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ABSTRACT Remote sensing image captioning, which aims to understand high-level semantic information

and interactions of different ground objects, is a new emerging research topic in recent years. Though image

captioning has developed rapidly with convolutional neural networks (CNNs) and recurrent neural networks

(RNNs), the image captioning task for remote sensing images still suffers from two main limitations. One

limitation is that the scales of objects in remote sensing images vary dramatically, which makes it difficult to

obtain an effective image representation. Another limitation is that the visual relationship in remote sensing

images is still underused, which should have great potential to improve the final performance. In order to

deal with these two limitations, an effective framework for captioning the remote sensing image is proposed

in this paper. The framework is based on multi-level attention and multi-label attribute graph convolution.

Specifically, the proposed multi-level attention module can adaptively focus not only on specific spatial

features, but also on features of specific scales. Moreover, the designed attribute graph convolution module

can employ the attribute-graph to learn more effective attribute features for image captioning. Extensive

experiments are conducted and the proposed method achieves superior performance on UCM-captions,

Sydney-captions and RSICD dataset.

INDEX TERMS Remote sensing image, image captioning, deep learning, graph convolutional networks

(GCNs), semantic understanding.

I. INTRODUCTION

With the great progress of remote sensing technology,

high-quality remote sensing images are captured more eas-

ily, which provides a large number of available data for

researches [1], [2]. The most common remote sensing image

processing tasks, such as object detection [3], semantic

classification [4] and change detection [5], [6], are dealing

with objects or class labels, which can only provide lim-

ited object- or image-level information. However, generating

natural-language descriptions for remote sensing image can

provide richer high-level semantic information, such as scene

structures or object relationships. Remote sensing image

captioning, which aims to understand the high-level semantic

information and the interactions of different ground objects,
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is distinct from the above-mentioned tasks. It provides far

richer descriptions of remote sensing scene in a higher-

semantic level by generating a corresponding sentence to

abstract the content. Specifically, accurate and flexible sen-

tences are generated automatically to describe the content

of remote sensing images. Remote sensing image caption-

ing identifies the ground objects under different levels and

analyzes their attributes and spatial relationships in the aerial

view [7]. Spatial relationships, also called visual relation-

ships, contain the major elements of an image, which include

the interactions between objects and the geometric informa-

tion of objects. The interactions between objects are visual

relationships which are embedded in image captions. For

example, the caption ‘‘Some white planes are in an airport’’

describes the visual relationship between planes and airport.

Image captioning is a challenging task, which is a com-

bination of Computer Vision (CV) and Natural Language
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Processing (NLP). For the CV part, image representation is

explored by handcrafted feature designing [8], [9] or deep

feature leaning [10]–[12]. For the NLP part, sentence

generation is conducted by grammar template-based gen-

eration models or deep neural networks based methods.

Generally, the methods for image captioning can be roughly

divided into three categories: object detection-based method,

retrieval-based method, and encoder-decoder network based

method [13].

The first type of image captioning methods is based on

object detection [14], which first extracts image information

by identifying objects and the relationships between them.

The extracted information of the image includes three parts:

1) The detected objects (things and stuff). The localized areas

contain the object-level information. 2) The visual attributes

(word embedding). The attributes of each detection object,

such as color or shape. 3) The visual relationships, such as

‘‘on, besides, under, near, . . . ’’. Then sentences are generated

by the sentence generating model with the extracted infor-

mation. Reference [15] took advantage of the labeled images

from object recognition datasets to describe object categories

that were not present in existing image captioning datasets.

[16] first generated a sentence template with slot locations

tied to specific image regions. Then these slots were filled

by identifying the regions with object detectors. Therefore,

the performance of object detection plays an important role in

the final sentence generation. This two-stage method suffers

from the error accumulation problem, and has low computa-

tion efficiency.

The second type is retrieval-based [17], which utilizes

retrieval to generate the corresponding sentence. In this case,

retrieval-based methods search for similar images with the

query image, and then generate sentence according to the

given sentences of similar images. However, the performance

will degrade when the query image is different from the

given training images. Retrieval-based method may generate

sentenceswhich are not relevant to the specific image content.

This problem occurs because of the data sparsity. The number

of remote sensing images is not enough to guarantee similar

image matches, so the query image may have no similar

match in the training set.

The third type of method is based on encoder-decoder

[18], which first encodes the input image into a vector and

then decodes this representation to generate the sentence.

Generally, the encoder process usually uses CNNs to extract

representative features, while the decoder process employs

RNNs or Long-Short Term Memory (LSTM) to output the

desired sentence. Current state-of-the-art image captioning

methods are based on deep encoder-decoder framework. Ref-

erence [18] aimed to maximize the likelihood of the target

description sentence for training the model. Reference [19]

proposed a novel dual-stream RNN framework to integrate

the hidden states of visual and semantic streams for caption

generation. Reference [20] proposed an effective online pos-

itive recall and missing concepts mining method to address

the dataset imbalance and incomplete labeling problems.

FIGURE 1. (a) Multi-scale objects in remote sensing images.
(b) Relationships of multiple attributes in remote sensing images.

Reference [21] designed an effective decoder named mul-

timodal RNN, which includes a bidirectional RNN to rep-

resent sentences, and a structured objective for leaning the

multimodal representation. A convolutional image captioning

model was proposed in [22], which employed a novel CNN

model instead of LSTM for sentence generation.

Though considerable methods have been proposed for

natural image captioning, remote sensing image-based cap-

tioning has not been fully studied. The main differences

between natural image captioning and remote sensing image

captioning are from three aspects: 1) There are apparent

directional distinctions in remote sensing images, as they are

captured from satellites or airplanes with the aerial view;

2) There is usually a lack of certain salient objects as remote

sensing scene may contain many types of land-cover objects;

3) Scales of objects may vary significantly in remote sensing

images. For example, the scales of airplanes vary greatly in

the same scene, as shown in Fig. 1. Since the image features

are encoded with CNNs, images containing objects of differ-

ent scales are input to the same CNN for feature extraction.

At the last convolution layer, the features of the same type

of object will be quite different owing to the fixed receptive

field. This inconsistency makes the image representation less

effective. Due to the above-mentioned differences, it is diffi-

cult to directly apply the natural image captioning methods to

the remote sensing image.

In recent years, many methods have been proposed for

remote sensing image captioning task. A multimodal neural

network [23] was proposed to understand the high spatial

resolution (HSR) remote sensing images in semantic level,

where different types of CNNs with RNNs or LSTMs were

combined to select the best combination. Also, this paper

constructed two datasets for remote sensing image captioning

and there was no such dataset before this work. Shi et al. [7]

proposed a two-stage based framework to generate human-

like descriptions for remote sensing images, which were

multilevel image understanding and language generation.
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FIGURE 2. The overall network architecture of the proposed method. The image encoder extracts fully connected image
features and multi-level attention-derived image features. The attribute encoder learns the attribute features by GCN
and attribute-graph. All the extracted features are input to the LSTM decoder for sentence generation step by step. The
Ground Truth label: ‘‘Two tennis courts are surrounded by some buildings and plants’’ is used for training the model in
an end-to-end fashion.

Zhang et al. [24] leveraged CNNs to detect the main objects

and utilized RNN language model to generate the descrip-

tions of the detected objects. The work [13] presented some

annotated instructions for the better description in terms

of special characteristics such as scale ambiguity, rotation

ambiguity and category ambiguity. Additionally, this work

also constructed a large-scale benchmark dataset for remote

sensing image captioning. In another work [25], a training

mechanism of multi-scale cropping was proposed, which

could collect more fine-grained information and improve

the generalization performance. Wang et al. [26] proposed a

collective semantic metric learning framework, which used

semantic embedding to measure the presentation of image

and sentence. The work [27] presented a framework based

on attribute attention mechanism, which assigned different

weights to different areas of remote sensing images.

Visual attentionmechanism is widely used in natural image

captioning. Natural images usually contain several salient

objects, and the sentences mainly describe these objects

and their relationships. Thus, attention mechanism can be

used to adaptively focus on different objects to generate

object-related words. SCA-CNN [28] exploited channel-wise

and spatial-wise attention mechanism simultaneously for

image captioning. Spatial-channel attention module was also

employed and proved to be effective for image classification

[29] and semantic segmentation tasks [30].

Although spatial attention is effective for natural image

captioning, it still has limitation for remote sensing

image-based captioning task. The main reason is that scales

of the same type of object may vary significantly. As shown

in Fig. 1(a), the scales of airplanes are quite different in

different remote sensing images. Moreover, the relationships

of objects in remote sensing scene shown in Fig. 1(b) are

usually neglected in the task of captioning.

Considering the scale-variability problem depicted above,

a multi-level attention-based method is proposed to adap-

tively focus on features of different scales for a more

flexible remote sensing image representation. The motiva-

tions of this work are two-fold: 1) The proposed multi-

level attention module includes a scale-wise attention and a

spatial-wise attention subnetwork, which allows the model

to learn features at specific positions and scales; 2) The

visual relationships of local objects are critical for improving

the performance of image captioning [31], [32]. However,

exploiting object detection for local object-level extraction

is time-consuming and needs extra annotations. Thus, in this

work we aim to explore the visual relationships with image

semantic attributes.

To sum up, the main contributions of this work can be

summarized as follows.

(1) Different from previous attention-based methods,

a novel multi-level attentionmodule is proposed to focus

on different spatial positions and different scales. The

proposed module can not only extract specific spatial

features adaptively, but also aim to learn features of

specific scales.
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FIGURE 3. Illustration of the multi-level attention network, including multi-level features extraction,
spatial- and scale-wise attention module.

(2) Multi-label classification task is introducedwith no need

for extra annotation in this work. By utilizing image

attributes, more semantic information can be exploited

for improving the performance of remote sensing image

captioning.

(3) Attribute graph-based graph convolutional network

(GCN) is designed to explore the semantic visual rela-

tionships of remote sensing images. By considering the

attribute relationships, more robust and effective seman-

tic features can be used for image captioning.

The rest of this paper is organized as follows. In Section II,

the details of the proposed method are described. Then,

extensive experimental results are shown and analyzed in

Section III. Finally, we conclude this paper in Section IV.

II. METHODOLOGY

The overall network architecture of the proposed method is

shown in Fig. 2. The whole framework consists of two main

components. One is the deep learning-based encoding mod-

ule, and the other is the LSTM-based decoding module. The

encoding module includes two parts: 1) The image encoder

extracts image representations by the proposed multi-level

attention module; 2) The attribute encoder learns attribute

features by GCN and pre-computed attribute-graph. The

decoding module takes three image features as input: the

multi-level attention-derived features, the fully connected

(FC) features and the attribute features. It is worth mention-

ing that the multi-label classification network is trained in

advance of the image captioning model, and its parameters

are fixed when training the captioning model.

During the training stage, all the remote sensing images

are first input into the image encoder for feature extraction.

Then the obtained FC features and multi-level CNN fea-

ture maps are fed to LSTM cells for sentence generation.

Cross entropy loss is used to train the network. Meanwhile,

a multi-label classification network is pre-trained to generate

image attributes. By utilizing image attributes, the attribute-

graph can be constructed and the attribute relationships can

be learned by GCN. After the mean pooling operation,

the learned attribute features are also input to LSTM cells for

caption generation. As shown in Fig. 2, ground truth labels

are used for training by minimizing the cross entropy loss.

During the inference stage, the input image is first encoded

into image features and attribute features, then these features

are input to LSTM to decode word step by step.

In this section, the details of the proposed framework will

be introduced. Firstly, the multi-level attention module is

described in section II-A. Secondly, themulti-label classifica-

tion network for attribute generation andGCN-based attribute

relationship mining are presented in section II-B. Finally,

the detailed architecture for generating image description

using modified LSTM is introduced in section II-C.

A. MULTI-LEVEL ATTENTION MODULE

Image representation is crucial for computer vision tasks

including image captioning. Owing to the high-level seman-

tic features extracted by deep neural networks, the CNN

intermediate features are used as representation for remote

sensing images. As aforementioned, the scales of objects may

vary significantly. To handle this problem, multi-resolution

features are exploited in this work. For CNN, the feature

maps of deeper layer contain features of higher semantic-

level, while feature maps of shallower layer are with higher

resolutions. Thus, features of deeper layer are more suitable

for large scale objects and features of shallower layer are

more suitable for representing small scale objects. In general,

the motivation of multi-level attention module is to make use

of features of different levels adaptively for more effective

representation of remote sensing images.
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FIGURE 4. Illustration of the image attribute generation process. For each image, all the nouns and adjectives are
selected as attributes.

Although there are several channel-attention and spatial

attention-based methods [28]–[30], the multi-level atten-

tion method is proposed to learn dynamic scale-selective

attention-derived features. By concatenating features from

different layers (not only two), the multi-scale deep represen-

tation is embedded in different channels of the fused features.

Then the channel-wise attention mechanism is employed to

adaptively select features of different scales.

In this work, VGG network is chosen as our backbone for

two reasons. Firstly, we mainly focus on exploring the effect

of adaptive multi-scale features and more robust attribute

features. Thus using different CNN backbones is not nesse-

cery. Secondly, since VGG is widely used in prior works,

we choose it as the CNN backbone to compare with other

works fairly. Specifically, supposing that the input image is

denoted as X , then the intermediate representation can be

computed by:

Ffc = VGGfc(X ),

FL1 = VGGconv4(X ),

FL2 = VGGconv5(X ), (1)

where Ffc is the feature of FC layer, FL1 and FL2 are the CNN

featuremaps of conv4_3 and conv5_3 of VGG16 respectively.

Fig. 3 illustrates the details of multi-level attention network.

Different from the illustration, we use two-level features

to describe the proposed method for simplicity. As multi-

level deep features contain information of different scales of

images, these features are concatenated to focus on differ-

ent spatial positions and scales adaptively during the LSTM

decoding stage.

It is worth mentioning that the spatial resolution of multi-

level feature maps for some network architectures may be

different. In this case, the up-sampling layer can be used to

enlarge the feature maps with lower spatial resolution, and

make its spatial resolution to be the same with the larger

one. Then the final multi-level features can be obtained by

equation 2, i.e., concatenating the feature maps of different

CNN layers:

Fml = concat(FL1, upsample(FL2)), (2)

where Fml is the final multi-level feature used for the descrip-

tion generation. After concatenating the feature maps of dif-

ferent CNN layers, the channels of Fml contain CNN features

of different levels. Thus channel-wise attention [33] on Fml
can learn selective features with different resolutions.

As different positions of CNN feature maps encode infor-

mation of specific objects, using spatial-wise attention can

enhance the network to focus on the appropriate objects

during the LSTM decoding stage. In this work, spatial-wise

and channel-wise attention are simultaneously exploited to

focus not only on specific spatial position, but also on specific

feature scales.

B. MULTI-LABEL ATTRIBUTE GRAPH CONVOLUTION

The image attribute is high-level concept, which contains

global information of images, and has been exploited by pre-

vious works [27], [34]. However, the relationships between

different attributes are not well exploited by prior remote

sensing image captioning works, which are also critical for

improving the image captioning performance.

To obtain the attributes of each remote sensing image, all

the nouns and adjectives are selected from five sentences

as illustrated in Fig. 4. The nouns and adjectives contain

the global semantic information of the image, which are

useful for description generation. Specifically, the sentences

are first split into tokens, and then the stop words such as
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‘‘there, are, the, and, . . . , by,’’ are removed. After selecting

the attributes for each image, a multi-label classification

network is employed for the attribute generation. In this

work, ResNet18 is used as the attribute classification network

backbone. Supposing that I is the input image, the final output

of ResNet18 is computed as:

Vml = sigmoid(ResNet18(I )) ∈ R
N ,K , (3)

where Vml is the final output, and each dimension represents

the probability of each attribute. N is the batch size, and K

is the number of attributes. For the training of multi-label

network, binary cross-entropy is used as the loss function, and

Stochastic Gradient Descent (SGD) is used as the optimizer.

It is worth mentioning that the multi-label classification net-

work is trained independently, and it is fixed when training

the image captioning network.

As relationships between different attributes are also

important for image captioning task, a GCN-based fea-

ture learning module is designed to mine the attribute

relationships in this work. GCN was introduced in [35]

for semi-supervised classification task. The core idea of

GCN is propagating information between nodes of the

graph. Thus, in order to exploit GCN for learning fea-

tures of relationships, the first step is to construct the adja-

cency matrix. In this work, the attribute embeddings are

treated as the nodes in graph. Inspired by the work [36],

we model the adjacency matrix with the conditional proba-

bility. Namely, P(Attrj|Attri) denotes the probability of occur-

rence of attribute Attrj when attribute Attri appears. Note that

P(Attrj|Attri) is not equal to P(Attri|Attrj). The probability

P(Attrj|Attri) is computed as:

P(Attrj|Attri) =
N (Attrj,Attri)

N (Attri)
, (4)

where N (Attrj,Attri) denotes the count of co-occurrence of

Attri and Attri, and N (Attri) is the count of occurrence of

attribute Attri. The computation for P(Attri|Attrj) is similar

to P(Attrj|Attri), except that the denominator is changed to

N (Attrj).

GCN [35] is an approximation of spectral graph convolu-

tion, and spectral graph convolution is operated in the Fourier

domain. Supposing that the constructed graph is G = (V ,A),

where V is the set of vertex (attribute word embedding) and

A is the adjacency matrix. Then the Laplacian matrix L can

be computed as:

L = D− A, (5)

where D is the degree matrix of the graph, which can be

defined as:

Dii =
∑

j

Aij, (6)

where i and j are the indexes of adjacency matrix A. Since L

is a positive semidefinite matrix, it can be decomposed as:

L = U3UT , (7)

FIGURE 5. Illustration of the multi-level attention based LSTM decoding
network. The input xt is the combination of FC features and attribute
features. It is the attention-derived multi-level feature map at time step t .
At each step t during decoding, the feature map It will focus on different
positions and scales. ht−1, ht , ct−1, ct are the hidden state and cell state,
which carry the context information from step t − 1 to t . it , ft , ot are the
output of input gate, forget gate and output gate respectively.

where U is the combination of eigenvectors, and 3 =

diag([λ1, . . . , λk ]) is the combination of eigenvalues. With

these notations, the graph convolution in Fourier domain can

be defined as:

Y = σ (Ugθ (3)UTX ), (8)

where gθ is the convolution filter and σ is the non-linear func-

tion. X is the input and Y is the output. However, this form

of graph convolution is time-consuming. The reason is that

spectral decomposition needs high computational complexity

when the graph is large. Considering this, [35] approximates

the spectral GCN as equation 9:

Y = (D+ I )−
1
2 (A+ I )(D+ I )−

1
2XW ,

Y = σ (Y ), (9)

whereW is the trainable weight matrix.

The proposed network consists of two layers of GCN. The

adjacency matrix A ∈ R
K ,K is pre-computed with all the

training data. During the training stage, the pre-trained multi-

label network is used to predict the attributes Attr ∈ R
N ,K .

Then the Attr can be represented with the word embedding

Attr_vector ∈ R
N ,K ,voc. With these notations, one layer of

GCN can be defined as:

Y = σ ((D+ I )−
1
2 (A+ I )(D+ I )−

1
2Attr_vector ·W ),(10)

where voc is the vocabulary size and W ∈ R
voc,voc is the

learnable weight matrix. Finally, mean pooling is used to

obtain the final attribute features Vattr ∈ R
N ,voc in consid-

eration of the relationship.

C. MULTI-LEVEL ATTENTION LSTM FRAMEWORK

In this work, LSTM [37] is employed for sequence learning

and description generation. The detailed computation process

of attention-based LSTM is illustrated in Fig. 5. The vanilla

LSTM contains three gates (supposing t as the time step):

input gate it , forget gate ft , and output gate ot . Hidden state ht
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and cell state ct are used to propagate information from time

step t − 1 to t . For each gate, three learnable weight matrices

Wx , Wh, and b are used for transforming the input xt and ht .

In this work, the input xt is the combination of FC fea-

ture Ffc and attribute feature Vattr computed by VGG and

GCN. The computation for the conventional LSTM decoder

is defined as follows.

it = σ (Wixxt +Wihht−1 + bi) ,

ft = σ
(

Wfxxt +Wfhht−1 + bf
)

,

ot = σ (Woxxt +Wohht−1 + bo) ,

ct = it ⊙ φ
(

W⊗
zx xt +W⊗

zhht−1 + b⊗
z

)

+ ft ⊙ ct−1,

ht = ot ⊙ tanh (ct) ,

st = softmax(Wsht ), (11)

where σ is the sigmoid activation function. φ is the maxout

non-linearity function and ⊗ denotes the units (number of

units k is 2 in this work).

Specifically, given the multi-level CNN feature Fml and the

spatial attention size P, the attention-derived image feature

Faml at time step t is defined as

Faml =

P
∑

i=1

αitFmli , (12)

where αt ∈ R
P is the attention vector at time t . For each time

step, the attention vector is computed by equation 13:

αt = softmax(Wa · tanh(Waf Fmli +Wahht−1 + ba) + bα),(13)

where Waf , Wah, and Wa are learnable weight matrices

for attention vector generation. Besides the spatial attention

mechanism, we further enhance Faml ∈ R
H ,W ,C with the

channel-wise self-attention mechanism. The final attention-

derived feature Facml can be computed as

Mml = GP(Faml) ∈ R
1,1,C ,

αml = sigmoid(FC2(ReLU (FC1(Mml)))),

Facml = αml ∗ Faml + Faml, (14)

where GP is the global pooling operation. FC1 and FC2 are

FC layers for transforming the globally pooled features. αml
is the learned channel-wise attention vector.

With the spatial and scale-wise attention-derived feature

Facml , the LSTM decoding process can adaptively re-weight

the features to dynamically focus on specific regions and

scales. To encode the learned attention feature Facml into

LSTM, we input the attended feature into all the gates in

LSTM. This process can be defined as

it = σ
(

Wixxt +Wihht−1 +WiaFacmlt + bi
)

,

ft = σ
(

Wfxxt +Wfhht−1 +WfaFacmlt + bf
)

,

ot = σ
(

Woxxt +Wohht−1 +WoaFacmlt + bo
)

,

ct = it ⊙ φ

(

W⊗
zx xt +W⊗

zhht−1 +W⊗
za Facmlt + b⊗

z

)

+ ft ⊙ ct−1,

ht = ot ⊙ tanh (ct) ,

FIGURE 6. Parts of scene categories of UCM-captions dataset.
(a) airplane, (b) beach, (c) building, (d) chaparral, (e) dense residential,
(f) forest, (g) freeway, (h) golf course, (i) harbor, (j) intersection. The five
captions of (a) are: 1) There are many airplanes at the airport; 2) Many
different kinds of airplanes are stopped at the airport; 3) Four airplanes
are stopped dispersedly at the airport; 4) Four airplanes scattered at the
airport; 5) Four different airplanes are stopped dispersedly at the airport.

st = softmax(Wsht ), (15)

where Wia,Wfa,Woa and Wza are learnable parameters for

encoding the attention-derived features. Finally, the cross

entropy loss is exploited for training the LSTM as well as

the GCN, which is defined in equation 16:

L(θ ) = −

T
∑

t=1

log
(

pθ

(

st |s
∗
1, . . . s

∗
t−1

))

, (16)

where θ denotes the parameters of the proposed model and

s∗1, s
∗
2, . . . , s

∗
t−1, s

∗
t is the label sequence. It is worth noting

that the parameters of CNN backbone and multi-label net-

work are pre-trained and fixed, which are not included in θ .

III. EXPERIMENTS

In this section, extensive experiments on three datasets are

conducted to demonstrate the effectiveness of the proposed

method. First of all, three datasets for remote sensing image

captioning task are introduced. Then, evaluation indexes and

parameter settings are also given. In the end, the proposed

method is compared with the prior state-of-the-art methods,

and the experimental results are analyzed in detail.

A. DATASETS

In order to evaluate the proposed method and compare it with

other methods, three popular remote sensing image caption-

ing datasets are used to perform the experiments. All of the

three datasets are online available [38], and the descriptions

of datasets are as follows.

(1) UCM-Captions Dataset: This dataset is provided by Qu

et al. [23], which extends the UC Merced Land Use

dataset [39] by annotating detailed descriptions of each

image manually. Parts of scene categories of this dataset

are shown in Fig. 6. There are 21 different scene cate-

gories and 100 images for each category. Specifically,

each image has a size of 256 × 256 pixels with the

pixel resolution of 0.3048 m. It is worth mentioning

that five sentences are given for the descriptions of each
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FIGURE 7. Parts of scene categories of Sydney-captions dataset.
(a) residential, (b) airport, (c) meadow, (d) industrial, (e) runway. The five
captions of (a) are: 1) Lots of houses with red and white roofs arranged
neatly; 2) A residential area with houses arranged neatly and some roads
go through this area; 3) A town with many houses arranged neatly while
some cars on the roads; 4) A residential area with houses arranged neatly
while many plants on the roadside; 5) A residential area with houses
arranged neatly and some roads go through this area.

image in this dataset. Totally, there are 2,100 images

with 10,500 descriptions.

(2) Sydney-Captions Dataset: This dataset is also proposed

in [23], which is based on a remote sensing scene clas-

sification dataset named Sydney [40]. Parts of scene

categories of this dataset are shown in Fig. 7. 613 images

are given and they are classified into 7 scene categories.

Moreover, each image is composed of 500 × 500 pix-

els with the pixel resolution of 0.5 m. Five sentences

are provided for the descriptions of each image from

multiple aspects. Totally, there are 613 images with

3065 descriptions.

(3) RSICD Dataset: The RSICD dataset is constructed by

[13] and there are 10,921 images with low interclass

difference and high intraclass diversity. Parts of scene

categories of this dataset are shown in Fig. 8. These

remote sensing images have a size of 224 × 224 pixels

with different resolutions. Originally, 24,333 sentences

are given to describe the images. To provide five sen-

tences for each image, the captions are extended by

randomly making a copy of existing sentences when

there are less than five captions for an image.

As displayed in Fig. 9, the scale-variation of remote sens-

ing images can be dramatically large. For example, the scale

of the airplane: the larger ariplane can be 100 times larger

(eg: 160 × 160 vs. 16 × 16) than the small one. Generally,

the scale-variation of UCM-Captions and RSICD dataset is

more obvious than Sydney-Captions dataset.

B. EXPERIMENTAL DETAILS

1) EVALUATION MEASURES

Proper metrics need to be selected to evaluate the proposed

method and compare the results from different image cap-

tioning methods. Following the existing works [13], [27],

[41], we adopt four evaluation indexes: BLEU (BiLingual

Evaluation Understudy) [42], ROUGE_L (Recall-Oriented

Understudy for Gisting Evaluation) [43], METEOR (Met-

ric for Evaluation of Translation with Explicit ORdering)

[44], and CIDEr (Consensus-based Image Description Eval-

uation) [45]. For the detailed formulas of these metrics, read-

ers can refer to [46]. The reason why they are selected as

metrics is that they evaluate the image captioning methods

FIGURE 8. Parts of scene categories of RSICD dataset. (a) bridge, (b) bare
land, (c) baseball field, (d) beach, (e) airport, (f) center, (g) church,
(h) commercial, (i) denser residential, (j) desert. The five captions of (a)
are: 1) The lathy bridge is across the broad river; 2) Here is a bridge under
construction; 3) A white bridge starts from a forest and ends in the city;
4) A white narrow bridge spans the river with an island in it; 5) Some
buildings and green plants are in two sides of a bridge respectively.

from different aspects. BLEU compares the overlap ratio of

N-gram (a set of N ordered words) between the generated

sentence and the corresponding reference sentence. N is set

to 1, 2, 3 and 4 in this paper. ROUGE_L utilizes the longest

common subsequence (LCS) based F-measure to evaluate

the similarity between the candidate sentence and the refer-

ence sentence. In this case, LCS automatically contains the

longest in-sequence N-gram. METEOR evaluates the gener-

ated sentence by a score based on word-to-word matches and

computes a word alignment between two sentences. CIDEr

takes into both precision and recall to compute how well

a generated sentence matches the consensus of a collection

of image captions. The BLEU, ROUGE_L and METEOR

metric all range from 0 to 1, while the CIDEr ranges from

0 to 5. The higher the score is, the better the performance of

the image captioning algorithm is.

2) PARAMETERS SETUP

The proposed method is implemented with Pytorch [47]

based on [48]. ResNet18 pre-trained on ImageNet is used

for the multi-label classification network. We fine-tune it

with the generated multi-label attribute annotations. For the

training of multi-label network, the input images are first

resized to 224×224. The batch size is set to 64, and 25 epochs

are used for fine-tuning the network. During the training

of image captioning network, the parameters of multi-label

network are fixed. Adam is used as the optimizer with initial

learning rate 1e-4 for optimization.

The input data of the multi-label classification network

is the image for generating captions, and the output of the

multi-label network are the pre-defined attributes. Then the

attribute features are extracted by GCN and the pre-computed

attribute-graph.

For the image captioning model, VGG16 pre-trained on

ImageNet is set as the backbone for feature extraction, and

it is fixed during training. The number of hidden nodes of

LSTM is 512 in all of the experiments. Beam search is used in

this work with the beam size of 2. Adam with initial learning
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FIGURE 9. Example images of the small and large objects in UCM-Captions, Sydney-Captions and RSICD dataset. As illustrated in
this figure, the scale-variation in Sydney-Captions is not as large as the other two datasets.

rate 4e-4 is employed as the optimizer. The drop probability is

set to 0.5 for dropout layers. Moreover, gradients are clipped

if they are larger than 0.1. The image attribute relationship

learning module consists of two GCN layers for all the exper-

iments.

The input data of the captioning model are the image and

the learned attribute features. The multi-level attention CNN

module takes the image as input, and outputs FC features

and multi-level feature maps. Then FC features, multi-level

feature maps and the attribute features are input to the LSTM

decoder for sentence generation.

C. COMPARISON RESULTS

In order to verify the performance of the proposed method,

some state-of-the-art methods are selected for performance

comparing. They are: 1) Collective Semantic Metric Learn-

ing Framework (CSMLF) [41]; 2) FC-ATT+LSTM [27];

3) SM-ATT+LSTM [27]; 4) Attention-based (soft) [13];

5) Attention-based (hard) [13]. Among these methods,

CSMLF [41] employed metric learning for latent seman-

tic embedding, and the collective sentence representation

was designed to improve the captioning performance. SM-

ATT+LSTM and FC-ATT+LSTM [27] enhanced the per-

formance of image captioning by extending the attention

mechanism with high-level image attributes. In [13], differ-

ent attention mechanisms including the ‘‘soft’’ attention and

‘‘hard’’ attention were explored for remote sensing image

captioning. Attention-based (soft) is a deterministic method,

which assigns a weight to different positions of an image to

focus on important parts. Attention-based (hard) is a stochas-

tic method, which uses a sampling strategy to focus on dif-

ferent positions of the image. Then reinforcement learning is

employed to optimize the model for better result. Moreover,

three state-of-the-art captioning methods [49]–[51] for natu-

ral image are also selected for performance comparing.

All the comparison results are presented in Table 1,

2, 3, 4 and 5, including performance on UCM-captions

dataset, Sydney-captions dataset and RSICD dataset. The

Sydney-captions dataset contains only 613 images and

UCM-captions dataset has 2,100 images, while there are

more than 10,000 images in RSICD dataset. Since the number

of images in three datasets is significantly different, the train-

ing hyper-parameters such as batch size and max training

epochs are also tuned for each dataset.

1) UCM-CAPTIONS DATASET

On UCM-captions dataset, five current state-of-the-art meth-

ods are included for comparison with the proposed method.

Following previous works, about 80% (1680) images are

used for training, and 10% (210) images for validation. The

remaining 10% (210) images are used for test. To fairly

compare with prior works, VGG16 backbone pre-trained on

ImageNet is employed in all of our experiments. There are

293 image attributes selected for constructing the attribute

graph, which is visualized in Fig. 10. Since there are toomany

attributes, the attribute names are not presented in this figure.

The nodes in Fig. 10 are the attributes. The relationships

are represented by the edges. If two attributes (words) co-

occur in one image caption for many times, the relationships

between them are strong. Correspondingly, the edges between

them are wider. The densely connected nodes are important

nodes with higher degree, and the sparse nodes have weak

relationship with other nodes.

Seven widely used image captioning metrics are employed

for evaluating all the methods and the results are shown

in Table 1. The best performances are marked in bold font for

more clear presentation. Generally, the proposed method out-

performs all existing state-of-the-art methods. Specifically,

in terms of four BLEU metrics, the proposed framework

achieves a significant improvement compared with other

methods. In terms of METEOR and ROUGH_L, improve-

ment is also achieved with the proposed method, which indi-

cates the effectiveness of the designed framework. For CIDEr

metric, although not the best, the proposed method is still

competitive to the highest performance.

To further evaluate the proposed method comprehensively,

three state-of-the-art captioning methods for natural image

are also compared. The results are shown in Table 2. Although
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FIGURE 10. Illustration of the constructed attribute graph on UCM-captions dataset. There are 293 nodes
(green spots) in the graph, and each node represents one attribute. The relationships between different
attributes are displayed by the edges. As there are too many nodes in the graph, node names can not be
displayed.

TABLE 1. Experimental results of different methods on UCM-captions dataset.

[49]–[51] can achieve satisfactory results for natural image

captioning task, directly applying them to remote sensing

image still has limitation. This comparison demonstrates

the effectiveness of the proposed multi-level attention and

attribute GCN modules. Moreover, attention masks of some

samples selected from UCM-captions dataset are visualized

in Fig. 11. For each image, the first five decoding iterations

of LSTM are shown.

2) SYDNEY-CAPTIONS DATASET

Sydney-captions is a relatively small dataset with 613 images

in total. In this dataset, 497 images are used for training,

58 images are used for validation and another 58 images are

used for test. Similar to UCM-captions dataset, five state-

of-the-art methods are compared with the proposed method.

The results are presented in Table 3 in detail. To prevent the

model from overfitting, the batch size is set to 8 for training.

Experimental results in Table 3 indicate that all the attention-

based methods can perform better than CSMLF. In terms

of BLEU, although SM-ATT+LSTM achieves quite good

results compared with others, the proposed method can still

outperform it. This shows the superiority of the proposed

multi-level attention-derived features and the effectiveness

of the GCN-based attribute feature learning module. As for

CIDEr metric, although the result of the proposed method is

FIGURE 11. Visualization of some attention masks from UCM-captions
dataset.

not the best, it is still competitive to the best performance.

In general, the comparison results on Sydney-captions dataset

reveal that better performance can be obtained with the pro-

posed method.
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TABLE 2. Comparison results of natural image captioning methods and the proposed method on UCM-captions dataset.

TABLE 3. Experimental results of different methods on Sydney-captions dataset.

3) RSICD DATASET

Following the default settings, 8,734 images (about 80%) are

used for training the proposed framework on RSICD-captions

dataset. There are 1,094 images used for validation, which

are selected randomly from RSICD dataset. The remaining

1,093 images (about 10%) are employed for test. Experimen-

tal results on RSICD dataset are displayed in Table 4. For

each metric, the best results are marked in bold. Compared

to UCM-captions and Sydney-captions dataset, RSICD is the

largest one and contains five times images more than UCM-

captions dataset. Though the maximum length of sentences in

RSICD is 34, the output length on RSICD dataset is limited to

30 in this work. This is maily due to the fact that only a minor-

ity of sentences have length longer than 30. Some image cap-

tioning examples on RSICD dataset are displayed in Fig. 12.

The image attributes are highlighted with green color.

From the results in Table 4, it is clear that the proposed

method achieves better performance than other methods in

terms of BLEU, METEOR and ROUGH_L. When compared

with FC-ATT-LSTM, the proposed method yields slightly

lower (0.005) CIDEr. However, in general, the proposed

method achieves the best performance in terms of the other

six metrics, which indicates the effectiveness of the proposed

framework.

D. ABLATION STUDY

To comprehensively evaluate the effect of the designed

submodules, ablation experiments are conducted on UCM-

captions dataset. There are two reasons for choosing

UCM dataset for ablation study. One is that it contains

2,100 images, so it is sufficient for evaluating submodules.

The other one is that it does not need too much computation

resource to conduct a series of experiments. Specifically,

five methods with different submodules are evaluated to

study the effect of the proposed submodules. VGG16 Base-

line is the model with FC feature and LSTM for decoding.

Attribute GCN is the model that employs GCN-transformed

attribute features. Multi-level Attention denotes the model

with the proposed multi-level attention module. Multi-level

Attention+Attribute means that the model uses Multi-level

FIGURE 12. Visualization of remote sensing image captioning examples
on the RSICD dataset. The image attributes are marked into green color.
(Best viewed in color).

Attention module and attribute feature for image captioning.

Finally, Multi-level Attention+Attribute GCN denotes the

model withMulti-level Attention and Attribute GCN.

In Fig. 9, the images of each column contain the same

type of objects, which shows that the object-scale varies

dramatically in UCM-Captions and RSICD dataset. The

results in Table 5 indicate that the proposed method with

multi-level attention module can improve the image cap-

tioning performance (BLEU-1) from 0.795 to 0.815 on

UCM-Captions dataset. This clear performance improvement

demonstrates that more powerful multi-scale features are

learned by alleviating the scale-variation problem with the

proposed multi-level attention module. Moreover, the Multi-

level Attention+Attribute model is also evaluated to explore

whether the feature enhancement and attribute features are

complementary for improving the performance. The results

reveal that using these two types of features together indeed

improves the performance. Finally, the full model with both

proposed sub-modules is also evaluated, which achieves

state-of-the-art results on UCM-captions dataset.

2618 VOLUME 8, 2020



Z. Yuan et al.: Exploring Multi-Level Attention and Semantic Relationship for Remote Sensing Image Captioning

TABLE 4. Experimental results of different methods on RSICD dataset.

TABLE 5. Ablation study on UCM-captions dataset.

In addition, since the attributes are obtained from the

multi-label classification network, the predicted attributes

may contain noise. This will affect the final captioning per-

formance. While with the proposed attribute GCN, the pre-

dicted attributes are more robust and confident by exploiting

the pre-computed graph information. As shown in Table 5,

the proposed Attribute GCN can improve the performance

of Attribute baseline obviously. From the comparison results,

it is clear to see that Attribute GCN sub-module can boost the

image captioning performance by introducingmore confident

attribute features.

IV. CONCLUSION

In this work, a remote sensing image captioning framework

based on multi-level attention and multi-label attribute graph

convolution is proposed to improve the performance from

two aspects. Different from previous method, the multi-

level attention module is designed to learn scale-adaptive

and position-adaptive image representations simultaneously.

By focusing on specific spatial positions and features of spe-

cific scales, the proposed framework can learn more discrim-

inative features for image captioning. Besides, the attribute

feature learning module is proposed based on multi-label

classification and GCN. By employing the semantic attribute

graph, the relationships between attributes are leveraged to

learn more robust attribute features for image captioning.

Experiments on three widely used public datasets are con-

ducted for performance evaluation. The superior results of

the proposed method indicate three main conclusions: 1)

learning more representative image features is critical for

improving image captioning performance; 2) How to learn

effective multi-scale image features is important for remote

sensing image captioning task; 3) Making better use of the

relationships between image attributes is also helpful for

image captioning.
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