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Abstract—Monaural speech segregation has been a very chal-
lenging problem for decades. By casting speech segregation as a

binary classification problem, recent advances have been made

in computational auditory scene analysis on segregation of both
voiced and unvoiced speech. So far, pitch and amplitude modula-

tion spectrogram have been used as two main kinds of time-fre-

quency (T-F) unit level features in classification. In this paper,
we expand T-F unit features to include gammatone frequency

cepstral coefficients (GFCC), mel-frequency cepstral coefficients,

relative spectral transform (RASTA) and perceptual linear pre-
diction (PLP). Comprehensive comparisons are performed in

order to identify effective features for classification-based speech

segregation. Our experiments in matched and unmatched test
conditions show that these newly included features significantly

improve speech segregation performance. Specifically, GFCC and

RASTA-PLP are the best single features in matched-noise and
unmatched-noise test conditions, respectively. We also find that

pitch-based features are crucial for good generalization to unseen

environments. To further explore complementarity in terms of
discriminative power, we propose to use a group Lasso approach

to select complementary features in a principled way. The final

combined feature set yields promising results in both matched and
unmatched test conditions.

Index Terms—Binary classification, computational auditory

scene analysis (CASA), feature combination, group Lasso,

monaural speech segregation.

I. INTRODUCTION

S PEECH segregation, also known as the cocktail party

problem, refers to the problem of segregating target

speech from its background interference. Monaural speech

segregation, which is the task of speech segregation from

monaural recordings, is important for many real-world ap-

plications including robust speech and speaker recognition,

audio information retrieval and hearing aids design (see e.g.,

[1], [7]). However, despite decades of effort, monaural speech

segregation still remains one of the hardest problems in signal

and speech processing. In this paper, we are concerned with
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monaural speech segregation from nonspeech interference; in

other words, we do not address multitalker separation.

Numerous algorithms have been developed to attack the

monaural speech segregation problem. For example, spectral

subtraction [4] and Weiner filtering [6] are two representa-

tive techniques. However, assumptions regarding background

interference are needed to make them work reasonably well.

Another line of research relies on source models, e.g., training

models for different speakers. Algorithms such as [19], [27],

[28] can work well if the statistical properties of the observa-

tions correspond well to training conditions. Generalization to

different sources usually needs model adaptation, which is a

non-trivial issue.

Computational auditory scene analysis (CASA), which is in-

spired by Bregman’s account of auditory scene analysis (ASA)

[2], has shown considerable promise in the last decade. The es-

timation of the ideal binary mask (IBM) is suggested as a pri-

mary goal of CASA [35]. The IBM is a time-frequency (T-F) bi-

nary mask, constructed from premixed target and interference.

A mask value 1 for a T-F unit indicates that the signal-to-noise

ratio (SNR) within the unit exceeds a threshold (target-domi-

nant), and 0 otherwise (interference-dominant). In this work, we

use a 0 dB threshold in all the experiments. A series of recent

experiments [5], [24], [37] shows that IBM processing of sound

mixtures yields large speech intelligibility gains.

The estimation of the IBM may be viewed as binary classi-

fication of T-F units. Recent studies have applied this formula-

tion and achieved good speech segregation results in both ane-

choic and reverberant environments [11], [14], [20], [22], [23],

[29], [39]. In [14], [20], the pitch-based features are used in

training a classifier to separate target and interference dominant

units. However, the pitch-based features cannot deal with un-

voiced speech that lacks harmonic structure. Seltzer et al. [29]

and Weiss et al. [39] use comb filter and spectrogram statistics

as features. In [11], [22], [23], amplitude modulation spectro-

gram (AMS) is used, which makes unvoiced speech segregation

possible as AMS is a characteristic of both voiced and unvoiced

speech. Unfortunately, the generalization ability of AMS is not

good [11].

For classification, the use of an appropriate classifier is ob-

viously important. Our previous study [11] focuses on classi-

fier comparisons, and suggests that support vector machines

(SVMs) work better than Gaussian mixture models (GMMs).

However, this study only uses two existing features. Equally

important for classification is the choice of appropriate features,

which are less studied. It should be noted that we are concerned

with T-F unit level features, i.e., spectral/cepstral features ex-

tracted from each T-F unit. Feature extraction is possible be-
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cause a T-F unit is a signal of a certain length. To our knowl-

edge, aside from the features used in [29], only pitch and AMS

have been used as T-F unit level features. On the other hand, in

the speech and speaker recognition community, many acoustic

features have been explored, such as gammatone frequency cep-

stral coefficients (GFCC), mel-frequency cepstral coefficients

(MFCC), relative spectral transform (RASTA) and perceptual

linear prediction (PLP), each having its own advantages. How-

ever, they have not been studied as T-F unit level features for

classification-based speech segregation.

The objective of this paper is to conduct a comprehensive

feature study for classification-based speech segregation. That

said, we fix SVM as the classifier and explore the use of ex-

isting speech and speaker features under the same classification

framework. Our contributions are as follows:

� We propose to extract conventional speech/speaker fea-

tures within each T-F unit to significantly enlarge the fea-

ture repository for unit classification.

� We propose a principled method to identify a complemen-

tary feature set. It is shown in speech recognition that com-

plementarity exists between basic acoustic features [9],

[42]. To investigate complementary features in terms of

discriminative power, we address the corresponding group

variable selection problem using a group least absolute

shrinkage and selection operator (Lasso) [41].

� We systematically compare the segregation performance

of the newly included features and combinations in various

acoustic environments.

This paper is organized as follows. We present an overview

of the system along with the methodology of extracting features

at the T-F unit level in Section II. Section III describes a group

Lasso approach to combining different features. Unit labeling

results are reported in Section IV. We conclude this paper in

Section V.

II. SYSTEM OVERVIEW AND FEATURE EXTRACTION

We describe the architecture of our segregation system as fol-

lows. A sound mixture with the 16 kHz sampling frequency is

first fed into a 64-channel gammatone filterbank, with center fre-

quencies equally spaced from 50 Hz to 8000 Hz on the equiva-

lent rectangular bandwidth rate scale. Gammatone filters model

human auditory filters (critical bands) [26], and 64 channels pro-

vide an adequate frequency representation (see e.g., [37]). The

output in each channel is then divided into 20-ms frames with

10-ms overlapping between consecutive frames. This procedure

produces a time-frequency representation of the sound mixture,

called a cochleagram [36]. Our computational goal is to estimate

the ideal binary mask for the mixture. Since the energy distribu-

tion of speech signals in different channels can be very different,

we train a Gaussian-kernel SVM [11] for each subband channel

separately, and ground truth labels are provided by the IBM.We

use 5-fold cross validation to determine the hyperparameters.

Feature extraction is performed at the T-F unit level in the way

described below. After obtaining a binary mask, i.e., estimated

IBM, from trained SVM classifiers, the target speech is segre-

gated from the sound mixture in a resynthesis step [36]. Note

that we do not perform auditory segmentation, which is usually

done for better segregation [11], [20], as we want to directly

Fig. 1. Illustration of deriving RASTA-PLP features for the T-F unit in channel
20 and at frame 50 .

compare the unit labeling performance of each feature type. Au-

ditory segmentation refers to a stage of processing that breaks

the auditory scene into contiguous T-F regions each of which

contains acoustic energy mainly from a single sound source.

Acoustic features are usually derived at the frame level. But

since a binary decision needs to be made for each T-F unit, we

need to find an appropriate representation for each T-F unit (re-

call that each T-F unit contains a slice of a subband signal).

This can be done in a straightforward way as follows. To get

acoustic features for the T-F unit in channel and at frame

, we take the filtered output in channel . Treating

as the input, conventional frame-level acoustic feature extrac-

tion is carried out and the feature vector at frame is taken

as the feature representation for . The unit level features

derived this way obviously contain redudancy, as the subband

signals are limited to the bandwidth of the corresponding gam-

matone filters. Nevertheless, such redundancy does no harm to

classification in our experiments. We also proposed a method

to reduce the dimensionality for unit level features, which de-

rives different acoustic features based on bandlimited spectral

features. Interested readers are referred to our technical report

[38]. Fig. 1 illustrates how to derive a 12th order RASTA-PLP

feature vector (including zeroth cepstral coefficient) for the T-F

unit in channel 20 and at frame 50.

In the following, we describe the features used in our ex-

periments. These features have been successfully used in many

speech processing tasks. We use the RASTAMAT toolbox [8]

for extracting MFCC, PLP, and RASTA-PLP features.

A. Amplitude Modulation Spectrogram

AMS features have been applied to speech segregation prob-

lems recently [23]. To extract AMS features, we extract the en-

velope of the mixture signal by full-wave rectification and dec-

imate it by a factor of 4. The decimated envelope is Hanning

windowed and zero-padded for a 256-point FFT. The resulted

FFT magnitudes are integrated by 15 triangular windows uni-

formly spaced from 15.6 to 400 Hz, producing a 15-D AMS

feature vector.

B. Perceptual Linear Prediction

PLP [12] is a popular representation in speech recognition,

and it is designed to find smooth spectra consisting of resonant
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peaks. To derive PLPs, we first warp the power spectrum to

a 20-channel Bark scale using trapezoidal filters. Then, equal

loudness preemphasis is applied, followed by applying an in-

tensity loudness law. Finally, cepstral coefficients from linear

predictions form the PLP features. Following common prac-

tice in speech recognition, we use a 12th order linear predic-

tion model, yielding 13-D (including zeroth cepstral coefficient)

PLP features.

C. Relative Spectral Transform-PLP

RASTA filtering [13] is often coupled with PLP for robust

speech recognition. In our experiments, we use a log-RASTA

filtering approach. After the power spectrum is warped to the

Bark scale, we -compress the resulted auditory spectrum,

filter it by the RASTA filter (single pole at 0.94), and expand

it again by an exponential function. Subsequently, PLP analysis

is taken on this filtered spectrum. In essence, RASTA filtering

serves as a modulation-frequency bandpass filter, which empha-

sizes the modulation frequency range most relevant to speech

while discarding lower or higher modulation frequencies. Same

as PLP, we use 13-D RASTA-PLP in this paper.

D. Gammatone Frequency Cepstral Coefficient

To get GFCC features [31], a signal is decomposed by a

64-channel gammatone filterbank first. Then, we decimate a

filter response to an effective sampling rate of 100 Hz, resulting

in a 10-ms frame shift. The magnitudes of the decimated filter

outputs are then loudness-compressed by a cubic root opera-

tion. Finally, discrete cosine transform (DCT) is applied to the

compressed signal to yield GFCC. As suggested in [30], we

use 31-D GFCC in this paper.

E. Mel-Frequency Cepstral Coefficient

We follow the standard procedure to get MFCC. The signal is

first preemphasized, followed by a 512-point short-time Fourier

transformwith a 20-ms Hamming window to get its power spec-

trogram. The power spectra are then warped to the mel scale

followed by a operation and DCT. Note that we warp the

magnitudes to a 64-channel mel scale, for fair comparisons with

GFCCs in which a 64-channel gammatone filterbank is used for

subband analysis. We use 31-D MFCC in this paper.

F. Pitch-Based Features

Pitch is a primary cue for ASA. In our experiments, we use

a set of pitch-based features originally proposed in [14], and its

effectiveness has been confirmed in both anechoic and rever-

berant environments with additive noise [17], [20]. Althoughwe

are only concerned with nonspeech interference in this paper, it

should be noted that pitch can also be effective for segregating

target speech from competing speech. To get pitch-based fea-

tures for the T-F unit , we first calculate the normalized au-

tocorrelation function at each time lag , denoted by :

(1)

where is the frame shift and is the sampling pe-

riod. The summation is over a 20-ms frame. If the signal in

is voiced and dominated by the target speech, it should have a

period close to the pitch period at frame . That is, given the

pitch period of the target speech at frame ,

measures how well the signal in is consistent with the

target speech.

The second and third features involve the average instanta-

neous frequency derived from the zero-crossing rate of

. If the signal in belongs to target speech, the

product of and gives a harmonic number. Hence, we

set the second feature to be the nearest integer of and

the third feature to be the difference between the actual value of

the product and its nearest integer. These two features have com-

plementary information to the first feature [17].

The next three features are the same as the first three except

that they are extracted from the envelopes of filter responses.

The envelopes are calculated by using a low-pass FIR filter with

passband and a Kaiser window of 18.25 ms. The re-

sulting 6-D feature vector is:

(2)

where denotes the round operation, and subscript indicates

envelope. It should be noted that pitch exists only in voiced

speech. In this study, classifiers are trained on ground truth pitch

extracted from clean speech by PRAAT [3], but tested on pitch

estimated by a recently proposed multipitch tracker [21].

III. FEATURE COMBINATION: A GROUP LASSO APPROACH

Different acoustic features characterize different properties

of the speech signal. As observed in speech recognition, fea-

ture combination may lead to significant performance improve-

ment [9], [42]. Here, feature combination is usually done in

three ways. The simplest method is to directly try different com-

binations. The exponential number of possibilities renders this

method unrealistic when the number of features is large. The

second way is to perform unsupervised feature transformation

such as kernel-PCA [32] on the concatenated feature vector. The

third way is to apply supervised feature transformation such as

linear discriminant analysis (LDA) [9] to the concatenated fea-

ture vector. However, an issue with feature transformation re-

lates to complementarity; i.e., it is unclear which feature types

are complementary after transformation. Here, by complemen-

tarity, we mean that each feature type provides complementary

information to boost classification and thus their combination

(concatenation in paper) should outperform an individual type.

Therefore, our goal is to find a principled way to select a set

of complementary features, and such complementarity should

be related to the discrimination of target-dominance and inter-

ference-dominance. This problem can be cast as a group vari-

able selection problem, which is to find important groups of

explanatory factors for prediction in the regression framework.
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Group Lasso [41], a generalization of the widely used Lasso op-

erator [34], is designed to tackle this problem by incorporating

a mixed-norm regularization over regression coefficients. Since

our labels are binary, we use the logistic regression extension

of group Lasso [25], which can be efficiently solved by block

coordinate gradient descent. The estimator is

(3)

where is the th training sample, is the ground truth label

scaled to , and is the intercept. refers to the

norm. consists of predefined non-overlapping groups and

is the index set of the th group. The first term in the mini-

mization is a standard log loss that concerns discrimination. The

second term is an mixed-norm regularization, which im-

poses an regularization between groups and an regulariza-

tion within each group. It is well known that the norm induces

sparsity, therefore the regularization results in group spar-

sity hence group level feature selection. Regularization param-

eter controls the level of sparsity of the resulting model. In

practice, we usually calculate first, above which is very

close to zero. We then use with as in (3)

for the ease of choosing appropriate parameter values.

To do feature combination, all the features are concatenated

together to form a long feature vector, and each feature type is

defined as a group; e.g., AMS (all 15 feature elements) is defined

as the first group, PLP as the second, and so on. Then, for a fixed

(hence ), we solve (3) to get . Since group sparsity is in-

duced, shall be zeros (or small numbers) for some groups

, meaning that these groups (feature types) contribute little to

discrimination in the presence of the other groups. Groups shall

be selected if the magnitudes of their regression coefficients

are greater than zero. Since (3) is solved at each channel sep-

arately, different types of features may get selected for different

channels. A subband SVM classifier is then trained on the se-

lected features and a cross-validation accuracy is obtained. To

select a “global” set of complementary features, we average the

cross-validation accuracies and corresponding regression coef-

ficients across frequency channels. Features having significant

average responses or peaks are considered to be complementary

for the particular choice of . This is done for varying from 0

to 1 with the step size of 0.05. To achieve a good trade-off be-

tween discrimination power and model complexity which is the

number of groups selected, we empirically determine the final

combination by leveraging the averaged cross-validation accu-

racies with the corresponding model complexity.

IV. EVALUATION RESULTS

A. Experimental Setup

We use the IEEE corpus [18] for most of our evaluations. All

utterances are downsampled to 16 kHz. For training, we mix 50

utterances recorded by a female talker with three types of noise

at 0 dB. The three noises are: N1—bird chirps, N2—crow noise,

and N3—cocktail party noise [14]. We choose 20 new utter-

ances from the IEEE corpus for testing. The test utterances are

different from those in training. Unless stated otherwise, test ut-

terances from the same female talker are used, i.e., a speaker-de-

pendent setting. This enables us to directly compare with [23]

where the same speaker is used in training and testing. Relaxing

speaker dependency is examined in Section IV-I. Two test con-

ditions are employed. In the matched-noise condition, we mix

the test utterances with different cuts from the trained noises

(i.e., N1-N3) in order to test the performance on unseen utter-

ances. In the unmatched-noise condition, the test utterances are

mixed with three unseen noises: N4—crowd noise at a play-

ground, N5—electric fan noise, and N6—traffic noise. The test

mixtures are all mixed at 0 dB except in Section IV-H. There

are approximately 800 seconds of mixtures for training in most

of the experiments. The experiments in Section IV-G use longer

training data as the number of training utterances is increased.

For testing, there are approximately 650 seconds of mixtures

for the IEEE test set and 700 seconds for the TIMIT test set

(see Section IV-I). The number of T-F units to be classified

is about for the IEEE test set and

for the TIMIT test set.

The dimensionality of each feature is described in Section II.

As mentioned before, for the pitch-based features, ground truth

pitch and estimated pitch are used in training and testing, respec-

tively. We use PITCH to denote the 6-D pitch-based features.

To put the performance of our classification-based segregation

in perspective, we include results from a recent CASA system,

the tandemalgorithm [17],which jointly performs voiced speech

segregation and pitch estimation in an iterative fashion. The

tandem algorithm is initialized by the same estimated pitch from

[21].We use ideal sequential grouping for the tandem algorithm,

because the algorithm does not deal with the issue of sequential

grouping, i.e., it does not have away to group pitch contours (and

their associated masks) of the same speaker across time to form

a segregated sentence. So these results represent the ceiling

performance of the tandem algorithm.

Aside from the tandem algorithm which tries to estimate the

IBM explicitly, we focus on comparisons between different

features under the same framework. Comparisons with fun-

damentally different techniques are not included in this study

which is about feature exploration for classification-based

speech separation.

B. Evaluation Criteria

Since the task is classification, it is straightforward to mea-

sure the performance using classification accuracy. However,

simply using accuracy as the evaluation criterion may not be

appropriate, as miss and false-alarm errors are treated equally.

Speech intelligibility studies [23], [24] have shown that false-

alarm (FA) errors are far more detrimental to human speech

intelligibility than miss errors. Kim et al. have thus proposed

the HIT-FA rate as an evaluation criterion, and shown that this

rate is well correlated to intelligibility [24]. The HIT rate is

the percent of correctly classified target dominant T-F units in

the IBM. The FA rate is the percent of wrongly classified in-

terference-dominant T-F units in the IBM. Therefore, we use

HIT-FA as our main evaluation criterion. Another criterion is

the IBM-modulated SNR of the segregated speech. When com-

puting SNRs, the target speech resynthesized from the IBM is
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TABLE I
SEGREGATION PERFORMANCE FOR SINGLE FEATURES IN THE MATCHED-NOISE CONDITION. BOLDFACE INDICATES BEST RESULT.

“ ” INDICATES THE RESULT IS SIGNIFICANTLY BETTER THAN AMS AT A 5% SIGNIFICANCE LEVEL

TABLE II
SEGREGATION PERFORMANCE FOR SINGLE FEATURES IN THE UNMATCHED-NOISE CONDITION

used as the ground truth signal [15], [17], as the IBM represents

the ground truth of classification. This IBM-modulated SNR

complements the above classification-based criteria by taking

into account the underlying signal energy of each T-F unit.

We should note that other evaluation criteria have been de-

veloped in the speech separation community, including SNR

and source to distortion ratio (SDR). Unlike the IBM which is

directly motivated by the auditory masking phenomenon, SNR

and SDR do not take into consideration perceptual effects. Also,

it is well known that SNR may not correlate to speech intelli-

gibility and the relationship between SDR and speech intelligi-

bility is still unknown. Because of its correlation with speech

intelligibility, we prefer the HIT-FA rate over SNR and SDR.

C. Single Features

In terms of HIT-FA, we document unit labeling perfor-

mance at three levels: voiced speech intervals (pitched frames),

unvoiced speech intervals (unpitched frames), and overall.

Voiced/unvoiced speech intervals are determined by ground

truth pitch. Both classification accuracy and SNR are eval-

uated at the overall level. Table I gives the results in the

matched-noise test condition. In this condition, all features are

able to maintain a low FA rate. The performance differences

mainly stem from the HIT rate. Clearly, AMS does not perform

well compared with the other features as it fails to label a

lot of target-dominant units. In contrast, GFCC manages to

achieve high HIT rates, with 79% overall HIT-FA, which is

significantly better than other single features. The classification

accuracy and SNR using GFCC are also significantly higher

than those obtained by the other features (except MFCC in

terms of SNR). Unvoiced speech is important to speech intel-

ligibility, and its segregation is a difficult task due to the lack

of harmonicity and weak energy [16]. Again, AMS performs

the worst whereas GFCC does a very good job at segregating

unvoiced speech. The good performance of GFCC is probably

due to its effectiveness as a speaker identification feature [31].

An encouraging observation in the matched-noise condition is

that some general acoustic features such as GFCC and MFCC

significantly outperform PITCH even in voiced intervals. This

remains true even when ground truth pitch is used in (2),

which achieves 72% HIT-FA in voiced intervals. Similarly, the

tandem algorithm, which includes auditory segmentation, is

not competitive. For systematic comparison, we have produced

the receiver operating characteristic (ROC) curves for overall

classification obtained by using single features, and interested

readers are referred to our technical report [38].

Unlike the matched-noise condition, the unseen broadband

noises are more demanding for generalization. The segregation

results in the unmatched-noise condition are listed in Table II.

We can see that the classification accuracy and both HIT rate

and FA rate are affected, and the main degradation comes from

substantially increased FA rates. Contrary to the other features,

PITCH is the least affected feature type with only 5% reduction

in HIT-FA. Using ground truth pitch it is able to achieve 68%

HIT-FA in voiced intervals. As the pitch-based features reflect

intrinsic properties of speech, we do not expect that the change

of interference will dramatically change pitch characteristics in

target-dominant T-F units. Similarly, the tandem algorithm ob-

tains a fairly low FA rate and achieves the best HIT-FA result in

voiced intervals in this condition. Among others, it is interesting

to see that RASTA-PLP becomes the best performing feature

type in terms of all three criteria. As shown in [13], RASTA-PLP

effectively acts as a modulation-frequency filter, which retains

slow modulations corresponding to speech.

We have used Student’s -tests at a 5% significance level to

examine if an improvement is statistically significant. We use

the symbol “ ” to denote that a result is significantly better

than the previously studied AMS feature. As can be seen in

Tables I and II, almost all the improvements are statistically

significant.
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Fig. 2. Overall HIT-FA performance for pairwise combination of single fea-
tures and pitch-based features in (a) the matched-noise condition, and (b) the
unmatched-noise condition. (a) Matched-noise condition. (b) Unmatched-noise
condition.

D. Combining With Pitch-Based Features

Considering the excellent performance of some features in

the matched-noise condition and the robustness of the pitch-

based features in the unmatched-noise condition, it seems sen-

sible to combine the single features with the pitch-based fea-

tures. If the pitch tracker dose not detect pitch in a frame, we

simply set pitch-based features to all zeros in the combination.

Fig. 2(a) shows the overall HIT-FA results for pairwise combi-

nations in the matched-noise condition. Due to pitch estimation

errors, the combination does not improve the performance in

this test condition. However, it can be seen that the combina-

tion using the ideal (ground-truth) pitch significantly improves

the performance for all the features. Results for the unmatched-

noise condition are listed in Fig. 2(b). Evenwith estimated pitch,

the performance of all the features is significantly boosted by

the combination, demonstrating the role of the pitch-based fea-

tures in generalization to unseen noises. As before, RASTA-PLP

leads the overall performance in this combination. We note here

that all the improvements are statistically significant.

E. Adding Delta Features

Difference features, also known as delta features, are found

to be useful in speech processing as they capture variations. We

Fig. 3. Effects of delta features on overall HIT-FA performance in
(a) the matched-noise condition, and (b) the unmatched-noise condition.
(a) Matched-noise condition. (b) Unmatched-noise condition.

now investigate the effects of including delta features. A posi-

tive effect of adding delta features with AMS has been shown

in [23]. Fig. 3 shows the overall HIT-FA results by adding first-

order delta features (denoted by ) along time in matched and

unmatched-noise conditions. We can clearly see improvements

in both test conditions. Two observations are in order. First,

adding deltas is helpful for unvoiced speech segregation (not

shown). Second, all features benefit from adding deltas in the

unmatched-noise condition, indicating their effect in improving

generalization. We note here that all the improvements are sta-

tistically significant.

We have also experimented with adding additional deltas

along frequency channel as suggested in [23]. This also yields

some improvements yet at the expense of added dimensionality.

As a trade-off, in the next few experiments, we add deltas along

frequency only for PITCH which has a low dimensionality, pro-

ducing a 18-D feature representation denoted by .

F. Feature Combination

In this subsection, we evaluate feature combination as de-

scribed in Section III. Since we want the selected features to be

general, the mixtures from both IEEE female and male talkers

are used to form the training data for the groupLasso.As outlined

in Section III, we concatenate AMS, PLP, RASTA-PLP, MFCC,

GFCC, PITCH and their deltas together and define each feature

type as a group. Group Lasso feature selection is then performed
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TABLE III
SEGREGATION PERFORMANCE FOR FEATURE COMBINATION IN THE MATCHED-NOISE CONDITION. “ ” INDICATES
THAT THE RESULT IS SIGNIFICANTLY BETTER THAN ALL THE OTHER FEATURES AT A 5% SIGNIFICANCE LEVEL

TABLE IV
SEGREGATION PERFORMANCE FOR FEATURE COMBINATION IN THE UNMATCHED-NOISE CONDITION

Fig. 4. Averages of the magnitudes of regression coefficients across channels,
where R-PLP stands for RASTA-PLP.

on the normalized concatenated feature vector. We empirically

found that offers a good trade-off between model com-

plexity andcross-validationaccuracy.Weplot the averagesof the

magnitudes of regression coefficients across channels in Fig. 4.

It is clear that AMS, RASTA-PLP, MFCC and PITCH are asso-

ciated with larger regression coefficients, while the coefficients

of PLP are zero in almost all channels. GFCC’s contribution to

model fitting is relatively weak (i.e., its regression coefficients

are relatively small), making it almost redundant given AMS,

RASTA-PLP, MFCC and PITCH. We set the final combined

feature set to AMS RASTA PLP MFCC ,

resulting in a 90-D feature vector. We do not include deltas

for AMS and MFCC because we found that they improve

performance only slightly at the expense of nearly doubling

the dimensionality. Since we have already validated the ef-

fectiveness of PITCH, we will also present comparisons with

AMS RASTA PLP MFCC, which comes from the feature

selection and is referred as the complementary feature set in the

rest of the paper.

The segregation results of feature combination in thematched

and unmatched-noise conditions are shown in Tables III and IV.

To show that the feature combination is not redundant, we also

include results from AMS RASTA PLP, AMS MFCC, and

RASTA PLP MFCC. As a comparison, we also present results

using LDA for feature combination. LDA is applied to the same

concatenated feature vector on which group Lasso is applied.

We use the symbol “ ” to denote that a result is significantly

better than all the other features. We can see that the comple-

mentary feature set AMS RASTA PLP MFCC performs the

best (equaling , see Fig. 3(a)) in thematched test condi-

tion, and is significantly better than all the other single features

in the unmatched test condition (see Table II). The final com-

bined feature set generalizes well to unseen noises as shown in

Table IV. For reference, the final combined feature set using

ground truth pitch achieves 84% and 76% HIT-FA rates in the

two test conditions, respectively. LDA does not achieve com-

parable results in either test condition.

G. Training Corpus Size

As mentioned in Section IV-A, our training set is created

from 50 clean utterances. In the following, we examine the

dependence on the number of training utterances. We retrain

SVM classifiers using 20, 100, and 200 utterances mixed with

the same noises N1-N3 for representative features. The overall

HIT-FA results are given in Fig. 5(a) and (b) for matched and

unmatched-noise conditions.

In the matched-noise condition, more utterances for training

enable each feature type to improve the unit labeling perfor-

mance. Specifically, we obtain about 5% improvements by in-

creasing the number of training utterances from 20 to 200, ex-

cept for RASTA-PLP, which seems to saturate when 200 utter-

ances are used. In the unmatched-noise condition, no signifi-

cant performance gain is achieved beyond 50 for GFCC and
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Fig. 5. Overall HIT-FA rates of representative features as a function of the
number of training utterances. “COMP” stands for the complementary feature
set AMS RASTA PLP MFCC (a) Matched-noise condition. (b) Unmatched-
noise condition.

the complementary feature set. However, for RASTA-PLP, a 5%

gain is achieved by using 100 utterances compared to 20, and

the performance seems to keep increasing with more training

utterances. It is worth noting that the performance of the com-

plementary feature set using only 20 training utterances sur-

passes the other features using more training utterances. In sum-

mary, there is a clear benefit of training on more utterances for

the matched-noise condition, which is consistent with the re-

sults in [22]; yet the performance dependence on the number of

training utterances in the unmatched-noise condition is signifi-

cant only for certain feature types. In future research, it would

be interesting to study the performance profile using even more

utterances for RASTA-PLP and the complementary feature set

(which contains RASTA-PLP), especially in the unmatched-

noise condition.

H. Evaluation in Different SNR Conditions

From a practical point of view, it is interesting to know how

well a model trained on a single SNR condition generalizes to

different SNR conditions. To examine this question, we use the

subband SVMs already trained on 0 dB mixtures described in

Section IV-A to segregate the same test mixtures at 5 dB, 5 dB,

and 10 dB. Tables V and VI give the overall HIT-FA and SNR

results for matched and unmatched-noise conditions. All fea-

tures are impacted by the input SNR mismatch. The reason for

the performance degradation seems twofold. First, a change of

SNR leads to a change of power spectrum distribution at the T-F

unit level, leading to a deviation from training. Second, a change

of SNR also leads to a change of the IBM, which becomes

denser (sparser) as SNR increases (decreases). Such a change

in the prior probability of unit labels presents an issue to dis-

criminative classifiers such as SVM. This is a clear trend in the

10 dB case, in which we observe that the HIT rate decreases sig-

nificantly. Relatively speaking, MFCC and RASTA-PLP hold

up well, especially at the lower SNR level. Again, the inclusion

of the pitch-based features clearly helps each feature type to sta-

bilize the labeling performance. The final combined feature set

significantly outperforms the other features in each SNR condi-

tion. When ground truth pitch is used, it achieves 86%, 81%,

and 72% HIT-FA in the matched-noise condition, and 75%,

75%, and 68% in the unmatched-noise condition, at 5, 5 and

10 dB SNR respectively. These results are comparable to the

matched-SNR scenarios. In terms of reconstruction SNR, the

combined feature set consistently and significantly improves for

each input SNR condition.

TABLE V
SEGREGATION PERFORMANCE IN THE MATCHED-NOISE CONDITION WHEN

TESTED ON DIFFERENT SNR CONDITIONS

TABLE VI
SEGREGATION PERFORMANCE IN THE UNMATCHED-NOISE CONDITIONWHEN

TESTED ON DIFFERENT SNR CONDITIONS

TABLE VII
SEGREGATION PERFORMANCE ON THE IEEE MALE TALKER

I. Generalization to Different Speakers

Previous experiments are mainly based on the IEEE female

talker. We now show that the key conclusions hold for the IEEE

male talker aswell. The training and testing settings are the same

as before, except that data from amale talker are used. Table VII

shows the segregation results from representative features. As

in the female case, GFCC is good as a single feature, PITCH

is effective for generalization, and combined features are better

than single features.

To further test generalization to different speakers, we create

a new test set for each gender by mixing 20 utterances from

the TIMIT corpus [10] with N1-N6 at 0 dB. The new test utter-

ances are chosen from 10 different TIMIT speakers of the same

gender, each providing 2 utterances. We use the models previ-

ously trained on the IEEE corpus for each gender on the new test

set without change. The results of representative features for un-

seen female and male talkers are shown in Tables VIII and IX,

respectively. The classification performance is expected to de-

grade when tested on unseen speakers, as is evident from the
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TABLE VIII
SEGREGATION PERFORMANCEWHEN TESTED ON TIMIT FEMALE SPEAKERS

TABLE IX
SEGREGATION PERFORMANCEWHEN TESTED ON TIMIT MALE SPEAKERS

Fig. 6. Overall HIT-FA comparisons between speaker-dependent and multi-
speaker classifiers on the IEEE corpus.

performance of single features. Adding PITCH clearly helps.

The feature combinations are more robust than single features,

and the final combined feature set performs reasonably well

compared to the matched-speaker case for both genders.

Our preliminary results on cross-gender generalization show

that all the above features perform worse, presumably due to

significant deviations of spectro-temporal distributions between

the two genders. Two methods can be used to deal with the

cross-gender issue. First, one can first identify the gender of the

target speech and then use gender-dependent classifiers. Gender

identification can be achieved with high accuracy [40]. Second,

one can train classifiers by including the multiple speakers

of both genders into the training set. We show the results of

using the second method by training a classifier on the IEEE

female and male talkers and test on mixtures from both. Fig. 6

shows the overall HIT-FA results, and the performance of the

multi-speaker classifier is nearly as good as that of using corre-

sponding speaker-dependent classifiers. These results indicate

that the selected features performwell across different speakers.

V. DISCUSSION

Since different subbands in a gammatone filterbank are not

independent, it is reasonable to use frame-level features directly

in training subband classifiers (see [39]), rather than using T-F

unit level features as done in this paper. We have tried such

training using conventional frame-level features.We have opted

for using T-F unit level featuresmainly because our experiments

show that, although frame-level features produce comparable

performance in matched-noise conditions, the performance is

significantly worse than unit-level features in unmatched test

conditions. Frame-level features, such as GFCC, may be more

susceptible to local distortions in a few subbands than unit-level

features, as suggested in robust automatic speech recognition

(ASR) [33]. Also, features such as pitch-based ones are defined

at the T-F unit level, which may create issues for feature com-

bination if other features are derived at the frame level. Never-

theless, it is an interesting question if one can extract unit-level

features directly from frame-level ones; if so, feature extraction

could be significantly sped up. It may be easy for some features

such as energy, but it is unclear how this could be done for cep-

stral features.

Formulating monaural speech segregation as binary classifi-

cation has been shown as an effective approach in both speech

segregation and robust ASR domains. Nevertheless, only pitch

and AMS have been employed as primary T-F unit level

features so far. In this paper, we have significantly expanded

the unit level feature repository to include features commonly

used in speech and speaker processing. For both voiced and

unvoiced speech segregation, these newly included features

have achieved significant improvements in terms of SNR as

well as HIT-FA, a criterion that is well correlated with human

speech intelligibility. In terms of single features, GFCC shows

excellent performance in the matched-noise test condition, and

RASTA-PLP in the unmatched conditions.

The complementarity among these features is systematically

exploited by using a group Lasso approach, which selects a

compact set of important feature types contributing to target

and interference discrimination. The complementary feature set

AMS RASTA PLP MFCC has shown stable performance in

various test conditions and outperforms each of its components

significantly.

Generalization is a critical issue for classification-based

speech segregation. We have examined the generalization per-

formance of each feature type in several unmatched conditions.

These results point to the robustness of the pitch-based fea-

tures, which are parameterized by estimated pitch. Pitch-based

features have also been shown to generalize well to reverberant

conditions in classification-based segregation [20]. Neverthe-

less, the pitch-based features need to be combined with general

acoustic features in order to segregate unvoiced speech and

improve voiced speech segregation. The final combined feature

set achieves promising segregation results in various test con-

ditions. We plan to address reverberant speech segregation in

future work using this combined feature set.

In addition to pitch, our results suggest that RASTA filtering

also plays an important role in good generalization. RASTA fil-

tering effectively captures low modulation frequencies corre-

sponding to speech. The inclusion of this speech property sig-
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nificantly reduces FA rates, which degrade significantly in un-

matched conditions. It would be interesting to explore new fea-

tures that characterize both pitch and low modulation frequen-

cies in future research.

ACKNOWLEDGMENT

The authors would like to thank Z. Jin for providing his pitch

tracking code.

REFERENCES

[1] J. Allen, Articulation and Intelligibility. San Rafael, CA: Morgan &
Claypool, 2005.

[2] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization
of Sound. Cambridge, MA: MIT Press, 1994.

[3] P. Boersma and D. Weenink, “Praat: Doing Phonetics by Computer
(Version 4.3.14),” 2005 [Online]. Available: http://www.fon.hum.
uva.nl/praat

[4] S. Boll, “Suppression of acoustic noise in speech using spectral sub-
traction,” IEEE Trans. Audio, Speech, Lang. Process., vol. 27, no. 2,
pp. 113–120, Apr. 1979.

[5] D. Brungart, P. Chang, B. Simpson, and D. Wang, “Isolating the en-
ergetic component of speech-on-speech masking with ideal time-fre-
quency segregation,” J. Acoust. Soc. Amer., vol. 120, pp. 4007–4018,
2006.

[6] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the
noise reduction Wiener filter,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 14, no. 4, pp. 1218–1234, Aug. 2006.

[7] H. Dillon, Hearing Aids. New York: Thieme, 2001.
[8] D. Ellis, “PLP and RASTA (and MFCC, and Inversion) in Matlab,”

2005 [Online]. Available: http://www.ee.columbia.edu/dpwe/re-
sources/matlab/rastamat/

[9] G. Garau and S. Renals, “Combining spectral representations for
large-vocabulary continuous speech recognition,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 16, no. 3, pp. 508–518, Mar. 2008.

[10] J. Garofolo, “DARPA TIMIT Acoustic-Phonetic Continuous Speech
Corpus,” NIST, 1993.

[11] K. Han andD.Wang, “An SVMbased classification approach to speech
separation,” in Proc. ICASSP, 2011, pp. 5212–5215.

[12] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”
J. Acoust. Soc. Amer., vol. 87, no. 4, pp. 1738–1752, 1990.

[13] H. Hermansky and N. Morgan, “RASTA processing of speech,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 2, no. 4, pp. 578–589, Oct.
1994.

[14] G. Hu, “Monaural speech organization and segregation,” Ph.D. dis-
sertation, The Ohio State Univ., Biophysics Program, Columbus, OH,
2006.

[15] G. Hu and D. Wang, “Monaural speech segregation based on pitch
tracking and amplitude modulation,” IEEE Trans. Neural Netw., vol.
15, no. 5, pp. 1135–1150, Sep. 2004.

[16] G. Hu and D. Wang, “Segregation of unvoiced speech from nonspeech
interference,” J. Acoust. Soc. Amer., vol. 124, pp. 1306–1319, 2008.

[17] G. Hu and D. Wang, “A tandem algorithm for pitch estimation
and voiced speech segregation,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 18, no. 8, pp. 2067–2079, Nov. 2010.

[18] “IEEE recommended practice for speech quality measurements,” IEEE
Trans. Audio Electroacoust., vol. 17, pp. 225–246, Sep. 1969.

[19] G. Jang and T. Lee, “A maximum likelihood approach to
single-channel source separation,” J. Mach. Learn Res., vol. 4,
pp. 1365–1392, 2003.

[20] Z. Jin and D. Wang, “A supervised learning approach to monaural seg-
regation of reverberant speech,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 17, no. 4, pp. 625–638, May 2009.

[21] Z. Jin and D. Wang, “HMM-based multipitch tracking for noisy and
reverberant speech,” IEEE Trans. Audio, Speech, Lang. Process., vol.
19, no. 5, pp. 1091–1102, Jul. 2011.

[22] G. Kim and P. Loizou, “Improving speech intelligibility in noise using
environment-optimized algorithms,” IEEE Trans. Audio, Speech,

Lang. Process., vol. 18, no. 8, pp. 2080–2090, Nov. 2010.
[23] G. Kim, Y. Lu, Y. Hu, and P. Loizou, “An algorithm that improves

speech intelligibility in noise for normal-hearing listeners,” J. Acoust.
Soc. Amer., vol. 126, pp. 1486–1494, 2009.

[24] N. Li and P. Loizou, “Factors influencing intelligibility of ideal bi-
nary-masked speech: Implications for noise reduction,” J. Acoust. Soc.
Amer., vol. 123, no. 3, pp. 1673–1682, 2008.

[25] L. Meier, S. V. D. Geer, and P. Bühlmann, “The group Lasso for lo-
gistic regression,” J. R. Stat. Soc. Series B, vol. 70, no. 1, pp. 53–71,
2008.

[26] R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice, “An effi-
cient auditory filterbank based on the gammatone function,” APU Re-
port, 1988.

[27] S. Roweis, “One microphone source separation,” NIPS, pp. 793–799,
2001.

[28] M. Schmidt and R. Olsson, “Single-channel speech separation using
sparse non-negative matrix factorization,” in Proc. ICSLP, 2006.

[29] M. Seltzer, B. Raj, and R. Stern, “A Bayesian classifier for spec-
trographic mask estimation for missing feature speech recognition,”
Speech Commun., vol. 43, no. 4, pp. 379–393, 2004.

[30] Y. Shao, Z. Jin, D.Wang, and S. Srinivasan, “An auditory-based feature
for robust speech recognition,” in Proc. ICASSP, 2009, pp. 4625–4628.

[31] Y. Shao and D. Wang, “Robust speaker identification using auditory
features and computational auditory scene analysis,” in Proc. ICASSP,
2008, pp. 1589–1592.

[32] T. Takiguchi and Y. Ariki, “Robust feature extraction using kernel
PCA,” in Proc. ICASSP, 2006, pp. 509–512.

[33] S. Tibrewala and H. Hermansky, “Sub-band based recognition of noisy
speech,” in Proc. ICASSP, 1997, pp. 1255–1258.

[34] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Series B, vol. 58, no. 1, pp. 267–288, 1996.

[35] D. Wang, “On ideal binary mask as the computational goal of auditory
scene analysis,” in Speech Separation by Humans and Machines, P.
Divenyi, Ed. Norwell, MA: Kluwer, 2005, pp. 181–197.

[36] Computational Auditory Scene Analysis: Principles, Algorithms and
Applications, D. Wang and G. Brown, Eds. Hoboken, NJ: Wiley-
IEEE Press, 2006.

[37] D. Wang, U. Kjems, M. Pedersen, J. Boldt, and T. Lunner, “Speech
intelligibility in background noise with ideal binary time-frequency
masking,” J. Acoust. Soc. Amer., vol. 125, pp. 2336–2347, 2009.

[38] Y. Wang, K. Han, and D.Wang, “Exploring monaural features for clas-
sification-based speech segregation,” Dept. of CSE, Ohio State Univ.,
2011, Tech. Rep. TR37.

[39] R. Weiss and D. Ellis, “Estimating single-channel source separation
masks: Relevance vector machine classifiers vs. pitch-based masking,”
in Proc. Workshop Statist. Percept. Audition, 2006.

[40] K. Wu and D. Childers, “Gender recognition from speech. Part I:
Coarse analysis,” J. Acoust. Soc. Amer., vol. 90, no. 4, pp. 1828–1840,
1991.

[41] M. Yuan and Y. Lin, “Model selection and estimation in regression
with grouped variables,” J. R. Stat. Soc. Series B, vol. 68, no. 1, pp.
49–67, 2006.

[42] A. Zolnay, D. Kocharov, R. Schlüter, and H. Ney, “Using multiple
acoustic feature sets for speech recognition,” Speech Commun., vol.
49, no. 6, pp. 514–525, 2007.

Yuxuan Wang received his B.E. degree in network
engineering from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2009. He is
currently pursuing his Ph.D. degree at The Ohio State
University. He is interested in machine learning,
optimization, speech separation, and computational
neuroscience.

Kun Han, photograph and biography not available at the time of publication.

DeLiang Wang, photograph and biography not available at the time of
publication.


