://doi.org/http://dx.doi.org/110.3133/ds832
58	788	G. Allen, R., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and
59 60	789	Drainage Paper: Crop Evapotranspiration. Rome.

1 2		
3	790	García-Vera, M. Á. (2013). The application of hydrological planning as a climate
4 5	791	change adaptation tool in the Ebro basin. International Journal of Water Resources
6 7	792	Development, 29(2), 219-236. https://doi.org/10.1080/07900627.2012.747128
8 9	793	Gebremicael, T. G., Mohamed, Y. A., Zaag, P. V., & Hagos, E. Y. (2017). Temporal
10 11	794	and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river
12 13	795	basin, Ethiopia. Hydrology and Earth System Sciences, 21(4), 2127–2142.
14 15	796	https://doi.org/10.5194/hess-21-2127-2017
16 17	797	Gizaw, M. S., Biftu, G. F., Gan, T. Y., Moges, S. A., & Koivusalo, H. (2017). Potential
18	798	impact of climate change on streamflow of major Ethiopian rivers. Climatic
19 20 21	799	Change, 143(3-4), 371-383. https://doi.org/10.1007/s10584-017-2021-1
22	800	Goor, Q., Halleux, C., Mohamed, Y., & Tilmant, A. (2010). Optimal operation of a
23 24	801	multipurpose multireservoir system in the Eastern Nile River Basin. Hydrology
25 26	802	and Earth System Sciences, 14, 1895–1908. https://doi.org/10.5194/hess-14-1895-
27 28	803	2010
29 30	804	Grieser, J., Gommes, R., & Bernardi, M. (2006). New LocClim - the Local Climate
31 32	805	Estimator of FAO. Geophysical Research Abstracts, 8(1), 08305. Retrieved from
33 34	806	http://www.juergen-grieser.de/publications/publications_pdf/EGU06-J-08305.pdf
35 36	807	Guariso, G., Haynes, K. E., Whittington, D., & Younis, M. (1981). A Real-Time
37	808	Management Model for the Aman High Dam with Policy Implications.
38 39	809	Geographical Analysis, 13(4), 355–372.
40 41	810	Guariso, G., & Whittington, D. (1987). Implications of Ethiopian water development for
42 43	811	Egypt and Sudan. International Journal of Water Resources Development, 3(2),
44 45	812	105–114. https://doi.org/10.1080/07900628708722338
46 47	813	HEC. (2000). Hydrologic Modeling System HEC-HMS Technical Reference Manual.
48 49	814	Washington. Retrieved from http://www.hec.usace.army.mil/software/hec-
50 51	815	hms/documentation.aspx
52	816	Helmer, E. H., & Ruefenacht, B. (2005). Cloud-Free Satellite Image Mosaics with
53 54	817	Regression Trees and Histogram Matching. Photogrammetric Engineering &
55 56	818	Remote Sensing, 71(9), 1079-1089. https://doi.org/10.14358/PERS.71.9.1079
57 58	819	Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., & Kimoto, M. (2008). Global projections
59 60	820	of changing risks of floods and droughts in a changing climate. Hydrological

2 3 4	821	Sciences Journal, 53(4), 754-772. https://doi.org/10.1623/hysj.53.4.754
5 6	822	Huisman, P., Jong, J. de, & Wieriks, K. (2000). Transboundary cooperation in shared
7	823	river basins: experiences from the Rhine, Meuse and North Sea. Water Policy, 2,
8 9	824	83-97. https://doi.org/10.1016/S1366-7017(99)00023-9
10 11	825	Institute of Hydrology. (1978). A report on the present and future availability of water
12 13	826	for irrigation and power in Khashm el Girba reservoir. Wallingford. Retrieved
14 15	827	from http://nora.nerc.ac.uk/id/eprint/507638/1/N507638CR.pdf
16 17	828	IPCC. (2008). Technical Paper On Climate Change And Water. Budapest. Retrieved
18 19	829	from https://www.ipcc.ch/meetings/session28/doc13.pdf
20 21	830	Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the
22 23	831	globe Version 4. Retrieved December 30, 2018, from http://srtm.csi.cgiar.org
24 25	832	Jeuland, M. (2010). Economic implications of climate change for infrastructure
26 27	833	planning in transboundary water systems: An example from the Blue Nile. Water
28 29	834	Resources Research, 46(11), 1-19. https://doi.org/10.1029/2010WR009428
30 31	835	Jeuland, M., Wu, X., & Whittington, D. (2017). Infrastructure development and the
32	836	economics of cooperation in the Eastern Nile. Water International, 1–21.
33 34	837	https://doi.org/10.1080/02508060.2017.1278577
35 36	838	King, A., & Block, P. (2014). An assessment of reservoir filling policies for the Grand
37 38	839	Ethiopian Renaissance Dam. Journal of Water and Climate Change, 5(2), 233-
39 40	840	243. https://doi.org/10.2166/wcc.2014.043
41 42	841	Kurian, M. (2017). The water-energy-food nexus Trade-offs, thresholds and
43 44	842	transdisciplinary approaches to sustainable development. Environmental Science
45	843	and Policy, 68, 97-106. https://doi.org/10.1016/j.envsci.2016.11.006
46 47 48	844	Larsen, M. A. D., & Drews, M. (2019). Water use in electricity generation for water-
49	845	energy nexus analyses: The European case. Science of the Total Environment, 651,
50 51	846	2044-2058. https://doi.org/10.1016/j.scitotenv.2018.10.045
52 53	847	Lee, Y., Yoon, T., & Shah, F. A. (2012). Optimal Watershed Management for Reservoir
54 55	848	Sustainability: Economic Appraisal. Journal of Water Resources Planning and
56 57	849	Management, 139(2), 129–138. https://doi.org/10.1061/(asce)wr.1943-
58 59 60	850	5452.0000232

1 2		
3	851	Levy, B., & Baecher, G. (1999). NileSim: A Windows-Based Hydrologic Simulator of
4 5	852	the Nile River Basin. Journal of Water Resources Planning and Management,
6 7	853	125(2), 100-106. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:2(100)
8 9	854	Lin, C., Tsai, P., Lai, K., & Chen, J. (2013). Cloud Removal From Multitemporal
10 11	855	Satellite Images Using Information Cloning. IEEE Transactions on Geoscience
12 13	856	and Remote Sensing, 51(1), 232-241. https://doi.org/10.1109/TGRS.2012.2197682
14 15	857	Lindström, A., & Granit, J. (2012). Large-scale water storage in the water, energy and
16 17	858	food nexus Perspectives on benefits, risks and best practices. Retrieved from
18 19	859	www.siwi.org/wp-content/uploads/2015/09/Water_Storage_Paper_21.pdf
20 21	860	Liu, J., Yang, H., Cudennec, C., Gain, A. K., Hoff, H., Lawford, R., Zheng, C.
22	861	(2017). Challenges in operationalizing the water-energy-food nexus. Hydrological
23 24	862	Sciences Journal, 62(11), 1714–1720.
25 26	863	https://doi.org/10.1080/02626667.2017.1353695
27 28	864	McCartney, M. P., & Menker Girma, M. (2012). Evaluating the downstream
29 30	865	implications of planned water resource development in the Ethiopian portion of the
31 32	866	Blue Nile River. Water International, 37(4), 362–379.
32 33 34	867	https://doi.org/10.1080/02508060.2012.706384
35 36	868	Mekonnen, D. F., Duan, Z., Rientjes, T., & Disse, M. (2018). Analysis of combined and
37	869	isolated effects of land-use and land-cover changes and climate change on the
38 39	870	upper Blue Nile River basin's streamflow. Hydrology and Earth System Sciences,
40 41	871	22(12), 6187–6207. https://doi.org/10.5194/hess-22-6187-2018
42 43	872	Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic
44 45	873	Environmental Research and Risk Assessment, 21(3), 223–233.
46 47	874	https://doi.org/10.1007/s00477-006-0058-1
47 48 49	875	Møller, L. R., Drews, M., & Larsen, M. A. D. (2017). Simulation of Optimal Decision-
50	876	Making Under the Impacts of Climate Change. Environmental Management, 60,
51 52	877	104-117. https://doi.org/10.1007/s00267-017-0852-1
53 54	878	Mu, Q., Zhao, M., & Running, S. (2011). Improvements to a MODIS global terrestrial
55 56	879	evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.
57 58	880	https://doi.org/10.1016/j.rse.2011.02.019
59 60	881	Mulat, A. G., Moges, S. A., & Moges, M. A. (2018). Evaluation of multi-storage

1 2		
2 3 4	882	hydropower development in the upper Blue Nile River (Ethiopia): regional
5	883	perspective. Journal of Hydrology, 16(February), 1-14.
6 7 8	884	https://doi.org/10.1016/j.ejrh.2018.02.006
9	885	NBI. (2012). State of the River Nile Basin 2012. Entebbe. Retrieved from
10 11 12	886	http://nileis.nilebasin.org/content/state-river-nile-basin-report
13	887	Noguchi, K., Gel, Y. R., & Duguay, C. R. (2011). Bootstrap-based tests for trends in
14 15	888	hydrological time series, with application to ice phenology data. Journal of
16 17	889	<i>Hydrology</i> , 410(3–4), 150–161. https://doi.org/10.1016/j.jhydrol.2011.09.008
18 19	890	Novella, N., & Thiaw, W. (2013). African rainfall climatology version 2 for famine
20 21	891	early warning systems. Journal of Applied Meteorology and Climatology, 52, 588-
22 23	892	606. https://doi.org/10.1175/JAMC-D-11-0238.1
24 25	893	Peng, Y., Xu, W., & Liu, B. (2016). Considering precipitation forecasts for real-time
26	894	decision-making in hydropower operations. International Journal of Water
27 28	895	Resources Development, 33(6). https://doi.org/10.1080/07900627.2016.1219942
29 30 31	896	Pradhan, N. S., Sijapati, S., & Bajracharya, S. R. (2015). Farmers' responses to climate
32	897	change impact on water availability: insights from the Indrawati Basin in Nepal.
33 34	898	International Journal of Water Resources Development. Taylor & Francis.
35 36	899	https://doi.org/10.1080/07900627.2015.1033514
37 38	900	R Core Team. (2015). R: A Language and Environment for Statistical Computing.
39 40	901	Retrieved June 27, 2017, from at: https://www.R-project.org/
41 42	902	Raadgever, G. T., Mostert, E., Kranz, N., Interwies, E., & Timmerman, J. G. (2008).
43	903	Assessing management regimes in transboundary river basins: Do they support
44 45	904	adaptive management? Ecology and Society, 13(1). Retrieved from
46 47	905	https://www.ecologyandsociety.org/vol13/iss1/art14/
48 49	906	Salman, S. (2016). The Grand Ethiopian Renaissance Dam: the road to the declaration
50 51	907	of principles and the Khartoum document. Water International, 41(4), 512–527.
52 53	908	https://doi.org/10.1080/02508060.2016.1170374
54 55	909	Satti, S., Zaitchik, B., & Siddiqui, S. (2015). The question of Sudan: a hydro-economic
56	910	optimization model for the Sudanese Blue Nile. Hydrology and Earth System
57 58	911	Sciences, 19, 2275-2293. https://doi.org/10.5194/hess-19-2275-2015
59 60	912	Shongwe, M. E., Van Oldenborgh, G. J., Van Den Hurk, B., & Van Aalst, M. (2011).

2		
3 4	913	Projected changes in mean and extreme precipitation in Africa under global
5	914	warming. Part II: East Africa. Journal of Climate, 24(14), 3718-3733.
6 7	915	https://doi.org/10.1175/2010JCLI2883.1
8 9	916	Sloff, C. J., Omer, A. Y. A., Heynert, K. V, & Mohamed, Y. A. (2015). Design and
10 11	917	modeling of reservoir operation strategies for sediment management. In 9th
12 13	918	Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos. Peru.
14	919	Retrieved from https://repository.tudelft.nl/islandora/object/uuid:6c971342-7acf-
15 16 17	920	4bd6-8379-50a93a38a0d4?collection=research
17 18 19	921	Souverijns, N., Thiery, W., Demuzere, M., & Lipzig, N. P. M. Van. (2016). Drivers of
20	922	future changes in East African precipitation. Environmental Research Letters,
21 22	923	11(11). https://doi.org/10.1088/1748-9326/11/11/114011
23 24	924	Stamou, A., & Rutschmann, P. (2018). Pareto Optimization of Water Resources Using
25 26	925	the Nexus Approach. Water Resources Management.
27 28	926	https://doi.org/10.1007/s11269-018-2127-x
29 30	927	Stedinger, J. R., Sule, B. F., & Loucks, D. P. (1984). Stochastic dynamic programming
31	928	models for reservoir operation optimization. Water Resources Research, 20(11),
32 33	929	1499-1505. https://doi.org/10.1029/WR020i011p01499
34 35	930	Stern, M., Flint, L., Minear, J., Flint, A., & Wright, S. (2016). Characterizing Changes
36 37	931	in Streamflow and Sediment Supply in the Sacramento River Basin, California,
38 39	932	Using Hydrological Simulation Program—FORTRAN (HSPF). Water, 432(8), 1-
40 41	933	21. https://doi.org/10.3390/w8100432
42 43	934	Stern, N. (2006). Stern Review: The Economics of Climate Change. London. Retrieved
44 45	935	from http://unionsforenergydemocracy.org/wp-
46 47	936	content/uploads/2015/08/sternreview_report_complete.pdf
47 48 49	937	Sudanese Hydro Generation Co Ltd. (2011). Khashm Algirba Dam. Retrieved October
50	938	21, 2018, from https://archive.is/20130411191603/http://www.shgc-
51 52	939	sd.com/khashm-dam.html#selection-165.0-165.18
53 54	940	Sutcliffe, J., & Parks, Y. (1999). The Hydrology of the Nile. (H. Salz & Z. W.
55 56	941	Kundzewicz, Eds.), IAHS Special Publication. Wallingford: The International
57 58	942	Association of Hydrological Science. Retrieved from
59 60	943	www.hydrosciences.fr/sierem/produits/biblio/hydrology of the Nile.pdf

2		
3 4	944	Tarnavsky, E., Grimes, D., Maidment, R., Black, E., Allan, R., Stringer, M.,
5	945	Kayitakire, F. (2014). Extension of the TAMSAT satellite-based rainfall
6 7	946	monitoring over Africa and from 1983 to present. Journal of Applied Meteorology
8 9	947	and Climatology, 53(12), 2805-2822. https://doi.org/10.1175/JAMC-D-14-0016.1
10 11	948	Tekeze Inauguration Bulletin. (2009). Overview of Tekeze hydroelectric power plant.
12 13	949	Retrieved from https://docplayer.net/12125895-Overview-of-tekeze-hydroelectric-
14 15	950	power-plant-general.html
16 17	951	Tseng, D. C., Tseng, H. T., & Chien, C. L. (2008). Automatic cloud removal from
18	952	multi-temporal SPOT images. Applied Mathematics and Computation, 205(2),
19 20	953	584-600. https://doi.org/10.1016/j.amc.2008.05.050
21 22	954	Uitto, J. I., & Duda, A. M. (2002). Management of transboundary water resources:
23 24	955	lessons from international cooperation for conflict prevention. The Geographical
25 26	956	Journal, 168(4), 365-378. Retrieved from https://www.jstor.org/stable/3451478
27 28	957	UN. (2017). World Population Prospects: The 2017 Revision. Volume II: Demographic
29 30	958	Profiles (ST/ESA/SER.A/400).
31 32	959	UN. (2018). World Urbanization Prospects: The 2018 Revision. New York.
33 34	960	UNDP. (2018). Human Development Indices and Indicators: 2018 Statistical Update.
35 36	961	New York.
37 38	962	Welde, K. (2016). Identification and prioritization of subwatersheds for land and water
39 40	963	management in Tekeze dam watershed, Northern Ethiopia. International Soil and
41 42	964	Water Conservation Research, 4(1), 30–38.
43 44	965	https://doi.org/10.1016/j.iswcr.2016.02.006
45 46	966	Wheeler, K. G., Basheer, M., Mekonnen, Z., Eltoum, S., Mersha, A., Abdo, G.,
47	967	Dadson, S. (2016). Cooperative filling approaches for the Grand Ethiopian
48 49	968	Renaissance Dam. Water International, 8060(May), 1-24.
50 51	969	https://doi.org/10.1080/02508060.2016.1177698
52 53	970	Wheeler, K. G., Hall, J. W., Abdo, G. M., Dadson, S. J., Kasprzyk, J. R., Smith, R., &
54 55	971	Zagona, E. A. (2018). Exploring Cooperative Transboundary River Management
56	972	Strategies for the Eastern Nile Basin. Water Resources Research, 9224-9254.
57 58	973	https://doi.org/10.1029/2017WR022149
59 60	974	Whittington, D., Waterbury, J., & Jeuland, M. (2014). The grand renaissance dam and

2		
3 4	975	prospects for cooperation on the eastern nile. Water Policy, 16(4), 595-608.
5 6	976	https://doi.org/10.2166/wp.2014.011
7	977	Whittington, D., Wu, X., & Sadoff, C. (2005). Water resources management in the Nile
8 9	978	basin: the economic value of cooperation. Water Policy, 7(3), 227-252.
10 11	979	https://doi.org/10.2166/wp.2005.0015
12 13 14	980	World Bank. (1980). New Halfa irrigation rehabilitation project.
15	981	Zaghloul, S., El-Moattassem, M., & Rady, A. (2007). The hydrological interactions
16 17	982	between Atbara River and the Main Nile at the confluence area. In the
18 19	983	International Congress of River Basin Management (pp. 787–799). Antalya.
20 21	984	https://doi.org/10.1002/hyp.6956
22 23	985	Zagona, E., Fulp, T., Shane, R., Magee, T., & Morgan, H. (2001). Riverware : a
24 25	986	Generalized Tool for Complex Reservoir System Modeling. Journal of the
26 27	987	American Water Resources Association, 37(4), 913–929.
27 28 29	988	Zhang, H., & Li, M. (2018). A process-based framework to examine China's approach
30	989	to transboundary water management. International Journal of Water Resources
31 32	990	Development, 34(5), 705-731. https://doi.org/10.1080/07900627.2018.1476225
33 34	991	Zhang, Y., Block, P., Hammond, M., & King, A. (2015). Ethiopia's Grand Renaissance
35 36	992	Dam: Implications for downstream riparian countries. Journal of Water Resources
37	993	Planning and Management, 141(9), 05015002.
38 39	994	https://doi.org/10.1061/(ASCE)WR.1943-5452.0000520.
40 41	995	Zoellner, F., Scheid, Y., & Mukthar, M. (2017). Implementation of the Dam Complex at
42 43	996	Upper Atbara, Sudan, in challenging site conditions. Retrieved from
44 45	997	https://www.lahmeyer.de/fileadmin/alle/publikationen/HYDRO_2017Paper_54_
46 47	998	Zoellner_Scheid_Mukthar.pdf
48 49	999	
50	1000	
51 52		
53 54		
55 56		
57		
58		

2	
З	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 23 24 25 26 27 28 9 30 1 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 36 37 8 9 30 31 32 33 36 37 8 9 30 30 31 32 32 32 32 32 32 32 32 33 33 33 33 33	
25	
26	
27	
28	
29	
30 21	
3 I 2 2	
22 22	
27	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

Table 1. Main characteristics of dams located in the study area.

Characteristic	KED	UASDC	Tekeze-5
Full supply level (m asl)	474	521	1,140
Minimum Operating Level	463	509	1,096
(m asl)			
Total storage volume (MCM)	628 (in 1990)	3,687 (in 2015)	9,293 (in 2016)
Surface Area at FSL (km ²)	100	302	156.9
Surface area at MOL (km ²)	8	128	88.5
Installed power capacity	16	320	300
(MW)			
Purpose	Seasonal storage for	Seasonal storage for	Multi-year storage
C	hydropower generation	hydropower generation	for hydropower
	and water supply	and water supply	generation

Note: KED = Khashm Elgirba Dam; UASDC = Upper Atbara and Setit Dam Complex; FSL = Full Supply Level; MOL = Minimum Operating Level.

Data sources: The Ministry of Water Resources, Irrigation, and Electricity of Sudan and the Eastern Nile Technical Regional Office.

Reviewony

URL: http://mc.manuscriptcentral.com/cijw Email: CIJW-peerreview@journals.tandf.co.uk

2	
3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18 19	
20	
21	
22	
23	
24	
25	
26	
27 28	
28 29	
30	
31	
32	
33	
34 25	
35 36	
30 37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51 52	
52 53	
53 54	
55	
56	
57	
58	
59	
<u> </u>	

60

Months	Performance metric	Calibration	Validation
July to	NSE	0.71	0.84
October	R ²	0.72	0.74
	MBE (Mm3/day)	1.96	21.28
	RMSE (Mm3/day)	52.39	61.35
	POD	0.92	0.95
	FAR	0.14	0.02
November	NSE	0.18	0.37
to June	R ²	0.22	0.35
	MBE (Mm3/day)	-0.38	6.30
	RMSE (Mm3/day)	6.66	12.12
	POD	0.52	0.83
	FAR	0.66	0.31

Table 2. Model performance metrics in the calibration and validation periods.

Note: NSE = Nash-Sutcliffe coefficient of efficiency; R² = coefficient of determination; MBE = Mean Bias Error; RMSE = Root Mean Square Error; POD = Probability Of Detection; FAR = False Alarm Ratio.

URL: http://mc.manuscriptcentral.com/cijw Email: CIJW-peerreview@journals.tandf.co.uk

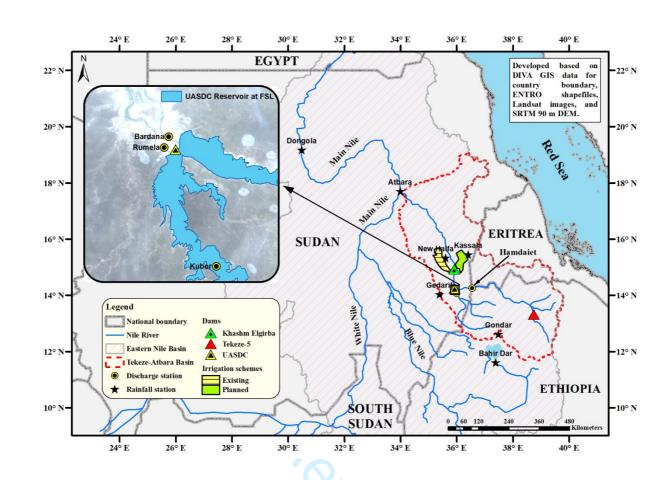


Figure 1. Topography, dams, irrigation schemes, and rainfall and discharge stations in the study area.

Note: UASDC = Upper Atbara and Setit Dam Complex; GIS=Geographic Information System; ENTRO = Eastern Nile Technical Regional Office; SRTM=Shuttle Radar Topography Mission; DEM=Digital Elevation Model; FSL = Full Supply Level.

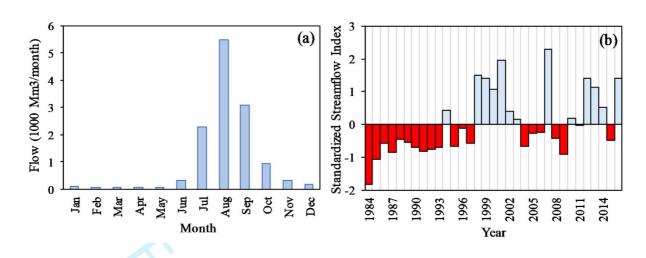


Figure 2. Tekeze-Atbara flow volume over the period 1984 to 2016: (a) average monthly (b) annual Standardized Streamflow Index (SSFI; Modarres (2007)).

.e over , index (SSFI; h

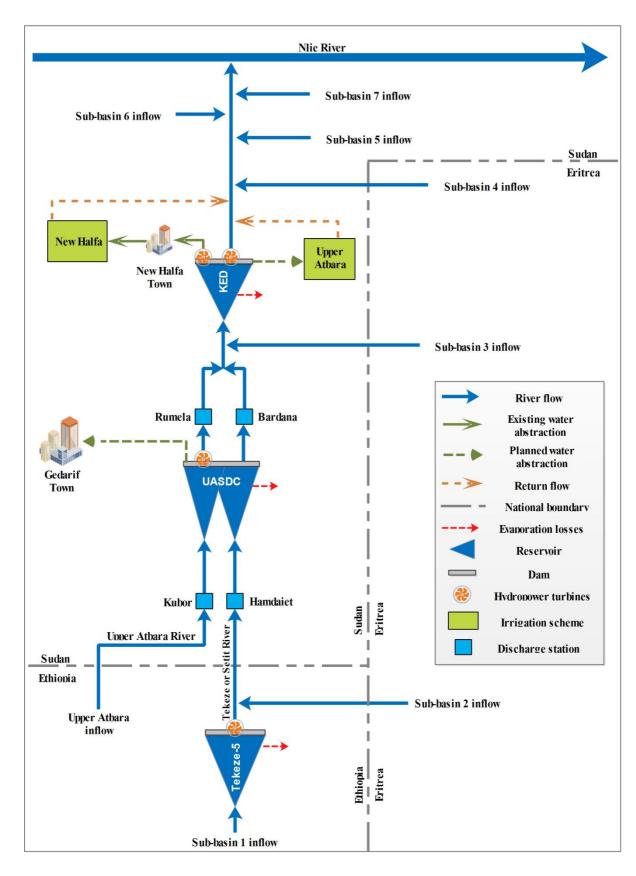


Figure 3. Schematic of the model developed for the study area.

Note: UASDC = Upper Atbara and Setit Dam Complex; KED = Khashm Elgirba Dam

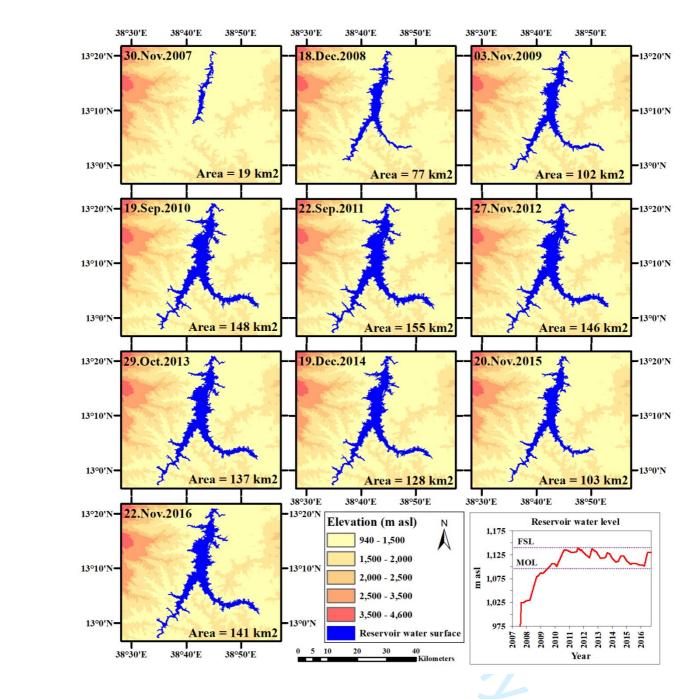


Figure 4. Reservoir surface area of Tekeze-5. The sub-figure in the bottom right corner shows a time series of the reservoir water level from the commencement of the filling until the end of 2016. The displayed data are based on Landsat satellite images.

Note: MOL = Minimum Operating Level; FSL = Full Supply Level

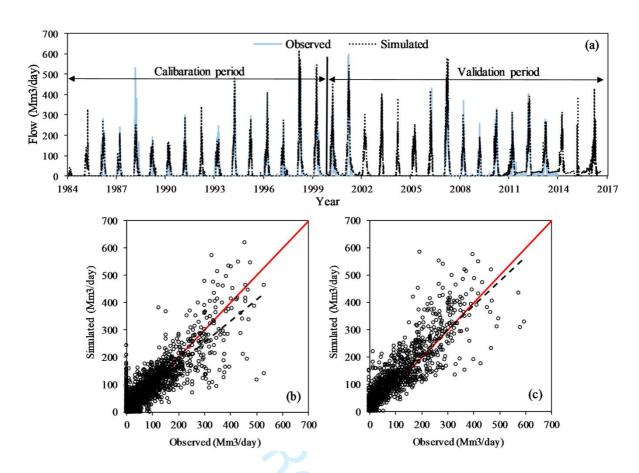


Figure 5. Daily observed and simulated outflow from Khashm Elgirba Dam: (a) time series of the calibration and validation periods (b) scatterplot of the calibration period (c) scatterplot of the validation period. In figures b and c, the continuous and dashed lines represent the 1:1 and regression lines, respectively.

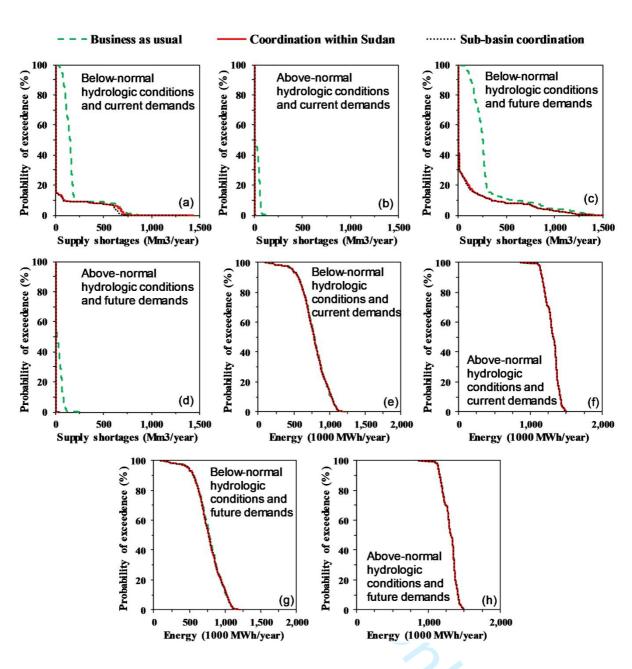


Figure 6. Sudan's annual water supply shortages and energy generation with different dam operation scenarios and Tekeze-5 Dam starting at 1120 m asl: (a), (b), (c), and (d) probability of exceedance of water supply shortages and (e), (f), (g), and (h) probability of exceedance of energy generation.

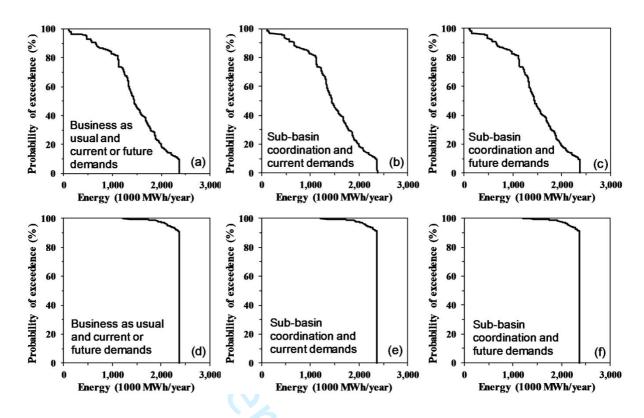


Figure 7. Probability of exceedance of Tekeze-5 Dam annual energy generation with Tekeze-5 Dam starting at 1120 m asl: (a), (b), and (c) below-normal hydrologic conditions and (d), (e), and (f) above-normal hydrologic conditions.

List of figure captions and notes

Figure 1. Topography, dams, irrigation schemes, and rainfall and discharge stations in the study area.

Note: UASDC = Upper Atbara and Setit Dam Complex; GIS=Geographic Information System; ENTRO = Eastern Nile Technical Regional Office; SRTM=Shuttle Radar Topography Mission; DEM=Digital Elevation Model; FSL = Full Supply Level.

Figure 2. Tekeze-Atbara flow volume over the period 1984 to 2016: (a) average monthly (b) annual Standardized Streamflow Index (SSFI; Modarres (2007)).

Figure 3. Schematic of the model developed for the study area. Note: UASDC = Upper Atbara and Setit Dam Complex; KED = Khashm Elgirba Dam

Figure 4. Reservoir surface area of Tekeze-5. The sub-figure in the bottom right corner shows and a time series of the reservoir water level from the commencement of the filling until the end of 2016. The displayed data are based on Landsat satellite images. Note: MOL = Minimum Operating Level; FSL = Full Supply Level

Figure 5. Daily observed and simulated outflow from Khashm Elgirba Dam: (a) time series of the calibration and validation periods (b) scatterplot of the calibration period (c) scatterplot of the validation period. In figures b and c, the continuous and dashed lines represent the 1:1 and regression lines, respectively.

Figure 6. Sudan's annual water supply shortages and energy generation with different dam operation scenarios and Tekeze-5 Dam starting at 1120 m asl: (a), (b), (c), and (d) probability of exceedance of water supply shortages and (e), (f), (g), and (h) probability of exceedance of energy generation.

Figure 7. Probability of exceedance of Tekeze-5 Dam annual energy generation with Tekeze-5 Dam starting at 1120 m asl: (a), (b), and (c) below-normal hydrologic conditions and (d), (e), and (f) above-normal hydrologic conditions.

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Supplementary data

Mohammed Basheer ^{a, b, *}, Rayyan Sulieman ^a, Lars Ribbe ^a

^a Institute for Technology and Resources Management in the Tropics and Sub-tropics (ITT), Technische Hochschule Köln, Betzdorferstr. 2, 50679, Cologne, Germany

^b Current affiliation: School of Mechanical, Aerospace, and Civil Engineering, The University of Manchester, Manchester, United Kingdom

* Corresponding author's email: mohammedadamabbaker@gmail.com

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Performance of satellite-based rainfall products

In the present study, the performance of five daily long-term SRPs (i.e., ARC2, CHIRPS v2.0, MSWEP 2.0, PERSIANN-CDR, and TAMSAT-2) was evaluated using daily rainfall data (1984 to 2007) from ground stations that are in or near the study area (Figure 1 in the main body of the paper shows the locations of the stations). Even though several studies assessed the performance of SRPs in Africa and the Nile Basin (Basheer et al., 2018; Basheer & Elagib, 2018b, 2018a; Diem, Hartter, Ryan, & Palace, 2014; T Dinku et al., 2007; Gebremicael, Mohamed, Zaag, & Hagos, 2017; Habib, Elsaadani, & Haile, 2012; Serrat-Capdevila, Merino, Valdes, & Durcik, 2016), none compared the performance of long-term SRPs in Tekeze-Atbara Basin. Figure S1 presents the results of the six metrics (i.e., RMSE, MBE, R², POD, FAR, and ETS) that were used to assess the performance of the SRPs. PERSIANN-CDR showed the best performance at all stations in terms of RMSE which varies from 0.04 mm at Dongola to 8.96 mm at Bahir Dar. The second-best performance was achieved by MSWEP 2.0 at Dongola, Kassla, New Halfa, and Gedarif, CHERPS v2.0 at Atbara and Bahir Dar, and ARC2 at Gondar. Moreover, the worst performance based on RMSE is a feature of TAMSAT-2 at Bahir Dar and Atbara and CHIRPS v2.0 at Gondar, Gedarif, New Halfa, Kassla, and Dongola. Generally, RMSE values suggest worse performance towards the upstream. This characteristic is because the five SRPs use InfraRed (IR) imagery as a primary input. Rainfall estimation based on IR imagery is known to poorly capture local heavy precipitation events that result from warm clouds (Maidment et al., 2017; Novella & Thiaw, 2013). Such events occur in the mountainous upstream part Tekeze-Atbara Basin (Tufa Dinku, Ceccato, & Connor, 2011). MBE showed mixed performances among the products with ARC2 outperforming at Dongola, Kassla, and Gondar, CHIRPS v2.0 at Atbara,

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

New Halfa, and Gedarif, and TAMSAT-2 at Bahir Dar. Regarding R², ARC2 showed the best performance at all stations except Bahir Dar where PERSIANN-CDR performed the best. TAMSAT-2 showed the lowest R² values at all stations. It is worth noting that all Pearson correlation coefficient (R) values of ARC2 are statistically significant at p < 0.0001.

With regards to the categorical metrics, PERSIANN-CDR showed the best detection capability of rainy days explained by the highest POD values at all stations except Gondar at which ARC2 showed the best performance. The latter product exhibited the second-best performance at the other six stations, and TAMSAT-2 revealed the worst performance at all stations. Regarding FAR and ETS, ARC2 presented the best performance at all stations explained by the lowest FAR and the highest ETS values. In contrast, TAMSAT-2 showed the worst performance at all stations based on FAR and ETS. It can be noticed that the high POD values of PERSIANN-CDR were coupled with relatively high FAR values. This behaviour could be due to the likelihood of having more false alarms with the increase in detection skill.

Overall, ARC2 showed either the best or the second-best performance at most of the stations and with most of the performance metrics. Moreover, ARC2 showed better performance in the flat terrain of Sudan than in the Ethiopian highlands using all performance metrics except POD.

2 | Page

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Figure S1. Performance metrics of the evaluated Satellite-based Rainfall Products at seven rainfall stations.

Note: RMSE = Root Mean Square Error; MBE = Mean Bias Error; $R^2 = Coefficient$ of determination; POD = Probability Of Detection; FAR = False Alarm Ration; ETS = Equitable Threat Score; ARC2 = Africa Rainfall Climatology Version 2.0; CHIRPS v2.0 = Climate Hazards group Infrared Precipitation with Stations version 2.0; MSWEP 2.0 = Multi-Source Weighted-Ensemble Precipitation version 2.0; PERSIANN-CDR = Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record; TAMSAT-2 = Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations version 2.0

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

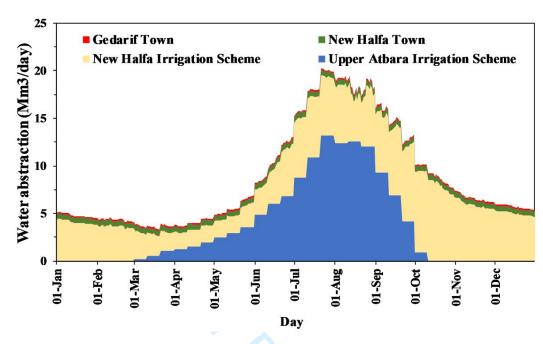
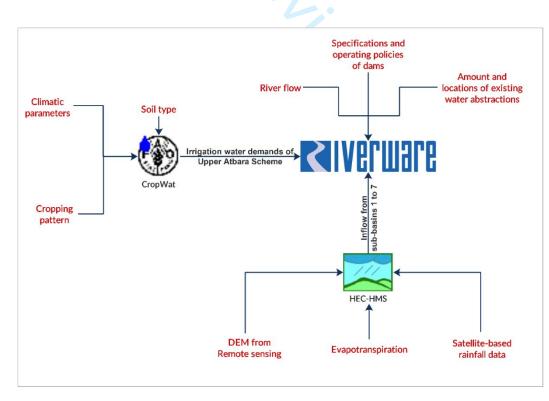
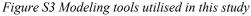




Figure S2 Water abstraction in the study area

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

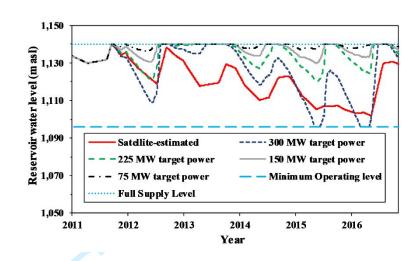


Figure S4 Satellite-estimated and modelled Tekeze-5 reservoir water levels with different power targets

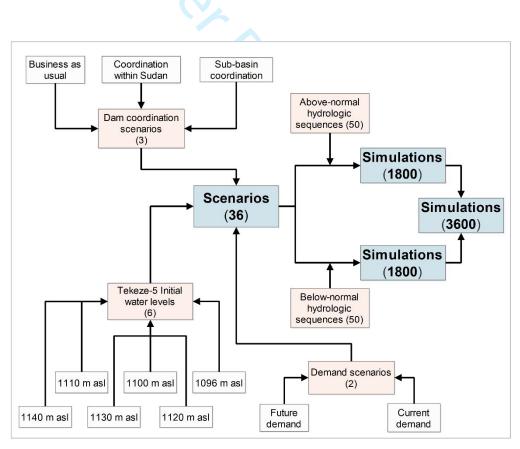


Figure S5 Scenarios developed for the study area

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

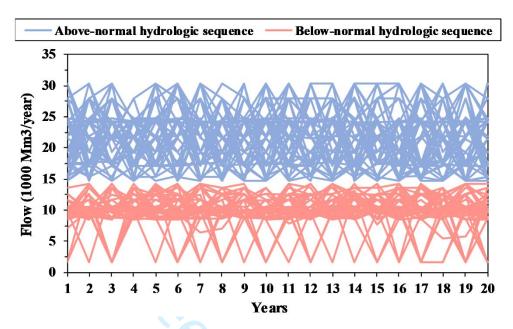


Figure S6 Hydrologic sequences generated for Tekeze-Atbara River

Table S1 Operating rules of dams located in the study area in the business as usual (i.e., current) scenario.

Priority	Khashm Elgirba Dam ^a	Upper Atbara and Setit Dam Complex ^a	Tekeze-5 Dam
1	The reservoir should be	The reservoir should be flushed in two to	The reservoir water level
	flushed in two to three days in mid-august	three days in mid-august	should remain higher than the minimum operating level
2	The reservoir water level	The reservoir water level should remain	The reservoir water level
	should remain higher than the minimum operating level	higher than the minimum operating level	should remain lower than the full supply level
3	The reservoir water level should remain lower than the full supply level	The reservoir water level should remain lower than the full supply level	Meet a power target ^b
4	Target certain water levels from June to mid-October	Meet the demand of Gedarif Town when the supply pipeline is constructed	
5	Meet the water demands of New Halfa Scheme and Town and Upper Atbara Scheme when constructed	Meet a power target	
6		Target certain water levels	

^a Source: Ministry of Water Resources, Irrigation, and Electricity of Sudan

^b Source: derived from Landsat 7 and 8 satellite images as explained in the paper

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Table S2 Operating rules of dams located in the study area in the coordination within Sudan scenario.

Priority	Khashm Elgirba Dam	Upper Atbara and Setit Dam Complex	Tekeze-5 Dam
1	The reservoir should be flushed in two to three days in mid-august	The reservoir should be flushed in two to three days in mid-august	The reservoir water level should remain higher than the minimum operating level
2	The reservoir water level should remain higher than the minimum operating level	The reservoir water level should remain higher than the minimum operating level	The reservoir water level should remain lower than the full supply level
3	The reservoir water level should remain lower than the full supply level	The reservoir water level should remain lower than the full supply level	Meet a power target ^a
4	Target certain water levels from June to mid-October	Meet the deficit in the downstream water supply and the demand of Gedarif Town when the supply pipeline is constructed	
5	Meet the water demands of New Halfa Scheme and Town and Upper Atbara Scheme when constructed	Meet a power target	
6	C	Target certain water levels	

^a Source: derived from Landsat 7 and 8 satellite images as explained in the paper

Table S3 Operating rules of dams located in the study area in the sub-basin coordination scenario.

Priority	Khashm Elgirba Dam	Upper Atbara and Setit Dam Complex	Tekeze-5 Dam
1	The reservoir should be flushed in two to three days in mid-august	The reservoir should be flushed in two to three days in mid-august	The reservoir water level should remain higher than the minimum operating level
2	The reservoir water level should remain higher than the minimum operating level	The reservoir water level should remain higher than the minimum operating level	The reservoir water level should remain lower than the full supply level
3	The reservoir water level should remain lower than the full supply level	The reservoir water level should remain lower than the full supply level	Meet the deficit in the downstream water supply
4	Target certain water levels from June to mid-October	Meet the deficit in the downstream water supply and the demand of Gedarif Town when the supply pipeline is constructed	Meet a power target ^a
5	Meet the water demands of New Halfa Scheme and Town and Upper Atbara Scheme when constructed	Meet a power target	
6		Target certain water levels	

^a Source: derived from Landsat 7 and 8 satellite images as explained in the paper

Page 58 of 60

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Tekeze-5 in 2016			Khashm Elgirba in 1990			UASDC in 2015		
Elevation (masl)	Storage (Mm3)	Surface area (km²)	Elevation (masl)	Storage (Mm3)	Surface area (km ²)	Elevation (masl)	Storage (Mm3)	Surface area (km²)
1,000	69	5	464	27	11	495	157	24
1,010	134	8	465	43	19	500	365	52
1,020	245	14	466	55	25	505	730	89
1,030	423	22	467	67	32	508	1,048	116
1,040	678	30	468	95	41	510	1,311	139
1,050	1,023	40	469	131	52	515	2,165	206
1,060	1,474	51	470	176	63	520	3,358	278
1,070	2,036	62	471	238	72	525	5,007	398
1,080	2,707	73	472	315	81	530	7,280	511
1,090	3,480	82	473	403	90	Source: MoWRIE		
1,100	4,354	93	474	628	100			
1,130	7,810	140	Sou	Source: MoWRIE				
1,140	9,293	157				-		
1,150	10,958	176						
Source: ENTRO								

Table S4 Geometry of the reservoirs located in the study area.

Note: ENTRO = Eastern Nile Technical Regional Office; MoWRIE = Ministry of Water Resources, Irrigation, and Electricity of Sudan

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

Table S5 Net evaporation coefficients of the reservoirs located in the study area.

Month	Tekeze-5 in 2016	Khashm Elgirba	UASDC in	
WIOIITII	(cm)	in 1990 (cm)	1985 (cm)	
January	13.4	17.9	16.7	
February	14.4	18.4	16.4	
March	9.9	20.9	21.3	
April	8.0	25.6	23.8	
May	7.9	26.3	23.7	
June	0.2	27.8	20.3	
July	-15.4	24.9	17.7	
August	-18.3	22.7	16.3	
September	-3.8	21.1	17.1	
October	11.3	20.5	18.1	
November	14.7	18.3	17.6	
December	14.7	16.8	16.6	
	Source: Wheeler et al. (2016)	Source: MoWRIE	Source: MoWRIE	

Note: ENTRO = Eastern Nile Technical Regional Office; MoWRIE = Ministry of Water Resources, Irrigation, and Electricity of Sudan

References

- Basheer, M., & Elagib, N. A. (2018a). Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. *Atmospheric Research*, *215*(1 January 2019), 128–140. https://doi.org/10.1016/j.atmosres.2018.08.028
- Basheer, M., & Elagib, N. A. (2018b). Sensitivity of Water-Energy Nexus to dam operation: A Water-Energy Productivity concept. *Science of The Total Environment*, 616–617(March 2018), 918–926. https://doi.org/10.1016/j.scitotenv.2017.10.228
- Basheer, M., Wheeler, K. G., Ribbe, L., Majdalawi, M., Abdo, G., & Zagona, E. A. (2018).
 Quantifying and evaluating the impacts of cooperation in transboundary river basins on the Water-Energy-Food nexus: The Blue Nile Basin. *Science of the Total Environment*, 630, 1309–1323. https://doi.org/10.1016/j.scitotenv.2018.02.249
- Diem, J., Hartter, J., Ryan, S., & Palace, M. (2014). Validation of Satellite Rainfall Products for Western Uganda. *Journal of Hydrometeorology*, *15*, 2030–2038.

Page 60 of 60

Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty

https://doi.org/10.1175/JHM-D-13-0193.1

- Dinku, T., Ceccato, P., & Connor, S. J. (2011). Challenges of satellite rainfall estimation over mountainous and arid parts of east africa. *International Journal of Remote Sensing*, 32(21), 5965–5979. https://doi.org/10.1080/01431161.2010.499381
- Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S., & Ropelewski, C. (2007). Validation of satellite rainfall products over East Africa's complex topography. *International Journal of Remote Sensing*, 28(7), 1503–1526. https://doi.org/10.1080/01431160600954688
- Gebremicael, T. G., Mohamed, Y. A., Zaag, P. V., & Hagos, E. Y. (2017). Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia. *Hydrology and Earth System Sciences*, *21*(4), 2127–2142. https://doi.org/10.5194/hess-21-2127-2017
- Habib, E., Elsaadani, M., & Haile, A. (2012). Climatology-Focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile Basin. *Journal of Applied Meteorology and Climatology*, 51(12), 2105–2121. https://doi.org/10.1175/JAMC-D-11-0252.1
- Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., ... Alcántara, U. (2017). A new , long-term daily satellite-based rainfall dataset for operational monitoring in Africa. *Scientific Data*, 4, 1–19. https://doi.org/10.1038/sdata.2017.63
- Novella, N., & Thiaw, W. (2013). African rainfall climatology version 2 for famine early warning systems. *Journal of Applied Meteorology and Climatology*, *52*, 588–606. https://doi.org/10.1175/JAMC-D-11-0238.1
- Serrat-Capdevila, A., Merino, M., Valdes, J., & Durcik, M. (2016). Evaluation of the Performance of Three Satellite Precipitation Products over Africa. *Remote Sensing*, 8(10), 836. https://doi.org/10.3390/rs8100836
- Wheeler, K., Basheer, M., Mekonnen, Z., Eltoum, S., Mersha, A., Abdo, G., ... Dadson, S. (2016). Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. *Water International*, 8060(May), 1–24. https://doi.org/10.1080/02508060.2016.1177698