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Exploring non-linear distance metrics 
in the structure–activity space: QSAR models 
for human estrogen receptor
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Abstract 

Background: Quantitative structure-activity relationship (QSAR) models are important tools used in discovering new 

drug candidates and identifying potentially harmful environmental chemicals. These models often face two funda-

mental challenges: limited amount of available biological activity data and noise or uncertainty in the activity data 

themselves. To address these challenges, we introduce and explore a QSAR model based on custom distance metrics 

in the structure-activity space.

Methods: The model is built on top of the k-nearest neighbor model, incorporating non-linearity not only in the 

chemical structure space, but also in the biological activity space. The model is tuned and evaluated using activity 

data for human estrogen receptor from the US EPA ToxCast and Tox21 databases.

Results: The model closely trails the CERAPP consensus model (built on top of 48 individual human estrogen recep-

tor activity models) in agonist activity predictions and consistently outperforms the CERAPP consensus model in 

antagonist activity predictions.

Discussion: We suggest that incorporating non-linear distance metrics may significantly improve QSAR model per-

formance when the available biological activity data are limited.

Keywords: Chemical space, Molecular similarity, Distance metrics, Structure–activity landscape, QSAR models, 

Human estrogen receptor
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Introduction
Identifying and understanding the connection between 

chemical structure and biological activity is a central 

problem in contemporary pharmacology and toxicol-

ogy. Advances in such understanding could facilitate in 

silico discovery of novel drug candidates and give rise 

to more efficient methods for computational screening 

of environmental chemicals for potential adverse effects 

on human health [1, 2]. QSAR models address this prob-

lem by establishing structure–activity relationships from 

available chemical and biological data (training set) and 

using these relationships to estimate biological activi-

ties of other chemicals (evaluation set). In order to do so, 

QSAR models often utilize structure–activity landscapes, 

i.e., biological response surfaces in the structure–activ-

ity space reconstructed from the training set data [3]. 

�e structure–activity landscapes are particularly use-

ful for identifying chemical space domains where activ-

ity smoothly depends on structure (“rolling hills”) and 

those where small structural changes lead to significant 

changes in activity (“activity cliffs”) [4]. However, the 

limited size of typical training sets translates into the 

limited “resolution” of the reconstructed structure–activ-

ity landscapes: the latter only reveal net activity changes 

from one training set chemical to another but not details 

of the structure–activity relationship in-between these 

chemicals [5]. For example, if a training set only includes 

chemicals with similar activities, the reconstructed struc-

ture–activity landscape will be smooth, even though 

the actual structure–activity landscape may be rugged 
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because of other chemicals with significantly different 

activities. In that case, the limited size of the training set 

may result in disappointing accuracy of QSAR model 

predictions [5]. Since activity cliffs are essential for speci-

ficity of many biological targets, most notably receptors, 

the limited amount of available activity data is a funda-

mental challenge that QSAR models face.

To address this challenge, we introduce and explore 

a QSAR model based on custom distance metrics in 

the structure-activity space. �e distance metrics are 

designed to place higher (or lower, depending on the 

model parameters) weights on structurally close chemi-

cals and chemicals with higher biological activities. We 

build our model on top of a simple approach that directly 

applies the similarity principle—the k-nearest neighbor 

(kNN) model [6]. Whereas the kNN model with non-

Euclidean distances have been in use for decades [7], 

this, to the best of our knowledge, is the first attempt to 

incorporate non-linearity not only in the chemical struc-

ture space, but also in the biological activity space. We 

term this approach the generalized k-nearest neighbor 

(GkNN) model. Since we focus on the effects of the non-

linearity of the distance metrics rather than the choice of 

a specific metric, we do not perform feature selection [8] 

but rather utilize conventional chemical fingerprints and 

similarity measures.

We evaluate the GkNN approach by building and tun-

ing a model for human estrogen receptor (hER) activ-

ity using data from the US EPA ToxCast [9] and Tox21 

[10] databases. Because of the critical regulatory role 

of the hER as a part of the endocrine system, the influ-

ence of chemicals on its activity has been extensively 

studied using a variety of methods such as molecular 

dynamics and docking [11, 12], CoMFA [13], pharma-

cophore-based QSAR modeling [14], and high-through-

put screening [15]. We compare the performance of the 

GkNN-hER model with the recently developed CERAPP 

(Collaborative Estrogen Receptor Activity Prediction 

Project) consensus model built on top of 48 other clas-

sification and regression models [16].

Methods
Chemical and biological data

�e training set included 1667 chemicals from the Tox-

Cast database [9]. �e training set chemicals were curated 

while they were prepared for the CERAPP collaboration; 

the curation procedure is described in the CERAPP arti-

cle [16]. �e chemicals had hER agonist, antagonist, and 

binding activity scores on the scale from 0.0 (inactive) 

to 1.0 (active). �ese activity scores were derived from 

a model that combined data from 18 in vitro hER assays 

using a variety of different cell types and readout technol-

ogies [2]. Because all assays yield some false positives and 

false negatives, we created a model to quantify our belief 

that the activity was “true” (i.e., it arose from interaction 

of the chemicals and the hER), or false (i.e., it arose from 

some form of technology interference or simple experi-

mental noise) [2]. �e activity value for a chemical rep-

resents an estimate of potency (the higher the value, the 

lower the concentration of the chemical that is required 

to activate the receptor), but also a certainty that the 

chemical actually interacts with hER [2]. Chemicals with 

low activity values (e.g., below 0.1) have a higher chance 

of being false positives than do chemicals with values 

well above this cutoff. To reduce the uncertainty, a small 

number of chemicals with activity values between 0.01 

and 0.1 was removed from the training set.

�e evaluation set included 7221 chemicals from the 

CERAPP database [10] with AC50, IC50, and/or other 

hER activity measures reported in the literature [16] (see 

Additional file  1: Fig. S1). Agonist and antagonist activ-

ity scores on the scale from 0.0 to 1.0 for these chemicals 

were estimated from their AC50 values that constituted 

the vast majority of all activity data (39,804 out of 44,641 

records for agonist activity) and the dependence obtained 

from the training set [9]. A small number of chemicals 

with missing AC50 data were not included in model 

evaluation. For each chemical, activity scores from dif-

ferent sources were averaged. In this larger dataset from 

Tox21 and the open literature, we observed the same lack 

of consistency from one assay to another (or one lab to 

another) in activity, and the range of values from 0.0 to 

1.0 again represents a combination of estimated potency 

(higher values are more potent) and certainty of a true 

interaction with hER (higher values are more certain to 

be true actives).

In addition to the entire evaluation set, calculations 

were performed with its subsets that included more 

than 3, 5, 7, or 9 consistent activity sources per chemi-

cal, respectively. Consistent means that the majority call 

(active or inactive) had to occur in at least 80% of cases 

for a chemical. As chemicals required more consist-

ent data (either positive or negative), the quality of the 

biological data increased, but the number of chemicals 

decreased.

Structure–activity space

To visualize positions of the training set and evalua-

tion set chemicals in the chemical structure space, we 

performed principal component analysis (PCA) on the 

fingerprints of the training set chemicals. �e analysis 

was performed independently for Morgan and Indigo 

full fingerprints, and positions of the chemicals were 

described by their projections on the first three eigen-

vectors. In addition, relative positions of the chemi-

cals were characterized by the distributions of pairwise 
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molecular similarities (analogs of the radial distribution 

function commonly used in statistical mechanics) [17, 

18]. To characterize how much positions of chemicals in 

the chemical structure space depend on the choice of the 

specific fingerprint, we compiled lists of nearest neigh-

bors for each training set chemical using Morgan and 

Indigo full fingerprints, respectively.

�e extent of ruggedness of the structure–activity 

landscape was described by the structure–activity land-

scape index [3] SALIij =

∣

∣Ai − Aj

∣

∣/
(

1 − Sij
)

 , where Ai 

is the activity score of chemical i and Sij is the similar-

ity between chemicals i and j . �e distribution of the 

pairwise SALI values characterized the entire struc-

ture–activity landscape, whereas the maximum value per 

chemical maxj
(

SALIij
)

 identified specific chemicals that 

form activity cliffs.

GkNN model

�e model estimates biological activity of a chemical as 

a non-linear weighted average over activities of k most 

similar chemicals from the training set:

where Aj is the activity score of chemical j and Sij is the 

molecular similarity between chemicals i and j . �e 

activity scores vary continuously in the range from 0.0 

(inactive) to 1.0 (active), and a chemical is classified as 

active or inactive depending on whether its activity score 

exceeded a specified cutoff. �e similarities vary con-

tinuously in the range from 0.0 to 1.0. �e similarity to 

the closest chemical from the training set qi = maxj

(

Sij
)

 

characterizes the confidence in the estimate. Tunable 

parameters x and y characterize non-linearity in the bio-

logical activity space and the chemical structure space, 

respectively.

�e GkNN model was compared with three other vari-

ations of kNN models suggested earlier [19]:

�ese models are based on arithmetic averaging of the 

nearest neighbor activities (Eq.  2), geometric averaging 

(1)Ai =

(
∑k

j A
x
j S

y
ij

∑k
j S
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ij

)1/x

,

(2)Ai =

1

k
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Aj ,

(3)Ai = Π
k
j A

1
/k
j ,

(4)Ai =

∑k
j Ajexp

(

−xdij
)

∑k
j exp

(

−xdij
)

.

of these activities (Eq.  3), and exponential averaging of 

these activities weighted by distances to the neighbors 

in the chemical structure space (Eq. 4). In the exponen-

tial model, we assumed that the distances are related 

with molecular similarities as dij = 1/Sij − 1 and added 

a tunable parameter X that varied between 0.1 and 10. 

Molecular similarities were calculated using MACCS 

keys, Daylight, Morgan, or Indigo full fingerprints and 

Tanimoto similarity [20]. Calculations with Morgan fin-

gerprints folded to 1024 bits and 16,384 bits, respectively, 

produced nearly identical results, indicating that increas-

ing the fingerprint folding size beyond about 1000 bits 

has negligible influence on the performance of QSAR 

models. Whereas the obtained activity estimates were 

qualitatively similar for all fingerprints, using Morgan 

or Indigo full fingerprints consistently resulted in more 

accurate estimates.

Parameter tuning and evaluation

�e accuracy of agonist, antagonist, and binding activ-

ity estimates obtained using the GkNN model and other 

models was characterized by the following metrics

  • Sensitivity (true positive rate): TPR = TP/(TP + FN )

  • Specificity (true negative rate): TNR = TN/(TN + FP)

  • Balanced accuracy (non-error rate): 

NER = 0.5 ∗ (TPR + TNR)

  • Accuracy: A = (TP + TN )/(TP + FP + FN + TN )

  • Precision (positive predicted value): 

PPV = TP/(TP + FP)

  • Negative predicted value: NPV = TN/(TN + FN )

  • ROC AUC 

Here, TP, FP, FN, and TN indicate the numbers of true 

positive, false positive, false negative, and true negative 

evaluations, respectively. �ese numbers were obtained 

by converting continuous activity estimates to binary 

classes using the same activity threshold of 0.1 that was 

used for the training set.

To identify the values of parameters k , x , and y that 

yield the most accurate estimates, leave-one-out cross-

validation calculations for the training set were per-

formed with every combination of the model parameters 

from the following lists (2560 combinations total):

k = 1, 2, 3, 5, 7, 10, 15, 20, 30, 50

x = 0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0,

7.0, 10.0, 15.0, 20.0, 30.0, 50.0

y = 0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0,

7.0, 10.0, 15.0, 20.0, 30.0, 50.0.
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Since different parameterizations of the model were 

found to maximize different accuracy metrics, param-

eterizations were ranked by the score defined as the 

product of balanced accuracy, accuracy, and ROC AUC. 

Parameterizations that maximize this score were also 

found to result in nearly maximum values of individual 

accuracy metrics, indicating that this score provides a 

robust characteristics of the QSAR model accuracy. Opti-

mal parameterizations were independently identified for 

agonist, antagonist, and binding activities.

Model evaluation included estimating agonist and 

antagonist activities for the evaluation set chemicals. �e 

evaluation did not include estimating binding activities, 

since their values for the evaluation set chemicals were 

not derived from AC50 data. �e evaluation was per-

formed using the optimal parameter combinations iden-

tified by cross-validation.

Software implementation

�e GkNN model was implemented as a set of stan-

dalone Python scripts. Chemical fingerprints and 

molecular similarities were calculated using open source 

cheminformatics toolkits RDKit [21] and Indigo [22], 

activity estimates were obtained using NumPy toolkit 

[23], and accuracy metrics were calculated using Scikit-

learn toolkit [24].

Results and discussion
Chemical structure space

Figure 1 indicates that the training set chemicals and the 

evaluation set chemicals occupy similar domains of the 

chemical structure space. Chemicals from both sets form 

approximately Gaussian distributions with a common 

center and similar shape (the widths of the evaluation set 

are slightly larger than those of the training set). Whereas 

using Morgan fingerprints and Indigo full fingerprints 

Fig. 1 Chemical space domains occupied by the training set and the evaluation set. Results shown in panels a–c were calculated using Morgan 

fingerprints and Tanimoto similarity, and results shown in panels d–f were calculated using Indigo full fingerprints and Tanimoto similarity, 

respectively. Panels a, d distributions of pairwise molecular similarities (overlaid plots). Panels b, e projections of the training set (blue) and the 

evaluation set (red) on the 3D space formed by the first three eigenvectors of the training set self-similarity matrix. Panels C and F: distributions of 

the training and evaluation sets along each of the first three eigenvectors
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results in significantly different absolute similarity values, 

the above observations hold for the both fingerprints, 

suggesting that structure–activity relationships inferred 

from the training set are likely to hold for the evaluation 

set. �is conclusion is further supported by the distribu-

tions of pairwise molecular similarities calculated using 

Indigo full and Morgan fingerprints (Fig. 1) and MACCS 

keys (Additional file 1: Fig. S2).

How sensitive is the “neighborhood” of a chemical in 

the chemical structure space to the choice of the molecu-

lar fingerprint? To address this question, we compiled 

neighbor lists for each chemical in the training set using 

Morgan and Indigo full fingerprints, respectively. We 

found that these lists significantly overlap, although the 

order of neighbors in the two lists is essentially differ-

ent. As such, the overall arrangement of chemicals in the 

chemical structure space may be robust to the choice of 

the fingerprint, whereas the order of nearest neighbors 

for each chemical is fingerprint-sensitive.

Structure–activity landscape

Panels A and D in Fig.  2 show that the hER structure-

agonist activity landscape obtained from the training set 

chemicals is mostly smooth, except for a few cliffs that 

arise from pairs of chemicals with similar structures but 

significantly different activities. Panels B and E in Fig. 2 

along with Additional file 1: Fig. S3 support this conclu-

sion, indicating that the structure-agonist activity land-

scapes for the training set, the evaluation set, and subsets 

of the evaluation set are characterized by relatively small 

SALI values, and higher SALI values that indicate activ-

ity cliffs are rare exceptions. Similarly, panels C and F in 

Fig. 2 along with Additional file 1: Fig. S3 show that the 

hER structure-antagonist activity landscape is even more 

smooth than that for agonist activity, in part because 

the number of active antagonist chemicals (9) was much 

smaller than the number of active agonist ones (80). 

Importantly, even though Morgan fingerprints, Indigo 

full fingerprints, and MACCS keys result in signifi-

cantly different molecular similarity values and therefore 

Fig. 2 Structure–activity landscapes of the training set and the evaluation set. Results shown in panels a–c were calculated using Morgan 

fingerprints, and results shown in panels d–f were calculated using Indigo full fingerprints, respectively. Panels a, d maximum SALI values per 

chemical for agonist activities of the training set chemicals projected on the 3D space described in Fig. 1. Panels b, e distributions of the SALI values 

for agonist activities (overlaid plots). Panels c, f distributions of the SALI values for antagonist activities (overlaid plots)
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different absolute SALI values, the above conclusions 

hold for the all fingerprints.

For the evaluation set, increasing the minimum num-

ber of sources per chemical reduces the number of 

chemicals and thereby increases the average distance 

among them in the chemical structure space. �is has 

the effect of smoothing the structure–activity landscape, 

as indicated by the elimination of the larger SALI values. 

For chemicals with more than 9 activity sources, differ-

ences in activities are close to either 0.0 or 1.0, suggest-

ing that these chemicals are either clearly active or clearly 

inactive. We therefore conclude that the full hER struc-

ture–activity landscape is more rugged than those recon-

structed from the available chemical sets. As discussed 

above, this ruggedness may be key factor that limits the 

accuracy of QSAR models.

Optimal parameters

Table 1 shows the accuracy metrics for the tuned GkNN 

model and the arithmetic, geometric, and exponential 

averaging kNN models. In all cross-validation calcula-

tions, the geometric averaging kNN model was con-

sistently the least accurate one, whereas the arithmetic 

averaging kNN model performed considerably better, 

and the exponential averaging kNN model provided fur-

ther improvement in accuracy. �ese results are consist-

ent with the earlier calculations of melting point using 

these models [19]. �e tuned GkNN model was found to 

provide an increase in balanced accuracy over the expo-

nential averaging kNN model.

For agonist and binding activity, the most accurate 

estimates were obtained by using Morgan fingerprints 

with k = 10 . Increasing the values of the GkNN model 

parameters X and Y from 1.0 to 1.5 and 3.0 , respectively, 

resulted in a small increase in balanced accuracy and had 

no significant effect on ROC AUC. A similar increase in 

balanced accuracy was observed when the value of the 

exponential kNN model parameter X increased from 

1.0 to 1.5 . Interestingly, all models (except the geometric 

kNN model that was consistently much less accurate than 

the others) performed almost as well when using Indigo 

fingerprints with k = 7 and the same values of param-

eters X and, for the GkNN model, Y. Using Daylight 

fingerprints or MACCS keys resulted in a significantly 

lower performance (see Additional file 1: Table S1).

For antagonist activity, using Indigo fingerprints with 

k = 10 resulted in the most accurate estimates. �e 

Table 1 Accuracy metrics for agonist, antagonist, and binding activity cross-validation

“kNN arithm”, “kNN geom”, and “kNN exp” indicate the kNN models with the arithmetic, geometric, and exponential averaging, respectively. The cumulative score 

shown in the last column is the product of balanced accuracy, accuracy, and ROC AUC. Italic font indicates accuracy metric values that exceed those for the CERAPP 

consensus model

Activity # chemicals Model and parameters Sensitivity Specificity Bal accuracy Accuracy ROC AUC Score

Agonist 1538 Morgan kNN arithm k = 10 0.63 0.98 0.80 0.96 0.91 0.70

Agonist 1538 Morgan kNN geom k = 2 0.40 0.99 0.70 0.96 0.73 0.49

Agonist 1538 Morgan kNN exp k = 10 X = 1.5 0.69 0.97 0.83 0.96 0.92 0.73

Agonist 1538 Morgan GkNN k = 10 X = 1 Y = 1 0.63 0.98 0.80 0.96 0.92 0.70

Agonist 1538 Morgan GkNN k = 10 X = 1 Y = 3 0.66 0.97 0.82 0.96 0.92 0.72

Agonist 1538 Morgan GkNN k = 10 X = 1.5 Y = 3 0.74 0.95 0.84 0.94 0.92 0.72

Agonist 1538 Morgan GkNN k = 20 X = 1.5 Y = 5 0.75 0.95 0.85 0.94 0.91 0.73

Antagonist 1645 Morgan kNN arithm k = 3 0.44 1.00 0.72 1.00 0.70 0.51

Antagonist 1645 Morgan kNN geom k = 3 0.00 1.00 0.50 0.99 0.50 0.25

Antagonist 1645 Morgan kNN exp k = 3 X = 1.5 0.44 1.00 0.72 1.00 0.70 0.51

Antagonist 1645 Indigo kNN arithm k = 10 0.22 1.00 0.61 0.99 0.73 0.44

Antagonist 1645 Indigo kNN geom k = 10 0.00 1.00 0.50 0.99 0.50 0.25

Antagonist 1645 Indigo kNN exp k = 10 X = 1.5 0.44 1.00 0.72 0.99 0.73 0.53

Antagonist 1645 Indigo GkNN k = 10 X = 3 Y = 7 0.56 0.98 0.77 0.98 0.73 0.55

Antagonist 1645 Indigo GkNN k = 10 X = 5 Y = 15 0.56 0.98 0.77 0.98 0.73 0.55

Binding 1529 Morgan kNN arithm k = 10 0.63 0.98 0.80 0.96 0.90 0.69

Binding 1529 Morgan kNN geom k = 2 0.43 0.99 0.71 0.96 0.74 0.50

Binding 1529 Morgan kNN exp k = 10 X = 1.5 0.69 0.97 0.83 0.95 0.90 0.71

Binding 1529 Morgan GkNN k = 10 X = 1 Y = 1 0.63 0.98 0.80 0.96 0.90 0.69

Binding 1529 Morgan GkNN k = 10 X = 1 Y = 3 0.66 0.97 0.82 0.95 0.90 0.70

Binding 1529 Morgan GkNN k = 10 X = 1.5 Y = 3 0.73 0.94 0.84 0.93 0.90 0.70

Binding 1529 Morgan GkNN k = 20 X = 1.5 Y = 5 0.75 0.95 0.85 0.94 0.89 0.71
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exponential kNN model provided an improvement in 

balanced accuracy over the arithmetic kNN model. 

Using the exponential model with Morgan fingerprints 

and k = 3 resulted in similar outcome. Still, the high-

est balanced accuracy gain was achieved by using the 

GkNN model with Indigo fingerprints, k = 10 , and two 

combinations of the other parameters: X = 3 , Y = 7 and 

X = 5 , Y = 15 , respectively. We suggest that the higher 

optimum values of X and Y  for agonist activity calcula-

tions arise from the significantly smaller number of the 

agonist active chemicals, as discussed above.

Notably, multiple parameter combinations resulted 

in nearly identical accuracy in cross-validation as well 

as evaluation, indicating that the model parameters 

are not completely independent. Indeed, parameter k 

that controls the number of relevant nearest neighbors 

and parameter Y  that weights contributions from these 

neighbors both influence the distance in the chemical 

structure space where the similarity principle is assumed 

to break down. Accordingly, simultaneously increasing 

parameters k and Y  was found to have minor effect on 

the GkNN model estimates compared to changing one 

of those parameters. �e above conclusions held when 

using Indigo full fingerprints as well, although the opti-

mal parameter values in that case were different.

�e optimal value of parameter X > 1 suggests that 

lower (but non-zero) biological activity estimates 

obtained from assay data might be not as reliable as 

higher activity estimates, consistent with the analysis of 

the assay data [2] and the activity distributions for differ-

ent numbers of literature sources (see Additional file  1: 

Fig. S4). �e optimal value of parameter Y > 1 indicates 

that the structure–activity principle is more likely to hold 

at closer distances in the chemical structure space, sup-

porting the conclusion that the full hER structure–activ-

ity landscape is more rugged than the one reconstructed 

from the training set and/or the evaluation set.

Model performance

Tables  2 and 3 summarize the accuracy of agonist and 

antagonist activity estimates for the evaluation set chemi-

cals obtained by using the kNN models, the GkNN 

model, and the CERAPP consensus model [16]. As in 

cross-validation, the geometric kNN model yielded 

the least accurate estimates, and the arithmetic kNN 

model performed considerably better but not as well as 

the exponential kNN model or the GkNN model. In the 

agonist activity estimates (Table  2), the latter two per-

formed on par with each other. �ey both closely trailed 

the CERAPP consensus model in ROC AUC and slightly 

outperformed it in balanced accuracy for chemicals with 

5–9 activity sources. In most antagonist activity esti-

mates (Table 3), the exponential kNN model was on par 

with the CERAPP consensus model in balanced accuracy 

and slightly outperformed it in ROC AUC, whereas the 

GkNN model consistently outperformed the both. Nota-

bly, the improvement in balanced accuracy provided by 

the GkNN model over the exponential kNN model was 

higher for chemicals with larger numbers of activity 

sources.

�e dependence of the model performance on the 

confidence level of activity estimates qi is illustrated by 

Additional file 1: Table S2. For agonist activity, balanced 

accuracy and ROC AUC for chemicals with higher confi-

dence levels are consistently higher than those calculated 

for chemicals with lower confidence levels. Panel A in 

Fig. 3 illustrates the dependence of ROC curves on con-

fidence level, supporting the earlier suggestion that con-

fidence levels can be used to define applicability domains 

for QSAR models.

For agonist activity estimates, the exponential kNN 

model and the GkNN model closely trails the CERAPP 

consensus model [16]. For antagonist activity, the expo-

nential kNN model and the GkNN model consistently 

outperform the CERAPP consensus model for all esti-

mates except those with q ≥ 0.9 . Since the training set 

included much fewer antagonist chemicals (9) than ago-

nist chemicals (80), these observations reinforce the sug-

gestion that employing non-linear distance metrics in 

the structure–activity space may be particularly efficient 

when training set data are limited. �e influence of the 

uncertainty in the data from literature on the perfor-

mance of the kNN models, the GkNN model, and the 

CERAPP consensus model is summarized in Additional 

file 1: Table S3 and illustrated in panels B and C in Fig. 3. 

As expected, for either model, increasing the number 

of literature sources for the evaluation chemicals (and 

thereby the quality of the activity data) results in increas-

ing accuracy of the estimates and decreasing the number 

of false positive estimates, as illustrated in Additional 

file 1: Fig. S5.

Conclusions
We introduced the GkNN QSAR model based on a cus-

tom non-linear distance metric in the chemical struc-

ture—biological activity space and explored how this 

non-linearity influences the model performance. Using 

the hER data from the ToxCast [9] and Tox21 [10] data-

bases, we compared the accuracy of the GkNN model 

against that of other variants of the kNN model with 

non-linear weighting schemes and the CERAPP consen-

sus model [16]. We found that the GkNN model, along 

with the exponential kNN model [19], appears most effi-

cient when the training set data, most notably the num-

ber of active chemicals, are limited.
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Table 2 Accuracy metrics for agonist activity evaluation with different numbers of activity sources per chemical

“kNN arithm”, “kNN geom”, and “kNN exp” indicate the kNN models with the arithmetic, geometric, and exponential averaging, respectively. The cumulative score 

shown in the last column is the product of balanced accuracy, accuracy, and ROC AUC. Italic font indicates accuracy metric values that exceed those for the CERAPP 

consensus model

# sources # chemicals Model and parameters Sensitivity Specificity Bal accuracy Accuracy ROC AUC Score

1 6197 CERAPP consensus 0.71 0.95 0.83 0.94 0.85 0.67

1 6197 Morgan kNN arithm k = 10 0.55 0.96 0.75 0.94 0.82 0.58

1 6197 Morgan kNN geom k = 2 0.38 0.99 0.69 0.97 0.72 0.48

1 6197 Morgan kNN exp k = 10 X = 1.5 0.59 0.97 0.78 0.95 0.83 0.61

1 6197 Morgan GkNN k = 10 X = 1 Y = 1 0.58 0.96 0.77 0.94 0.82 0.59

1 6197 Morgan GkNN k = 10 X = 1 Y = 3 0.59 0.97 0.78 0.95 0.83 0.61

1 6197 Morgan GkNN k = 10 X = 1.5 Y = 3 0.64 0.93 0.78 0.92 0.82 0.59

1 6197 Morgan GkNN k = 20 X = 1.5 Y = 5 0.64 0.94 0.79 0.93 0.83 0.61

3 1553 CERAPP consensus 0.93 0.94 0.94 0.94 0.98 0.87

3 1553 Morgan kNN arithm k = 10 0.77 0.95 0.86 0.94 0.94 0.76

3 1553 Morgan kNN geom k = 2 0.57 0.99 0.78 0.97 0.80 0.60

3 1553 Morgan kNN exp k = 10 X = 1.5 0.82 0.97 0.89 0.96 0.95 0.81

3 1553 Morgan GkNN k = 10 X = 1 Y = 1 0.82 0.96 0.89 0.95 0.94 0.79

3 1553 Morgan GkNN k = 10 X = 1 Y = 3 0.83 0.97 0.90 0.96 0.95 0.82

3 1553 Morgan GkNN k = 10 X = 1.5 Y = 3 0.88 0.93 0.90 0.92 0.95 0.79

3 1553 Morgan GkNN k = 20 X = 1.5 Y = 5 0.88 0.94 0.91 0.94 0.94 0.80

5 456 CERAPP consensus 0.96 0.93 0.94 0.94 0.99 0.88

5 456 Morgan kNN arithm k = 10 0.81 0.94 0.88 0.93 0.94 0.77

5 456 Morgan kNN geom k = 2 0.68 1.00 0.84 0.96 0.86 0.69

5 456 Morgan kNN exp k = 10 X = 1.5 0.92 0.97 0.94 0.96 0.96 0.87

5 456 Morgan GkNN k = 10 X = 1 Y = 1 0.89 0.95 0.92 0.94 0.95 0.82

5 456 Morgan GkNN k = 10 X = 1 Y = 3 0.92 0.97 0.94 0.96 0.96 0.87

5 456 Morgan GkNN k = 10 X = 1.5 Y = 3 0.94 0.92 0.93 0.92 0.96 0.82

5 456 Morgan GkNN k = 20 X = 1.5 Y = 5 0.94 0.95 0.94 0.95 0.96 0.86

7 128 CERAPP consensus 0.95 0.95 0.95 0.95 1.00 0.90

7 128 Morgan kNN arithm k = 10 0.88 0.98 0.93 0.95 0.95 0.84

7 128 Morgan kNN geom k = 2 0.76 1.00 0.88 0.94 0.90 0.74

7 128 Morgan kNN exp k = 10 X = 1.5 0.91 0.99 0.95 0.97 0.96 0.89

7 128 Morgan GkNN k = 10 X = 1 Y = 1 0.94 0.99 0.97 0.98 0.96 0.90

7 128 Morgan GkNN k = 10 X = 1 Y = 3 0.94 1.00 0.97 0.98 0.97 0.92

7 128 Morgan GkNN k = 10 X = 1.5 Y = 3 0.94 0.91 0.93 0.92 0.96 0.82

7 128 Morgan GkNN k = 20 X = 1.5 Y = 5 0.94 0.97 0.95 0.96 0.97 0.89

9 57 CERAPP consensus 0.92 1.00 0.96 0.97 1.00 0.93

9 57 Morgan kNN arithm k = 10 0.79 1.00 0.89 0.93 0.93 0.78

9 57 Morgan kNN geom k = 2 0.79 1.00 0.89 0.93 0.92 0.77

9 57 Morgan kNN exp k = 10 X = 1.5 0.84 1.00 0.92 0.95 0.94 0.82

9 57 Morgan GkNN k = 10 X = 1 Y = 1 0.84 1.00 0.92 0.95 0.94 0.82

9 57 Morgan GkNN k = 10 X = 1 Y = 3 0.84 1.00 0.92 0.95 0.94 0.82

9 57 Morgan GkNN k = 10 X = 1.5 Y = 3 0.89 0.92 0.91 0.91 0.94 0.78

9 57 Morgan GkNN k = 20 X = 1.5 Y = 5 0.89 0.97 0.93 0.95 0.94 0.84
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Table 3 Accuracy metrics for antagonist activity evaluation with different numbers of activity sources per chemical

“kNN arithm”, “kNN geom”, and “kNN exp” indicate the kNN models with the arithmetic, geometric, and exponential averaging, respectively. The cumulative score 

shown in the last column is the product of balanced accuracy, accuracy, and ROC AUC. Italic font indicates accuracy metric values that exceed those for the CERAPP 

consensus model

# sources # chemicals Model and parameters Sensitivity Specificity Bal Accuracy Accuracy ROC AUC Score

1 6533 CERAPP consensus 0.15 0.91 0.53 0.88 0.55 0.26

1 6533 Morgan kNN arithm k = 3 0.04 0.99 0.52 0.95 0.53 0.26

1 6533 Morgan kNN geom k = 3 0.00 1.00 0.50 0.96 0.51 0.24

1 6533 Morgan kNN exp k = 3 X = 1.5 0.04 0.99 0.52 0.95 0.53 0.26

1 6533 Indigo kNN arithm k = 10 0.04 0.99 0.52 0.95 0.57 0.28

1 6533 Indigo kNN geom k = 10 0.00 1.00 0.50 0.96 0.50 0.24

1 6533 Indigo kNN exp k = 10 X = 1.5 0.05 0.99 0.52 0.95 0.57 0.28

1 6533 Indigo GkNN k = 10 X = 3 Y = 7 0.10 0.98 0.54 0.94 0.57 0.29

1 6533 Indigo GkNN k = 10 X = 5 Y = 15 0.10 0.98 0.54 0.94 0.57 0.29

3 1707 CERAPP consensus 0.17 0.90 0.53 0.87 0.58 0.27

3 1707 Morgan kNN arithm k = 3 0.09 0.99 0.54 0.95 0.57 0.29

3 1707 Morgan kNN geom k = 3 0.00 1.00 0.50 0.95 0.53 0.25

3 1707 Morgan kNN exp k = 3 X = 1.5 0.10 1.00 0.55 0.96 0.57 0.30

3 1707 Indigo kNN arithm k = 10 0.12 1.00 0.56 0.96 0.65 0.35

3 1707 Indigo kNN geom k = 10 0.00 1.00 0.50 0.95 0.50 0.24

3 1707 Indigo kNN exp k = 10 X = 1.5 0.14 1.00 0.57 0.96 0.65 0.36

3 1707 Indigo GkNN k = 10 X = 3 Y = 7 0.18 0.99 0.58 0.95 0.65 0.36

3 1707 Indigo GkNN k = 10 X = 5 Y = 15 0.18 0.99 0.58 0.95 0.65 0.36

5 431 CERAPP consensus 0.24 0.89 0.56 0.84 0.67 0.32

5 431 Morgan kNN arithm k = 3 0.14 0.99 0.56 0.93 0.61 0.32

5 431 Morgan kNN geom k = 3 0.00 1.00 0.50 0.93 0.52 0.24

5 431 Morgan kNN exp k = 3 X = 1.5 0.17 1.00 0.58 0.94 0.61 0.34

5 431 Indigo kNN arithm k = 10 0.10 1.00 0.55 0.94 0.65 0.33

5 431 Indigo kNN geom k = 10 0.00 1.00 0.50 0.93 0.50 0.23

5 431 Indigo kNN exp k = 10 X = 1.5 0.10 1.00 0.55 0.94 0.65 0.33

5 431 Indigo GkNN k = 10 X = 3 Y = 7 0.17 0.99 0.58 0.93 0.65 0.35

5 431 Indigo GkNN k = 10 X = 5 Y = 15 0.17 0.99 0.58 0.93 0.65 0.35

7 103 CERAPP consensus 0.31 0.91 0.61 0.84 0.67 0.34

7 103 Morgan kNN arithm k = 3 0.23 0.98 0.60 0.88 0.68 0.36

7 103 Morgan kNN geom k = 3 0.00 1.00 0.50 0.87 0.54 0.24

7 103 Morgan kNN exp k = 3 X = 1.5 0.23 1.00 0.62 0.90 0.68 0.38

7 103 Indigo kNN arithm k = 10 0.08 1.00 0.54 0.88 0.79 0.38

7 103 Indigo kNN geom k = 10 0.00 1.00 0.50 0.87 0.50 0.22

7 103 Indigo kNN exp k = 10 X = 1.5 0.15 0.98 0.57 0.87 0.80 0.39

7 103 Indigo GkNN k = 10 X = 3 Y = 7 0.23 0.98 0.60 0.88 0.80 0.43

7 103 Indigo GkNN k = 10 X = 5 Y = 15 0.31 0.99 0.65 0.90 0.80 0.47

9 46 CERAPP consensus 0.40 1.00 0.70 0.87 0.73 0.44

9 46 Morgan kNN arithm k = 3 0.30 0.97 0.64 0.83 0.73 0.38

9 46 Morgan kNN geom k = 3 0.00 1.00 0.50 0.78 0.55 0.22

9 46 Morgan kNN exp k = 3 X = 1.5 0.30 1.00 0.65 0.85 0.73 0.40

9 46 Indigo kNN arithm k = 10 0.10 1.00 0.55 0.80 0.79 0.35

9 46 Indigo kNN geom k = 10 0.00 1.00 0.50 0.78 0.50 0.20

9 46 Indigo kNN exp k = 10 X = 1.5 0.20 0.97 0.59 0.80 0.79 0.37

9 46 Indigo GkNN k = 10 X = 3 Y = 7 0.30 0.97 0.64 0.83 0.80 0.42

9 46 Indigo GkNN k = 10 X = 5 Y = 15 0.40 1.00 0.70 0.87 0.80 0.49
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In this proof-of-concept study, we focused solely on 

the effects of the distance metric non-linearity and did 

not attempt to fully optimize the GkNN model. The 

latter can be achieved in multiple ways, for example, 

by optimizing the non-linear functions in the distance 

metric. Combining these steps with conventional 

approaches such as feature selection [8] may further 

improve the accuracy of QSAR models.
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