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Investigations of the neuro-physiological correlates of mental loads, or states, have

attracted significant attention recently, as it is particularly important to evaluate

mental fatigue in drivers operating a motor vehicle. In this research, we collected

multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to

explore neuro-physiological correlates of drivers’ mental states. Each subject performed

simulated driving under two different conditions (well-rested and sleep-deprived) on

different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and

8 channels for fNIRS recordings. We extracted the prominent features of each modality

to distinguish between the well-rested and sleep-deprived conditions, and all multimodal

features, except EOG, were combined to quantify mental fatigue during driving. Finally, a

novel driving condition level (DCL) was proposed that distinguished clearly between the

features of well-rested and sleep-deprived conditions. This proposed DCL measure may

be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the

combination of methods based on each classifier yielded substantial improvements in

the classification accuracy between these two conditions.

Keywords: EEG/ECG/EOG/fNIRS, neuro-physiological correlates, drivers’ mental fatigue, sleep deprivation,

simulated driving, multimodal integration, driving condition level

INTRODUCTION

Neuroergonomics is an emerging field that investigates human mental states and their workloads
in order to improve the reliability of human performance, and ensure its stability in various
environments (Parasuraman, 2003; Parasuraman and Rizzo, 2008). In neuroergonomics, both the
fundamental principles of neuroscience and human factors are considered thoroughly, and neural
behaviors have been investigated primarily when people are engaged in tasks in a work environment
(Parasuraman and Wilson, 2008). Due to the implications for public safety, a major application of
neuroergonomics is the assessment of driver fatigue. In general, driver fatigue is categorized as
either mental or physical. Mental fatigue occurs because of gradual and cumulative mental effort
(Grandjean, 1979) during driving, or sleep deprivation before driving (Durmer and Dinges, 2005).
In contrast, physical fatigue represents reduced muscular strength and coordination. Physical
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fatigue may be countered by deliberate action; however, mental
fatigue is difficult to resolve. Because of mental fatigue, drivers
begin to doze involuntary, which often results in traffic accidents
(Horne and Reyner, 1999; Connor et al., 2002; Herman et al.,
2014).

One potential method that may be used to reduce traffic
accidents is to measure inherent mental fatigue before or during
driving, in order to predict a driver’s mental condition and
determine whether s/he can drive safely. Because driving requires
complex cognitive processes and sustained concentration,
predicting a driver’s mental fatigue before or during driving could
be effective in preventing traffic accidents. Thus, we attempted
in this work to explore neuro-physiological correlates in two
different conditions, one well-rested with a low risk of fatigue,
and the other sleep-deprived with a high risk of fatigue.

Among many studies performed to evaluate drivers’ fatigue
in real-time, computer vision-based systems have been used
widely. Bergasa et al. (2006) proposed a noninvasive system to
monitor a driver’s vigilance using several parameters, including
percentage or duration of eye closure, blinking, and the frequency
of nodding. By using a fuzzy classifier, the researchers then
inferred the level of the drivers’ fatigue. However, the reliability
of the findings decreased when the drivers wore glasses or the
surrounding brightness changed. To address these problems,
D’Orazio et al. (2007) designed an experimental paradigm that
incorporated conditions in which some subjects had different
eye colors, wore glasses, and drove vehicles in light of varying
intensities. Using the proposed visual framework, the authors
obtained robust results. In addition, various visual cues that
characterized eyelid, gaze, and head movements, as well as facial
expressions were employed in a probabilistic model developed
to predict fatigue (Ji et al., 2004) that yielded even more
robust results. Recently, Wang et al. (2014) developed an online,
closed-loop lapse detection system featuring a mobile wireless
electroencephalograph (EEG), and were able to extract certain
EEG signatures associated with fatigue.

To date, EEG has been found to be a promising indicator
for investigations of driver fatigue (Lal and Craig, 2001). EEG
data have shown that there is a significant increase in theta
and delta activity, and a decrease in heart rate (HR) associated
with fatigue (Lal and Craig, 2002). Further, in a subsequent
study that considered three phases of fatigue (early, medium,
and extreme), software was developed to monitor driving fatigue,
and was validated with EEG data from 35 subjects engaged in
a simulated driving task (Lal et al., 2003). Another study (Lin
et al., 2005) estimated drowsiness and driver performance by
correlating changes in log power spectra. To detect drowsiness,
they constructed an individualized linear regression model to
assess EEG dynamics continuously based on an independent
component analysis. Because drowsiness is a crucial factor
in driving, Lin and his colleagues investigated the effect of
continuous arousing auditory feedback on sustained attention in
a driving simulator (Lin et al., 2010). They found that spectral
powers in alpha and theta bands were suppressed and lasted
30 s or longer after feedback. This finding was introduced to
estimate classification accuracy; as a result, they achieved a
classification accuracy of approximately 78% using the maximum

likelihood classifier (Lin et al., 2013) and applied it to develop
an online, closed-loop system for practical lapse detection in real
environments (Wang et al., 2014).

Various other methods have been used to explore drivers’
mental fatigue, such as a support vector machine (SVM) (Shen
et al., 2008; Yeo et al., 2009), Bayesian network (Yang et al.,
2010), wavelet analysis (Kar et al., 2010; Li and Chung, 2013), and
others. In addition to EEG studies, electrocardiography (ECG)
and electrooculography (EOG) have been used to determine
neuro-physiological correlates of drivers’ mental fatigue. One
study (Patel et al., 2011) used neural network analysis and
demonstrated that the variability in drivers’ HRs differed
significantly in alert and fatigued states. They investigated the
power spectral density behaviors between the two states during
long-term driving and reported that the neural network was 90%
accurate in classifying mental state.

Eyelid-related features from EOGdata also have been reported
to be possible candidates to detect whether or not a driver
is drowsy (Hu and Zheng, 2009). In this report, they used
vertical and horizontal EOG channels to extract and validate
eye blinks according to eyelid movement parameters, such as
blink duration, speed, and amplitude. Three conditions (alert,
sleepy, and very sleepy) were classified with high reliability
using SVM. Simultaneous recording of EEG/ECG (Zhao et al.,
2012) and the combination of multimodal features from EEG,
EOG, and ECG data (Khushaba et al., 2011) demonstrated
significant differences during long-term driving. In this study,
the researchers developed an efficient, fuzzy mutual information-
based wavelet packet transformation that combined EEG, EOG,
and ECG features to detect drivers’ drowsiness; this technique
yielded a classification accuracy greater than 90%.

An emerging portable and noninvasive brain functional
imaging technique, functional near infra-red spectroscopy
(fNIRS), has been introduced to monitor cognitive workload or
fatigue in simulated environments (Ayaz et al., 2012). fNIRS data
from the prefrontal cortex were collected during a complex air-
traffic control task that required the subjects to prevent collisions
between aircraft in their sectors. As the number of aircraft in
their sector increased, a concomitant increase in prefrontal cortex
activation was observed, which suggests that fNIRS provides a
sensitive index of cognitive workload. fNIRS also demonstrated
changes in prefrontal activation during skill acquisition in both
basic working memory tasks (McKendrick et al., 2014) and more
complex piloting tasks (Harrison et al., 2014; Gateau et al., 2015).

A portable fNIRS device was developed for use in mobile
neuroimaging of the prefrontal cortex (Ayaz et al., 2013). In a
driving environment, Li et al. (2009) observed changes in cerebral
oxygenation during prolonged simulated driving. Forty healthy
subjects were divided randomly into two groups (driving vs.
non-driving), and the driving group performed a simulated 3 h
driving task. The authors found a relative increase in frontal
cortex oxygenation in the driving group by comparison to the
non-driving group, and oxygenation decreased gradually after
the driving task. Considering real driving situations, Yoshino
et al. (2013) investigated the changes in cerebral oxygen exchange
during actual driving on an expressway. An fNIRS signal was
recorded in the subjects’ parietal and prefrontal cortices using
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an fNIRS device mounted in the vehicle. They found that the
areas activated varied depending on the driving task, such as
parking, acceleration, driving at constant speed, deceleration, and
U-turns. Thus, the use of fNIRS may be an effective approach to
evaluate brain activity in various driving environments.

Recently, hybrid approaches that combine two different
modalities (Pfurtscheller et al., 2010) to improve performance
and reduce classification error have been reported as promising
for future brain-computer interfaces (BCI). One example of a
hybrid BCI that incorporates both EEG electrical activity and
fNIRS hemodynamic changes yielded improved classification
performance in sensorimotor rhythm-based BCI systems (Fazli
et al., 2012). The researchers calculated classification accuracies
in the movements executed and motor imagery by estimating a
meta-classifier. After the estimation of both classifiers (EEG and
fNIRS), the combination of outputs of each classifier resulted
in improved classification accuracy. Khan et al. (2014) decoded
four movement directions (left, right, forward, and backward)
using the mixed features of EEG and fNIRS, in which EEG
features were used to classify left/right, and fNIRS features were
used to classify forward/backward. In addition, hybrid BCI may
be used as a brain switch that determines whether a certain
task is active. Koo et al. (2015) employed a novel experimental
paradigm to detect the occurrence of motor imagery in fNIRS
data. Threshold-based detection with a feature value of the fNIRS
data determined whether or not the action of a motor imagery
task was attempted. The combination of EEG and fNIRS is
also applicable to language studies (Wallois et al., 2012) and
cortical current estimation (Morioka et al., 2014). Hybrid BCIs
may provide a good opportunity to increase BCI performance
by offering the synergistic effects of multimodal brain imaging
techniques.

In this work, we recorded multimodal EEG/ECG/EOG and
fNIRS data simultaneously in a driving simulator and combined
their features to distinguish drivers with high- and low-risks of
fatigue using neuro-physiological correlates and a classification
method. Hemodynamic changes in the prefrontal cortex (Li et al.,
2009; Ayaz et al., 2012, 2013; Yoshino et al., 2013; Harrison et al.,
2014; McKendrick et al., 2014; Gateau et al., 2015) have been
used to neuro-physiological correlates, and these activities were
reported to play an important role in neuroergonomics, such as
mental workload (Mandrick et al., 2013a), cognitive operation
(Mandrick et al., 2013b), and emotional function (Doi et al.,
2013). Furthermore, it is clear that EEG, ECG, and EOG are also
promising indicators that may be used to investigate the neuro-
physiological correlates of drivers’ mental fatigue (Lal and Craig,
2001). Therefore, combining this hybrid system with prefrontal
fNIRS may be a far more informative measure for identifying
neuro-physiological correlates under varying driving conditions.
To the best of our knowledge, this multimodal approach has been
tested rarely to explore neuro-physiological correlates of drivers’
mental fatigue.

Thus, the goal of this study was to determine modality-
specific features of EEG, EOG, ECG, and fNIRS. These features
were then used to distinguish between well-rested and sleep-
deprived conditions, and resulted in a classifier that showed
whether or not a driver was in an alert mental state. The

use of a reasonable combination of these multimodal features
may improve classification accuracy and its quantification
may yield a real-time strategy to monitor drivers’ mental
fatigue.

MATERIALS AND METHODS

Experimental Procedure
Eleven healthy subjects (10 males, 1 female, aged 26.6 ± 1.4,
range = 24–28) who had valid driver’s licenses participated in
a custom-built virtual driving simulation task, as depicted in
Figure 1A. The subjects practiced repeatedly until they were
familiar with the simulation system. The purposes of, and
instructions for, the experiment were explained in advance, and
all of the subjects signed an informed consent. Subjects received
approximately $10 per h as compensation for their participation.
Each subject performed simulated driving under two conditions
(well-rested and sleep-deprived) on different days. Under the
well-rested condition, subjects were instructed to sleep at least 7 h
before the experiment, as sleeping seven or more hours is known
to maintain healthy mental alertness (Kripke et al., 2002). In the
sleep-deprived condition, the subjects were instructed to stay up
all night in order to produce mental fatigue.

Driving tests in both conditions were performed before
9 a.m. In this experiment, we assumed that subjects would
be significantly mentally fatigued after one night of sleep
deprivation. To determine the degree of fatigue produced by
sleep deprivation, a subjective questionnaire was administered
to the subjects before the experiment to score their levels of
fatigue, and the scores demonstrated clearly that the sleep-
deprived subjects were substantially more fatigued than were the
well-rested subjects. The subjects sat in a comfortable driver’s
seat and drove on an oval track for a minimum of 30min. The
maximum driving speed was set at 100 km/h in both conditions.
The steering wheel vibrated whenever the vehicle collided with a
crash barrier in order to prevent the drivers from falling asleep
completely. A high-definition webcam (Logitech HD Pro C920)
was used to record each subject’s behavior in real-time. This
experiment was approved by the Institutional Review Board at
the Gwangju Institute of Science and Technology (20150615-HR-
18-02-06).

Data Recording of EEG/ECG/EOG and
fNIRS
Sixty-four EEG electrodes were attached to the drivers’ scalps
according to the 10–20 international position system. Horizontal
and vertical EOGs were used and two ECG electrodes were
attached to the left/right chest (Biosemi ActiveTwo System).
These data were collected at a 512Hz sampling rate using
BCI2000 software (Schalk et al., 2004). Biosemi ActiView
software monitored the stability and reliability of the EEG signal.
After the experiment, bad channels that contained abnormal
noise were identified by visual inspection and excluded from the
analysis.

A custom-built fNIRS system (continuous wave, 10Hz
sampling rate) was used to record hemodynamic changes in
the brain. This was an updated version of one described in a
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FIGURE 1 | Experimental setup for simulated driving. (A) Driving simulation environment with EEG/ECG/EOG/fNIRS measurements. (B) fNIRS setup in the

prefrontal cortex. Two emitters and eight detectors (eight channels) were attached to the forehead. The distance between emitter and detector was 3 cm.

previous work (Kim et al., 2015). The system consists of probe
and control circuits. The probe includes 2 LEDs (emitters) and 8
photodetectors (detectors). The LEDs emit near infrared (NIR)
light at two wavelengths (735 and 850 nm). The emitter and
four surrounding detectors were separated by 3 cm, as Homma
et al. (1996) suggested that in soft tissues, NIR is able to
attain a penetration depth equal to half of the emitter-detector
separation. Therefore, with a 3.0 cm emitter-detector separation,
our system should have been able to collect brain activity at
a depth of 1.5 cm below the scalp. An emitter-detector pair
form one fNIRS channel that measures hemodynamic changes
midway between the emitter and the detector. Given a suitable
geometric arrangement, many detectors may receive light from
one emitter. This enabled us to design an 8-channel probe with
2 LEDs and 8 photodetectors. The 8-channel probe was attached
to the prefrontal region to investigate the subjects’ mental state,
as illustrated in Figure 1B (Li et al., 2009; Sato et al., 2013).
The control circuit receives a signal from the probe, amplifies it,
and sends it to the computer via serial communication. Matlab-
based software was programmed to record, process, and display
the hemodynamic signals. Interference between EEG/EOG/ECG
electrodes and fNIRS emitters has been observed and is believed
to result from light leakage from the emitters, which may cause
deterioration in the quality of electrical data (Koo et al., 2015).
This interference was removed by blocking light leakage from
the emitters and applying a simple pre-processing technique.
Two desktop computers were used to record the EEG/ECG/EOG
and fNIRS data simultaneously. Triggers for start and end times
were sent to the BCI2000 software to synchronize themultimodal
EEG/ECG/EOG and fNIRS data. The computer that recorded
EEG/ECG/EOG data sent a start trigger, at which time the second
computer began to record fNIRS data. The end time of the
experiment was marked in the same way.

Data Analysis
Feature Extraction and Classification from EEG

After the experiment, the data collected were inspected
visually and bad channels were rejected. The logistic infomax
independent component analysis (Bell and Sejnowski, 1995) was

used to remove EOG artifacts and the data were then band-
pass filtered from 1 to 50Hz. We analyzed data from the first
30min only after the drivers began the task, because fatigue levels
between well-rested and sleep-deprived subjects were likely to be
quite different during the initial minutes of driving. From the
real-time webcam video monitoring data, we observed that even
some well-rested subjects became drowsy and quite bored after
that length of time.

EEG data (30min) were divided into 10 s (a trial) to yield
a total of 180 trials for each driving condition. A power
spectral density was computed for each trial using the EEGLAB
library (Delorme and Makeig, 2004), and a relative power
level (RPL) was computed in order to reduce session/subject
variability (Ahn et al., 2013a,b, 2014; Cho et al., 2015). To
calculate the RPL, we considered five spectral band ranges:
delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–
30Hz), and gamma (30–50Hz). Next, each band-power was
normalized by the total power, defined as the sum over all
band powers, after which we extracted the most informative
RPL features between the two driving conditions. On the
other hand, to discriminate between the well-rested and sleep-
deprived conditions, pre-processed data (180 trials) from each
driving condition (well-rested and sleep-deprived) were firstly
divided into 2 groups (training and test) and according to
time sequence; training and test groups were composed of
126 (70%) and 54 trials (30%), respectively. Then, to avoid
temporal dependency between groups, last 6 trials (1min)
for each group were excluded; thus, for each of driving
conditions, 120 and 48 trials for training and test were obtained,
respectively. By this grouping, temporal dependency (adjacency)
was included within groups, but was excluded between groups.
This procedure was repeated 30 times by sliding temporal
window of 1min (6 trials) and then choosing training and
test groups. Thereafter, each feature vector of the training and
test data using RPL was fed into the classifier. The training
group was used to construct a classifier based on Fisher’s linear
discriminant analysis (FLDA), and the test group was input
to a constructed classifier in order to measure classification
accuracy. A classifier was generated from the training data and
the classification accuracy was estimated from the test data.
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Finally, 30 classification accuracies were estimated to obtain an
average accuracy.

Feature Extraction and Classification from ECG and

EOG

The HRs of each subject were extracted using two ECG channels
(left/right chest). During pre-processing, ECG data were band-
pass filtered from 0.1 to 30Hz and were detrended to remove
the baseline shift. After detrending, a QRS-complex was observed
to be the most prominent repeating peak in the ECG signal.
The QRS-wave is used commonly to determine subjects’ HRs
or predict abnormalities in cardiac function. Specifically, the
emergence of an R-peak indicated a subject’s HR clearly and
was extracted easily by adjusting a deterministic threshold of the
ECG magnitude. Next, the number of R-peaks per minute was
counted and used to determine HR per minute. HRs from the
two ECG channels on the left and right chest were calculated
for the entire 30min and averaged to reduce possible detection
error and bias. To classify mental state from the ECG data, we
adopted the extraction of RR-peak interval features (de Chazal
et al., 2004). After detection of the R-peak in each 10-s trial, the
intervals between one R-peak and the next were averaged, and
the procedure was repeated for all trials. In this way, 180 R-peak
intervals were estimated as a feature set. The EOG signal was
used to extract the rate of eye blinking in each 1-min trial, which
has been reported to be associated well with a human’s mental
state (Schleicher et al., 2008): when the eye blinks, a clear, sharp
wave is observed. After baseline drift removal was applied, a peak
detection algorithm (Pettersson et al., 2013) was used with a given
threshold of signal magnitude. Finally, the number of peaks per
minute, which represented the eye-blinking rate, was used as the
EOG feature.

Feature Extraction and Classification from fNIRS

We adopted the modified Beer-Lambert’s law (mBLL) to retrieve
relative concentration changes from the light intensities of the 8
detectors (Cope et al., 1988; Kocsis et al., 2006). The change in
optical density at two wavelengths (735 and 850 nm) is related
to changes in oxy-hemoglobin concentration (HbO) and deoxy-
hemoglobin concentration (HbR). Data with abnormal noise
were removed by visual inspection, and the remaining data were
filtered with a 0.01Hz high-pass filter to remove baseline drifts.
Light intensities for 30 s after the initiation of the experiment
were averaged and set as baseline intensities. HbO and HbR were
estimated with the following equations:

△HbO =

log
I
λ1
b

I
λ1
t

ε
λ2
HbR

− log
I
λ2
b

I
λ2
t

ε
λ1
HbR
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ε
λ1
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ε
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HbR

− ε
λ2

HbO
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where
Iλ
b

: baseline intensity (λ1 : 735 nm λ2 : 850 nm)

Iλt : transient intensity

d: emitter − detector separation
ε
λ
Hb

: extinction coefficient
DPF : differential path length factor

In continuous wave fNIRS, the differential path length factor
(DPF) is unknown. However, it is similar for both wavelengths
and is included conventionally in the unit of hemodynamic
changes as a scaling factor. Thus, HbO and HbR have the same
unit of mM/DPF, and the extinction coefficients are specific
for HbO and HbR at each wavelength. Matcher et al. (1995)
measured extinction coefficients of hemoglobin at different
wavelengths as follows:

at wavelength λ1= 735 nm,

ε
λ1
HbO

= 0.4646mM−1cm
−1

and ε
λ1
HbR

= 1.2959mM−1cm
−1

,

at wavelength λ2= 850 nm,

ε
λ2
HbO

= 1.1596mM−1cm
−1

and ε
λ2
HbR

= 0.7861mM−1cm
−1

.

Like EEG feature extraction, 10 s of data were defined as one trial,
which yielded a total of 180 trials per condition. Next, relative
concentration changes were estimated for each trial. To reduce
the effects of fluctuations and noise, fNIRS data were smoothed
using 10-s temporal windowing with a 50% overlap. Finally, the
amplitudes of HbO and HbR were used as informative features
for classification of the two driving conditions.

RESULTS

Relative Power Level from EEG
We investigated RPL values over five spectral bands—delta, theta,
alpha, beta, and gamma—and found that the RPL values for
delta, theta, and gamma did not differ statistically between the
two driving conditions. However, alpha and beta RPL values
differed clearly in the two conditions, as shown in Figure 2A.
Grand-averaged topographies were described for each condition,
and alpha RPL in the sleep-deprived condition was activated
to a greater degree in the right centro-parietal region. Such an
increase in alpha power has been reported in the literature as
a notable marker in driving (Lal and Craig, 2001; Simon et al.,
2011). A decrease in beta RPL over the fronto-central region was
observed in the sleep-deprived condition. This decrease in beta
power may indicate a lack of arousal, which is consistent with
the results of several studies (Tanaka et al., 2012; Zhao et al.,
2012).

Figure 2B shows the distributions of alpha and beta RPLs
from subject S5 in a two-dimensional Cartesian coordinate
space. We note that most subjects showed similar physiological
behaviors, and S5’s results were chosen as representative because
they yielded the highest classification accuracy in the EEG,
as shown in Table 3. For the purposes of consistency and
comparison, the other results (ECG, fNIRS) from subject S5
are also illustrated in the subsequent sections. Each RPL was
averaged spatially over significant regions, such as the centro-
parietal for alpha and the fronto-central for beta. Each dot
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FIGURE 2 | Relative power levels from EEG in two different conditions. (A) Grand-averaged alpha and beta RPLs in well-rested and sleep-deprived conditions.

Alpha and beta RPLs differed significantly in the right centro-parietal and frontal regions, respectively. (B) Scatter plot of alpha (x-axis) and beta (y-axis) RPLs in two

driving conditions (red asterisk: well-rested, blue circle: sleep-deprived) for subject S5. (C,D) Indicate alpha and beta RPLs in the well-rested and sleep-deprived

conditions, in which subject S5 had the highest and S2 had the lowest classification accuracy, respectively.

represents corresponding alpha (x-coordinate) and beta (y-
coordinate) RPLs for one trial in each condition (well-rested
and sleep-deprived). In the well-rested condition, most RPL dots
were distributed in the upper left area in R2 space, while they
were distributed in the lower right area in the sleep-deprived
condition. Thus, these features (centro-parietal alpha RPL and
fronto-central beta RPL) in the dataset collected allowed us to
achieve a discriminative classification between the two driving
conditions quite well.

To investigate inter-subject variability (Ahn and Jun, 2015),
we plotted RPL topographies in Figures 2C,D, respectively, for
two subjects who achieved the highest (S5) and the lowest
(S2) EEG classification accuracies (Table 3). As depicted in the
figures, subject S5 showed a clear alpha RPL increase in the
right centro-parietal region and beta RPL decrease in the fronto-
central region in the sleep-deprived condition. In contrast,
subject S2, who demonstrated the lowest classification accuracy,
showed a slight alpha RPL increase and a beta RPL decrease
in the sleep-deprived condition. Interestingly, this subject (S2)
was likely to have been fatigued already, despite being in the

well-rested condition before the experiment. Our investigation
of this subject will be described in detail in the Discussion
section.

Time Course of Relative Concentration
Changes from fNIRS
The time course of the relative concentration changes of HbO
and HbR were estimated through mBLL. Figure 3 depicts
the concentration changes at channels 1 and 5 for subject
S5. Because all channels were attached to the prefrontal
cortex, they all showed similar behaviors over time. Thus,
for the purpose of illustration, we chose two representative
channels (1 and 5). The concentration changes of HbO
increased gradually over time in the well-rested condition
and demonstrated the highest level at channels 1 and 5
between 20 and 30min. Paying attention while driving a vehicle
requires high oxygen consumption in the brain, which induces
an increase in cerebral blood flow; this increase in cerebral
oxygenation, as shown by an increase in HbO and decrease in
HbR, indicates that the cerebral blood flow increased during
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FIGURE 3 | Time course of relative concentration changes of HbO and HbR (channels 1 and 5). Solid, thick red and blue-colored lines indicate HbO for

well-rested and sleep-deprived conditions, respectively. Dashed thin lines indicate HbR in the two conditions.

driving under the well-rested condition. On the other hand,
concentration changes of HbO decreased slightly (Channel 1)
or remained stable (Channel 5) compared to the baseline, and
HbR concentration maintained baseline values while driving
under the sleep-deprived condition. Less oxygen may be
consumed when mentally fatigued, and therefore, brain activity
is likely to be suppressed, resulting in less blood flow to the
brain.

Reduced Heart Rate and Eye Blinking in
the Sleep-Deprived Condition
The mean HRs of all subjects were calculated from ECG signals
over the entire 30-min driving period (average of varied HRs),
as tabulated in Table 1 and depicted in Figure 4A. As shown in
the table and figure, HRs in the sleep-deprived condition were
significantly lower than were those in the well-rested condition
for all subjects (p < 0.01, Wilcoxon signed-rank test). Figure 4B
shows the HR of subject S5 over time (from initiation to 30min of
driving). HRs in the well-rested condition were higher than those
in the sleep-deprived condition; however, the difference in the
HR between the two conditions decreased gradually as driving
time increased and became quite small at the end of the driving
task (∼30min). We deduced from this time variance in the HR
that even a well-rested driver began to feel fatigued after some
duration of driving and was considerably fatigued by the end of
the task.

Because of the EOG signal, we expected that subjects in the
sleep-deprived condition would demonstrate a relatively higher
rate of eye blinking than those in the well-rested condition.
Instead, we observed (not shown here) that some subjects
showed higher rates of eye blinking in the well-rested than
in the sleep-deprived condition, although the differences were
not statistically significant. From the video data, we found
that these subjects closed and opened their eyes frequently to
overcome drowsiness, and this action on their part may have

affected seriously the rate of eye blinking derived from the EOG
data.

Driving Condition Level and Relative
Driving Condition Level
We attempted to demonstrate that it may be possible to evaluate
neuro-physiological correlates of drivers’ mental fatigue using
the significant features found in EEG, ECG, and fNIRS data. To
that end, we used the three factors extracted from multimodal
signals in the previous sections: RPL (ratio of beta to alpha)
from EEG, HbO from fNIRS, and the averaged HR from ECG.
Each feature was normalized by scaling between 0 and 1 for
equal contribution, as formulated in Equation (3). Each value
of the EEG, ECG, and fNIRS was distributed well between
those values. Significantly abnormal values—greater than 95%
(mean ± 2∗σ)—were considered outliers and were shrunk to
their maximum or minimum values in the feature set. The
summation of all three normalized factors was proposed as the
driving condition level (DCL), as depicted in Equation (4). In
addition, we estimated the relative difference in DCL between
the well-rested and sleep-deprived conditions (rDCL), which
represented the degree of the drivers’ fatigue compared to that
in the well-rested condition, as defined in Equation (5); a higher
rDCL indicates greater fatigue.

norm(x) =
x−min(x)

max (x) −min(x)
, (3)

DCL = norm

(

beta RPL

alpha RPL

)

+ norm(HbO)

+ norm(HR), (4)
(

0 ≤ norm
(

beta RPL
alpha RPL

)

norm(HbO)norm(HR)

≤ 1, 0 ≤ DCL ≤ 3
)

rDCL (%) = 100−
DCLsleep−deprived

DCLwell−rested
∗ 100, (5)
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FIGURE 4 | Heart rates from ECG in two different conditions. (A) Averaged heart rates for all subjects in well-rested and sleep-deprived conditions. (B) Subject

5’s HRs over time. Each HR was estimated every minute.

TABLE 1 | Averaged heart rates (HRs) in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean p-value

Well-rested 71.6

(2.0)

65.3

(2.2)

78.5

(2.3)

76.2

(2.5)

71

(2.8)

68.2

(1.4)

68.1

(2.3)

76.8

(2.2)

66.7

(3.1)

65.7

(1.9)

60.9

(2.9)

69.9

(3.3)
0.0009

Sleep-deprived 62

(0.5)

58.2

(2.7)

61.3

(2.1)

55.7

(2.6)

62.3

(2.2)

64.2

(1.1)

63

(2.2)

67.3

(3.7)

64.2

(3.8)

62.4

(1.4)

59.2

(1.9)

61.8

(3.5)

Values in parentheses indicate standard deviations for each HR. The Wilcoxon signed-rank test was performed.

Using our proposed definition of DCL (Equation 4), DCL values
were estimated in the two conditions for each subject. For all
subjects, 30min of multimodal data were used to estimate the
values. DCL ranged from 0 to 3, with a smaller DCL indicating
greater fatigue. These DCL values are tabulated in Table 2.
Subject S8 showed the highest DCL value in the well-rested
condition, while subject S4 showed the lowest DCL value in
the sleep-deprived condition. We found that the two drivers’
conditions (well-rested and sleep-deprived) differed significantly
(p < 0.01, Wilcoxon signed rank test). In addition, rDCL,
which represents the percentage of the fatigue in a drivers’
mental condition, was introduced in this work. All rDCLs
were consistently greater than 30%, except for those for two
of 11 subjects (S7 and S9); thus, when rDCL is tuned more
finely with more data, it may be used as a predictor of mental
fatigue.

To investigate the drivers’ mental fatigue over time, each
DCL value (per a minute) was estimated by extracting features
of RPL (beta over alpha), HbO, and averaged HR. Figure 5
shows the DCL values of subject S5, in which the values
decreased gradually over time in the well-rested condition, and
remained consistent at approximately 1 in the sleep-deprived
condition. Sleep-deprived subjects were quite fatigued already

at the beginning of the driving task. From the questionnaire,
we found a weak correlation (r2 = 0.42) between rDCL
values in the sleep-deprived condition and subjects’ reported
degree of sleepiness (1: rarely sleepy to 5: very sleepy). The
average scores for sleepiness over all subjects were 1.4 and 4.1
in the well-rested and sleep-deprived conditions, respectively,
while the average hours of sleep reported were 7.36 and 0 h,
respectively.

Multimodal Integration to Determine
Neuro-Physiological Correlates
In this work, we recorded simultaneous EEG/ECG/EOG and
fNIRS signals for multimodal analysis. Multimodal integration
is an efficient technique that yields important insights into brain
processes (Uludağ and Roebroeck, 2014). Even though the EOG
signals did not differ statistically in this work, they were used
to eliminate eye movement artifacts in the EEG data. On the
other hand, EEG/ECG and fNIRS data yielded clear features
that discriminated between the driving conditions, and each
feature from the three different modalities differed significantly
between the well-rested and sleep-deprived conditions. Based on
these features, DCL (summation of these normalized factors) was
proposed to determine neuro-physiological correlates of drivers’
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TABLE 2 | Driving condition level (DCL) in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

Well-rested 2.52 2.48 2.31 2.04 2.24 2.75 1.94 2.80 1.94 2.01 2 2.34

Sleep-deprived 1.47 1.17 1.44 1.07 1.11 1.73 1.42 1.88 1.54 1.19 1.21 1.39

rDCL (%) 41.7 52.8 37.7 47.5 50.2 37.1 26.7 32.9 21 40.8 39.5 40.7

Relative DCL (rDCL) indicates percentage of fatigue level by comparison to well-rested condition.

FIGURE 5 | Comparative driving condition level behavior in well-rested

and sleep-deprived conditions while subject S5 was driving. Each point

represents the averaged DCL value during one minute of driving. Red circles

and blue squares represent the DCL in the well-rested and sleep-deprived

conditions, respectively.

mental fatigue in a quantitative manner. As a result, we observed
that DCL may offer a reasonable method to discriminate well
between the two driving conditions. To illustrate the individual
contribution of each modality to the differences in DCL between
the two driving conditions, the modality-specific contributions
are shown for all subjects in Figure 6. Accumulation of the
three colored bars indicates DCL differences in the multimodal
data (EEG+ECG+fNIRS), which represent the synergistic effect
of these data. As shown in this figure, subjects S2 and S4
demonstrated the greatest differences in DCL, while the DCL of
subjects S7 and S9 differed the least between the two conditions.
Because of the unbiased combination, the averaged contributions
of each modality (EEG, ECG, and fNIRS) to the DCL differences
were quite similar (0.46, 0.45, and 0.46, respectively).

Comparison of Hybrid Approaches Using
EEG/ECG and fNIRS
To investigate the hybrid effect of the classification for the two
different driving conditions, we compared various combinations
of modalities with respect to the classifiers’ outputs. For the
combined classifiers in each modality, each classifier’s outputs
(EEG, ECG, and fNIRS) were regarded as features of the second
classifier. Thereafter, the outputs of the second classifier represent
the results of the combined classifiers. A flow diagram of this
procedure is depicted in Figure 7.

Classification accuracies of single modalities (EEG, ECG,
fNIRS) and all combinations of modalities (EEG+ECG,

FIGURE 6 | DCL difference (subtraction of sleep-deprived from

well-rested) for all subjects. Each color represents modality-specific

contribution to DCL difference (red: EEG, green: ECG, blue: fNIRS).

Summation of the three colored bars indicates the synergistic effect of

multimodal data on classification between the two driving conditions.

EEG+fNIRS, ECG+fNIRS, and EEG+ECG+fNIRS) at the
classification level are summarized in Table 3. Most of the
subjects (8 of 11) achieved improved performance in the
combined EEG+ECG+fNIRS, and the average performance of
this combination was greater than that of the others. A one-way
ANOVA conducted on the seven different approaches indicated
that there was a considerably significant difference [F(6, 70)
= 4.38, p = 0.0008 < 0.10]. Further, the EEG+ECG+fNIRS
combinations differed significantly from the others (p < 0.05,
Wilcoxon signed-rank test). Each level of significance is marked
with asterisks in Table 3. Notably, subject S6 showed the greatest
improvement (∼30.5%) in the EEG+ECG+fNIRS combination
compared to EEG only.

DISCUSSION

EEG Spectral Changes and Driving
Conditions
To date, most researchers have investigated driving fatigue
using EEG changes, which are promising indicators of this
phenomenon (Lal and Craig, 2001), and EEG has the
advantages of being portable, noninvasive, inexpensive, and
safe to measure during driving. With EEG recording, Lal
and Craig (2002) found substantial increases in delta, theta,
and alpha activity in the transition to fatigue, which was
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FIGURE 7 | Flow diagram for classifier combination. Each classifier’s output is regarded to second classifier’s input.

TABLE 3 | Classification accuracies in well-rested and sleep-deprived conditions.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

**EEG 61.3 52.1 58.9 54.4 70.8 55.2 68.9 64.3 61.0 52.2 58.1 59.7

**ECG 79.4 72.0 52.8 76.3 60.5 52.3 63.9 72.2 61.2 58.8 59.7 64.5

*fNIRS 68.4 84.5 55.6 65.9 76.8 80.8 72.9 61.5 52.6 57.7 58.3 66.8

**EEG+ECG 76.2 60.0 74.3 68.1 72.9 68.9 64.3 73.5 71.4 60.4 69.5 69.0

**EEG+fNIRS 83.3 63.3 66.7 65.5 72.7 63.3 63.3 70.0 73.3 60.3 70.0 68.3

**ECG+fNIRS 82.8 64.8 63.3 73.3 73.3 73.3 60.0 76.7 63.3 56.7 73.3 69.2

EEG+ECG+fNIRS 84.5 73.7 71.8 77.9 78.1 85.7 67.0 83.8 74.6 62.4 75.2 75.9

The highest accuracies among seven approaches are displayed in bold. Asterisks indicate the level of signficance with the EEG+ECG+fNIRS combination (**p < 0.01: *p < 0.05).

consistent with existing findings described in a review paper
(Sahayadhas et al., 2012). Alpha activity is believed to be
the most prominent indicator of driver fatigue. With this
reasoning, Simon et al. (2011) verified alpha spindle activity
based on a short-time Fourier transformation in real traffic
conditions. Statistical analysis of these actual driving data
revealed significant increases for all alpha spindle parameters,
such as rate, duration, amplitude, and power, between the
awake and drowsy states during 20min of driving. Similarly,
in the EEG recordings in this work, we observed a significant
increase in alpha based on RPL. To reduce session and subject
variability, a normalized alpha RPL was introduced and a
significant alpha RPL difference was found in the centro-parietal
region.

It is known that attention is also correlated with alpha
power suppression. In our experiment, visual attention may
be expected to be related closely to a simulated driving task.
Such visual attention-related alpha power suppression may
be observed normally in the occipital region, as reported in
previous studies (Worden et al., 2000; Sauseng et al., 2005;
Rihs et al., 2007). However, in our study, notable alpha
suppression was observed in the centro-parietal region alone,
which is consistent with results in previous studies of fatigue
(Lal and Craig, 2001, 2002; Simon et al., 2011; Sahayadhas
et al., 2012). For this reason, it is clear that a reduction
in power in the alpha band was correlated with fatigue in
this experiment. We observed beta RPL changes in the sleep-
deprived condition, and beta power may be an additional
indicator of mental fatigue. Tanaka et al. (2012) found that
beta power densities decreased significantly after tiring cognitive

tasks. They calculated EEG power spectra in each band and
showed that beta waves decreased significantly in the fronto-
central region with increased driving times. It also has been
reported that beta rhythm is associated closely with increased
alertness and arousal (Okogbaa et al., 1994), which is likely
to be applicable to driving situations (Yeo et al., 2009; Yang
et al., 2010; Zhao et al., 2012). In this work, we inferred that
the lack of arousal and alertness caused by mental fatigue and
sleep deprivation may result in a decreased beta rhythm during
simulated driving.

Until now, most studies related to the detection of mental
fatigue during driving have been experimental, and driving
conditions have been divided according to the elapsed duration
of driving. For example, data from the first 10min have been
considered to be the normal condition, while those from the
last 10min were specified as the fatigued condition (Li et al.,
2009; Simon et al., 2011). Such an approach may not be
appropriate, however, as some people may not develop fatigue
even after 2–3 h of driving, especially professional drivers.
Therefore, in order to discriminate between high- and low-risk
conditions explicitly, each subject was both at high and low
risk of fatigue before the driving tests, depending on how
many hours they slept at night. Because sleep deprivation
is well known to affect decision-making, attention, vigilance,
human performance, and mental fatigue (Åkerstedt et al., 2004;
Alhola and Polo-Kantola, 2007), it is appropriate to refer
to sleep deprivation as analogous to fatigue. In addition, in
our driving simulator, the steering wheel vibrated whenever
the car crashed into a barrier to prevent drivers from
actually falling asleep. Preventing the subjects from falling
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asleep may have suppressed activation in the delta and theta
bands because these waves are associated closely with deep
sleep (Maquet et al., 1997) and REM sleep (Jouvet, 1969),
respectively.

Observations of Fatigue in the Well-Rested
Condition
Before the experiment, all subjects with well-rested condition
were instructed to sleep over 7 h to ensure that they were
mentally alert and physically refreshed. However, several subjects
experienced fatigue in the driving task nonetheless, due to
various internal or external environmental factors, even though
they reported that they had slept well the previous night.
Subjects S7 and S9 had the lowest DCL values in the well-
rested condition, as shown in Table 2 and Figure 6. According
to their questionnaires, these two subjects recorded a score of
2 in the sleepiness section (1: rarely sleepy to 5: very sleepy)
prior to the experiment, yet they often nodded off during driving.
Their behavior was recorded on the HD-Webcam, and showed
clearly that they were drowsy. Furthermore, they reported
scores of 4 and 5, respectively, on the sleepiness scale after the
experiment. Figure 8 represents the DCLs for these two subjects
over time. As shown, their DCLs in the well-rested condition
were similar to those in the sleep-deprived condition. The DCLs
fluctuated in the well-rested condition, as shown by repeated
increases and decreases. Moreover, these two subjects achieved
low classification accuracies in a single modality, as shown in
Table 3, although their accuracy improved when measured with
mixed features. Clearly, we believe that these two subjects were
likely to have been fatigued despite their assignment to the well-
rested condition. In this work, we used the HD-webcam only to
monitor the subjects, and did not measure or analyze behavioral
data. Analyzing subjects’ behavior in real-time, such as head

or eye movements, may offer supporting evidence that some
subjects slept well but experienced mental fatigue nonetheless.
We will collect such behavioral data in the online mental fatigue
monitoring system, which is currently under investigation.

Temporal Mismatch between EEG and
fNIRS
Recently, many studies have tried to combine EEG and fNIRS
to improve classification accuracy or increase the degrees of
freedom in BCI systems (Fazli et al., 2012; Khan et al., 2014;
Putze et al., 2014; Koo et al., 2015; Yin et al., 2015). However, the
fNIRS systemmeasures hemodynamic change, which is a delayed
response compared to neuronal electrical activity, and it also has
a relatively low temporal resolution (<10Hz), both of which are
critical drawbacks in fNIRS measurements. Because of their low
temporal resolution, it is sometimes difficult to combine fNIRS
data with other brain imaging data. Nevertheless, one of the most
significant merits of the fNIRS system is its ability to measure
oxygen consumption related to blood flow in the brain, similar
to that in functional magnetic resonance imaging (fMRI), and
fNIRS has been nicknamed the portable fMRI for this reason.

Considering the advantages and drawbacks of the fNIRS
system, we calculated the features during each 1-min period
throughout the dataset in this work. Each minute in the 30min
of data yielded a DCL value, which was used to discriminate
between the well-rested and sleep-deprived conditions. In
addition, oxygen consumption in the prefrontal cortex may
represent cognitive workload or fatigue (Ayaz et al., 2012, 2013;
Harrison et al., 2014; McKendrick et al., 2014). Therefore, it
is likely that fNIRS may be a significant indicator of mental
fatigue, and we are sure that employing multimodal data is quite
useful in monitoring mental fatigue. Also, the prefrontal cortex
is related closely to mental workload (Mandrick et al., 2013a)

FIGURE 8 | Driving condition level of subject S7 and S9 in two conditions per 1min over time. Red-circle and blue-square represent the driving condition

level in well-rested and sleep-deprived conditions, respectively.
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and the performance of cognitive tasks (Mandrick et al., 2013b).
For these reasons, we introduced the prefrontal fNIRS in this
work. However, whole head fNIRS would be beneficial and will
be considered in our future work.

Limitations and Future Work
We proposed here an indicator of drivers’ mental fatigue
(Equation 4) that was able to discriminate the drivers’ mental
conditions well. To include equal contributions of EEG, ECG,
and fNIRS features in the indicator, we normalized and
summed all three. Further, all three were weighted equally
to calculate the indicator, although this might not be an
optimal method of quantification. Therefore, we calculated a
new indicator using a weighting factor of [DCL = a ∗

norm
(

beta RPL
alpha RPL

)

+ b ∗ norm
(

HbO
)

+ c ∗ norm(HR)]. Each

weighting factor was defined between 0 and 1 with increments
of 0.10; thus, we were able to search for the highest DCL
difference in the two conditions (subtraction of sleep-deprived
from well-rested). As a result, they had values comparable
to those with equal weights and we observed no significant
improvement. Even though we were able to apply elegant
optimization methods, a somewhat better indicator may be
achieved.

The primary reason to monitor drivers’ mental fatigue is to
prevent car accidents by providing drivers with a rapid and
reliable alarm. To achieve this purpose, both making predictions
before driving and monitoring a driver’s condition in real-time
are potential approaches. Our proposed rDCL (Equation 5) can
predict a driver’s fatigue prior to driving if training data can
be obtained when the driver is in an alert state. Compared
with DCL in the well-rested condition, the driver’s condition
prior to driving may be pre-checked by estimating the DCL.
Although we used the entire dataset obtained during 30min in
the well-rested condition in this work, data of a shorter duration
could be used for baseline. We are investigating the minimum
duration needed to predict drivers’ fatigue now. Another
approach to accident prevention is to monitor drivers’ fatigue in
real-time.

We performed only an offline analysis in this work, and
normalized DCL values were estimated each minute. For online
monitoring, however, normalization of each modality’s features
is quite difficult to implement based on current methods
available. One possible approach to solve the normalization
issue is to record resting data before driving and use them
as baseline data. Alternatively, an adaptive normalization
method that updates feature values in real-time is a candidate.
We are investigating the most appropriate normalization
method for a subsequent online mental fatigue monitoring
system.

In this work, we attempted to analyze multimodal data
with simultaneous recordings of EEG/ECG/EOG and fNIRS.
One of the advantages of multimodal signal integration is that
each imaging method provides a physiologically and physically
filtered view of one or more brain processes of interest. Thus
far, the EEG-fMRI combination has been investigated widely,
especially in epilepsy research, to help localize specific regions

(Rosenkranz and Lemieux, 2010) by improving spatial and
temporal resolution. Now, the EEG-fNIRS combination may be
an alternative imaging method with merits that include low cost
and simple implementation.

In this study, we custom-built an fNIRS that was already
validated in previous study (Kim et al., 2015), and thus enabled
us to design the experiment well. Although, a lengthy preparation
time was required to attach the detectors and emitters, and test
the quality of the light intensity for fNIRS measurement, this
EEG-fNIRS integration may be quite beneficial in developing a
monitoring system, as reported in the existing literature (Fazli
et al., 2012; Wallois et al., 2012; Khan et al., 2014; Morioka
et al., 2014; Putze et al., 2014; Koo et al., 2015; Yin et al., 2015).
Another concern in analyzing multimodal data is how their
differences (physical values, temporal resolution) are considered
in an integrated frame. An in-depth investigation is needed to
enhance the synergistic effect of multimodal data recording.
Similarly, in this study, we were unable to guarantee that the
EEG, ECG, and fNIRS, or their combined features, are related
linearly to the fatigue level, although in the multimodal results,
each modality influenced the fatigue level to some degree, as
shown in Figure 8.

CONCLUSIONS

The purpose of this study was to use simultaneous
EEG/ECG/EOG and fNIRS recordings to determine neuro-
physiological correlates that can be used to discriminate sleep
deprivation-induced mental fatigue in drivers by comparison to
those who are well-rested. To achieve our purpose, we introduced
two driving conditions (well-rested and sleep-deprived), and
were able to extract significant features from their EEG, ECG,
and fNIRS data. However, no significant feature was found in the
EOG due to high variability in the subjects’ data. The features
observed allowed us to determine the mental condition of each
driver, and also yielded good discriminative results between
two driving conditions. Further, we investigated the synergistic
effects of multimodal data to compare the various combinations
at the classification level with a single modality. In conclusion,
our proposed combined approach of simultaneous EEG/ECG
and fNIRS data may be a promising tool with which to monitor
drivers’ mental fatigue.
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