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At the beginning of the twentieth century, discoveries in cancer research began to 
elucidate the idiosyncratic metabolic proclivities of tumor cells (1). Investigators postu-
lated that revealing the distinct nutritional requirements of cells with unchecked growth 
potential would reveal targetable metabolic vulnerabilities by which their survival could be 
selectively curtailed. Soon thereafter, researchers in the field of immunology began draw-
ing parallels between the metabolic characteristics of highly proliferative cancer cells and 
those of immune cells that respond to perceived threats to host physiology by invading 
tissues, clonally expanding, and generating vast amounts of pro-inflammatory effector 
molecules to provide the host with protection. Throughout the past decade, increasing 
effort has gone into elucidating the biosynthetic and bioenergetic requirements of immune 
cells during inflammatory responses. It is now well established that, like tumor cells, 
immune cells must undergo metabolic adaptations to fulfill their effector functions (2, 3). 
Unraveling the metabolic adaptations that license inflammatory immune responses may 
lead to the development of novel classes of therapeutics for pathologies with prominent 
inflammatory components (e.g., autoimmunity). However, the translational potential of 
discoveries made toward this end is currently limited by the ubiquitous nature of the 
“pathologic” process being targeted: metabolism. Recent works have started to unravel 
unexpected non-metabolic functions for metabolic enzymes in the context of inflamma-
tion, including signaling and gene regulation. One way information gained through the 
study of immunometabolism may be leveraged for therapeutic benefit is by exploiting 
these non-canonical features of metabolic machinery, modulating their contribution to 
the immune response without impacting their basal metabolic functions. The focus  
of this review is to discuss the metabolically independent functions of glycolytic enzymes 
and how these could impact T cells, agents of the immune system that are commonly 
considered as orchestrators of auto-inflammatory processes.

Keywords: immunometabolism, inflammation, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, 
pyruvate kinase, lactate dehydrogenase, glycolysis

inTRODUCTiOn

Upon activation, T  cells increase biomass, proliferate, and produce inflammatory cytokines—
processes that are bioenergetically and biosynthetically demanding, and likewise, necessitate 
a conversion from a relatively quiescent metabolism (2–5). One mechanism by which this 
is accomplished is through elevated glycolytic flux. As a result, many groups are pursu-
ing the promise of anti-glycolytic therapy for inflammatory indications (6, 7). Conversely, 
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FiGURe 1 | Non-metabolic functions of glycolytic enzymes and their roles in inflammation. Many pieces of glycolytic machinery have non-metabolic functions that 
can contribute to the inflammatory response. An abridged version of the glycolytic cascade is listed with enzymes depicted at their appropriate level in glycolysis 
along with their alternative non-metabolic functions. For a more complete view of the glycolytic cascade, please see Ref. (17). G6-P, glucose 6-phosphate; G3P, 
glyceraldehyde 3-phosphate; 1,3-BPG, 1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; Ribo, ribosome; Slc2a1, gene encoding 
glucose transporter 1 (Glut-1); HAT, histone acetyltransferase.
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there is also interest in interventions to restore T  cell 
metabolism in diseases of pathologic immunosuppression  
(e.g., cancer) (8–10). Intriguingly, many glycolytic enzymes 
serve moonlighting functions in the cell that can impact the 
nature and quality of an inflammatory response. Such idi-
osyncrasies may represent exploitable opportunities by which 
immune responses may be therapeutically modulated. The goal 
of this review is to present non-metabolic functions of glyco-
lysis enzymes and the ways in which these idiosyncrasies may  
be exploited to impact inflammatory responses, particularly 
those of T cells.

GLYCOLYSiS enZYMeS AnD THeiR 
ROLeS in inFLAMMATiOn

Hexokinase ii (HK-ii)
Hexokinase is the first enzyme involved in glycolysis, catalyzing 
the phosphorylation of glucose to glucose 6-phosphate (G6P) 
(Figure 1). Induction of HK-II, one of four isoforms of hexoki-
nase, appears to be tightly linked to activation of inflammatory 
programs in immune cells (11, 12) and tumorigenic programs in 
cancer cells (10). Phosphorylated AKT stabilizes the localization 
of HK-II to the outer mitochondrial membrane (OMM). At this 
location, mitoHK-II has increased access to mitochondrially 
derived ATP, which it can then use to phosphorylate glucose 
to G6P, thereby trapping glucose in the cell (13). MitoHK-II 
also plays an anti-apoptotic role, preventing the formation of 
the mitochondria permeability transition pore by Bcl-2 family 
proteins like Bax (14, 15). The mechanism behind this process 
involves PI3K-AKT-mediated phosphorylation of Thr473 in 
HK-II, a modification that prevents G6P-mediated dissociation 
of HK-II from the mitochondria (16). Thus, posttranslational 
modifications to HK-II both facilitate its activity as a glycolytic 
enzyme and promote its anti-apoptotic functions.

Upon activation, immune cells upregulate HK-II (17) as well 
as other HK family members (18). HK-targeted interventions 
block glycolysis, effector function, and survival of cells involved 
in driving inflammatory responses (6), and for myeloid cells, 
this is especially true in the context of gram-negative bacterial 
challenges (19). However, this may not be true of all inflam-
matory responses. N-acetylglucosamine, a peptidoglycan 
derivative from the cell wall of Gram-positive bacteria, has 
recently been shown to bind HK-II and promote its dissociation 
from the OMM. This dissociation results in the accumulation 
of mitochondrial DNA in the cytosol and NLRP3 inflamma-
some-dependent production of mature IL-1β and IL-18 in 
macrophages (20). Thus, while dissociation of HK-II from the 
OMM might, on the one hand, abrogate the efficiency of flux 
through the glycolytic cascade and thus block inflammation, on 
the other hand, it may potentiate signals that promote secretion 
of major soluble transducers of inflammation depending on 
context. Inflammasome components (21, 22), hexokinase (6), 
and mitochondrial dynamics (23) are all known modulators of 
T cell functions; however, whether or not HK relocalization can 
induce inflammasome activity in T cells, and what consequences 
this may have, remains unclear.

Glyceraldehyde 3-Phosphate 
Dehydrogenase (GAPDH)
Glyceraldehyde 3-phosphate dehydrogenase is the enzyme 
that catalyzes conversion of glyceraldehyde 3-phosphate to 
1,3-bisphosphoglycerate in glycolysis (Figure  1). GAPDH is 
well known for its numerous non-metabolic functions. In many  
bacteria, GAPDH is a major component of the cell surface. 
Multiple mechanisms are involved in this localization of GAPDH,  
including active transport (24) and lysis-mediated release of 
GAPDH which then decorates the surface of neighboring 
bacterial cells (25). Cell surface GAPDH binds fibronectin, 
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plasminogen, and other tissue components (24–26) and is an 
important facilitator of bacterial adherence to and invasion of 
host tissues. These findings translate to eukaryotic systems. In 
response to inflammatory cues, macrophages recruit GAPDH 
to the cell surface where it functions as a plasminogen recep-
tor. In this paradigm, plasminogen bound to GAPDH digests 
extracellular matrix thereby facilitating macrophage migration 
(27). GAPDH can also localize to numerous other subcellular 
compartments (28). For example, oxidative stress, as occurs 
during neutrophil respiratory burst, drives S-nitrosylation of 
GAPDH (29), redistributing it from the cytoplasm to the nucleus 
and mitochondria where it is broadly implicated as a regula-
tor of cell survival [reviewed in Ref. (28)]. GAPDH itself has 
been shown to have anti-inflammatory properties, as systemic 
administration of GAPDH prior to LPS-induced sepsis reduces 
cytokine storm and mortality (30), though the mechanism of this 
immunomodulatory effect remains unknown.

Recent work in T cells implicates GAPDH as an energy sensor 
that regulates translation of inflammatory cytokine mRNA in 
response to the availability of glucose in the cell. When glucose 
concentrations are low, GAPDH binds to the AU-rich elements 
in the 3′-untranslated region (UTR) of mRNA, including those 
encoding interferon gamma (IFN-γ) and IL-2 (31, 32). Binding 
of GAPDH to these transcripts represses their translation, thus 
restricting cytokine production during glucose deprivation. 
3′AU-rich elements are not unique features of IFN-γ and IL-2 
mRNA, and it is likely that GAPDH can regulate translation 
beyond these two cytokines (33). The glycolytic reaction cata-
lyzed by GAPDH requires nicotinamide adenine dinucleotide 
(NAD+), an essential indicator of cellular redox state, and 
intriguingly, Nagy and colleagues identified the NAD+ binding 
fold of GAPDH as its RNA-binding domain (34). This finding 
suggests any NAD+-dependent enzyme [in glycolysis, this is 
GAPDH and lactate dehydrogenase (LDH)] may be endowed 
with RNA-binding capabilities. Glucose deprivation, however, 
increases levels of intracellular NAD+ which might be expected 
to compete with GAPDH for RNA binding (35). Thus, there 
are likely additional layers of regulation governing the role of 
GAPDH as a translational repressor that functions during glu-
cose deprivation and or in response to fluctuations in NAD+. 
Context-specific nuances that influence how NAD+ affects the 
mRNA-binding functions of glycolytic machinery offer an 
intriguing line of inquiry into the interplay between metabolism 
and the many fundamental processes (36, 37) regulated by NAD+.

α-enolase
α-Enolase catalyzes the conversion of 2-phosphoglycerate to 
phosphoenolpyruvate (PEP) in glycolysis (Figure 1). The gene 
that encodes α-enolase (Eno1) produces a single transcript with 
two translational start sites. Depending on the site of translation 
initiation, Eno1 can generate a full-length canonical α-enolase 
(48 kDa) enzyme that participates in glycolysis, or a truncated 
version of α-enolase (37  kDa), also known as Myc promoter-
binding protein 1 (MBP-1) that represses the pro-proliferative 
transcription factor c-myc (38–41). Wang and colleagues identi-
fied c-myc as the master regulator of metabolic adaptation in 
T cells (17), demonstrating impaired growth and proliferation 

in c-myc deficient T cells treated with mitogenic stimuli. MBP-1 
represses c-myc by binding to and inhibiting formation of the 
transcription initiation complex at the c-myc promoter (40, 41). 
Whereas α-enolase localizes to the cytoplasm, MBP-1 prefer-
entially traffics to the nucleus where it serves these repressive 
functions (38). The signals that influence differential translation 
of α-enolase versus MBP-1 are unclear, though hypoxia may be 
one cue that favors translation of full-length α-enolase (42). The 
internal translation start site that generates MBP-1 off of Eno1 
is not present in β or γ-enolase, potentially providing an added 
layer of specificity for future MBP-1 modulating interventions.

Intriguingly, it seems that the induction of MBP-1 functionally 
impacts T cell inflammatory responses in the context of autoim-
munity. A recent study (43) revealed that an anti-inflammatory 
population of human CD4+ T cells, known as regulatory T cells 
(Tregs), expresses high levels of MBP-1. Moreover, MBP-1 in 
Tregs potentiates transcription of a specific spliced isoform 
of FoxP3 known to potently suppress inflammatory immune 
responses, particularly those mediated by the transcription fac-
tor RAR-related orphan receptor gamma T (RORγT). RORγT 
is a known driver of IL-17A (44) and granulocyte macrophage 
colony stimulating factor (GM-CSF) (45), pro-inflammatory 
cytokines strongly associated with auto-inflammatory diseases 
(46–48), and the therapeutic potential of its inhibition is under 
investigation for numerous inflammatory indications (49, 50). 
Interestingly, Tregs seem to elevate expression of both Eno1 
gene products, suggesting that the suppressive effects of MBP-1 
may dominate over metabolic contributions to inflammation 
facilitated by full-length α-enolase or elevated glycolysis (43, 51).  
Thus, inducing transcriptional activity at Eno1 may be suf-
ficient to increase MBP-1 protein levels to immunosuppressive 
levels without blocking glycolysis. How the α-enolase/MBP-1 
axis affects conventional T  cell responses is unclear. Taken 
together, whereas Hk2 encodes a single protein that can play 
metabolic and non-metabolic roles in a cell, Eno1 encodes two 
gene products that differ drastically in their contributions to 
metabolism and inflammation (38, 39).

Pyruvate Kinase (PK) isoform M2
Pyruvate kinase is the ATP-generating enzyme that catalyzes 
the conversion of PEP to pyruvate during glycolysis (Figure 1). 
Four isoforms of the PK enzyme exist, with the M1 (PKM1) and 
M2 (PKM2) isoforms being most predominant in leukocytes 
of the adult animal (52). PKM2 is the major isoform expressed 
at the protein level by lymphocytes (52). Interestingly, many 
cancer cell lines also exclusively express PKM2 (53), and cancer 
researchers have likewise identified many pro-proliferative and 
non-canonical functions that are specifically attributed to this 
particular isozyme (54–63). PKM1 and PKM2 are alternatively 
spliced isoforms of the PK enzyme that differ by inclusion of 
a single exon (exon 9 for PKM1 versus exon 10 for PKM2), of 
which only 22 amino acid residues differ (64). The structures of 
PKM1 and PKM2 are extremely similar (65), but importantly, 
the minute difference in amino acid sequence allows PKM2 to 
uniquely contribute to proliferative responses in cancer cells 
and inflammatory responses of immune cells (66–69). Whereas 
PKM1 exists solely as a tetramer that functions as a glycolytic 
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enzyme, PKM2 can exist as a tetramer with similar functions as 
PKM1 or as a dimer that loses activity as a glycolytic enzyme, 
but can perform numerous other non-glycolytic functions in the 
cell. From the perspective of glycolysis, this dynamic feature of 
PKM2 reduces its efficiency as a glycolytic enzyme and allows 
for the accumulation of upstream glycolytic intermediates, 
thereby promoting de novo amino acid and lipid biosynthesis—
processes that are critical for the production of a daughter cell 
(70). From the perspective of inflammation, the PKM2 dimer 
can localize to the nucleus (58) where it is a well-known co-
activator of Hif-1α gene signatures (54, 66, 67). In macrophages, 
this interaction is critical for the appropriate transcriptional 
activation of metabolic machinery, such as lactate dehydroge-
nase A (LDH-A) and pro-inflammatory cytokines, such as IL-1β 
(66). Similarly, signal transducer and activator of transcription 3 
(STAT3) (55) and the aryl hydrocarbon receptor (AhR) (71) also 
require interaction with PKM2 for appropriate DNA binding. 
Thus, the PKM2 dimer seems to play a unique role as a direct 
modulator of proliferative and inflammatory programs. Relating 
to T cells, AhR, STAT3, and Hif-1α are all well-known regula-
tors of Th17 cell differentiation perhaps implicating PKM2 as a 
regulator of this cell type.

Many groups in cancer research (56, 57, 60) and immunology 
(66–69, 72) are exploring the therapeutic potential of enforc-
ing PKM2 tetramerization with pharmacologic compounds  
(62, 73). The major endogenous driver of PKM2 tetramerization 
is fructose 1,6 bisphosphate (FBP) (65), the product of the phos-
phofructokinase-catalyzed step in glycolysis. Phosphotyrosine 
residues generated by growth factor signaling (57, 59) can bind 
to PKM2 and promote release of FBP, and along with post-
translational modifications, such as PKM2 phosphorylation 
(74), oxidation (61), acetylation (58), and succinylation (75, 
76), are endogenous drivers of tetramer dissociation. Synthetic 
activators of PKM2 tetramerization, originally characterized 
in cancer models as tumor-blocking agents (62), also potently 
block inflammation in numerous disease models (66, 67, 77). 
Thus, enforcing PKM2 tetramerization shows promise as a 
metabolic machinery-based paradigm for controlling inflam-
matory responses without overtly inhibiting metabolism itself.

Lactate Dehydrogenase A
Lactate dehydrogenase is a tetrameric enzyme variably composed 
of A and B subunits that, when combined, form a complex with 
the capability of converting pyruvate to lactate (Figure 1). This 
reaction is the defining step of aerobic glycolysis (78), the form of 
metabolism engaged by activated immune cells, which increase 
their regeneration of NAD+ consumed during glycolysis by 
producing lactate regardless of environmental oxygen content 
(2, 3). Peng and colleagues (79) recently showed that T  cells 
almost exclusively express the A subunits of LDH, which they 
further upregulate upon activation, and expression of LDH-A is 
critical for the proper production of the inflammation-promoting 
cytokine IFN-γ. They found that genetic ablation of LDH-A in 
T cells heightened consumption of glycolysis-derived acetyl-CoA 
through the tricarboxylic cylic acid cycle and depleting intracel-
lular stores of this metabolic byproduct of glucose catabolism. 
This acetyl-CoA depletion impaired activation-induced 

permissive histone acetylations that are required for opening of 
the Ifng locus during T cell activation. These findings and others 
(80–82) suggest that metabolic adaptations like aerobic glycolysis 
are important (1) as a means of generating sufficient ATP and 
metabolic intermediates to support anabolic processes and (2) 
as drivers of the epigenetic changes that are responsible for 
facilitating engagement of the inflammatory program [reviewed 
in Ref. (83)]. In addition to its ability to indirectly modulate the 
epigenetic landscape of the activated T cell, there is evidence to 
suggest that LDH-A may also be capable of directly influencing 
inflammatory responses. In a manner reminiscent of direct 
repression of IFN-γ and IL-2 mRNA translation by the glycolytic 
enzyme GAPDH (31, 32), LDH-A has been reported to bind to 
3′AU-rich elements in GM-CSF mRNA (84). It remains unclear 
how the mRNA-binding properties of LDH-A affects downstream 
protein expression and, additionally, if this non-metabolic func-
tion is related to the level of flux through the glycolytic cascade or 
enzymatic activity. Inflammatory T cells are major producers of 
GM-CSF, a prominent driver of autoimmune responses (45–47, 
85, 86), and a detailed study elucidating the metabolic require-
ments for GM-CSF production in  vivo, including how it may 
relate to LDH-A, is warranted.

THe ReLATiOnSHiP BeTween 
GLYCOLYSiS AnD inFLAMMATiOn  
IN VIVO

Seminal in  vitro studies defined the metabolic peculiarities of 
inflammatory T  cell subtypes (87–89) and paved the way for 
future works assessing the impact of glycolytic manipulations 
on T cell-driven inflammation in vivo (Figure 2) (10, 12, 90–94). 
Recent studies, however, question the strength of the relation-
ship between glycolysis and inflammation in the in vivo setting. 
Peripheral blood T cells isolated from patients with rheumatoid 
arthritis show defects in glycolytic flux, rather than elevated gly-
colysis (95, 96). Likewise, impaired glycolysis is also detected in 
peripheral blood T cells isolated from multiple sclerosis patients 
and type 1 diabetics (43). One potential explanation for these 
findings may be that T cells at sites of pathology may maintain 
a distinct metabolism from those in circulation. Alternatively, 
the metabolic signatures of immune cells generated in  vitro 
versus in vivo may be fundamentally different, and investigating 
the similarities and differences between these cells could reveal 
aspects of the metabolism–inflammation relationship that are 
currently being overlooked (97). The study of Treg metabolism 
provides a great example of the discrepancies between in  vivo 
and in vitro-derived cells. Whereas Tregs (Tregs) generated by 
standard in  vitro protocols maintain a metabolic profile that 
favors mitochondrial respiration over aerobic glycolysis, Tregs 
isolated ex vivo seem to be profoundly glycolytic (51, 98), and 
this metabolic signature is proposed to favor their transcriptional 
activity at Eno1 to produce α-enolase and MBP-1 (43). Indeed, 
the association between glycolytic flux and inflammation is likely 
not as clear in vivo as it is in vitro. Nevertheless, the non-metabolic 
functions of glycolytic machinery, including their relationship 
to inflammation, have been convincingly demonstrated in vivo 
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FiGURe 2 | Summary of studies targeting glycolytic machinery in vivo to treat 
pathologies with prominent inflammatory T cell contributions. Pharmacologic 
inhibitors of glycolysis are listed in purple. DCA, dichloroacetate, an inhibitor 
of pyruvate dehydrogenase kinase 1 (12); 3-BrPa, 3-bromopyruvate, an 
inhibitor of hexokinase and GAPDH (93); 3-PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-
2-propen-1-one, an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 3 (PFKFB3, PFK2) (91). Genetic models targeting glycolytic 
machinery in T cells are listed in green. LDH-A, lactate dehydrogenase A (79); 
Glut-1, glucose transporter 1 (90). In vivo models of inflammation studied are 
experimental autoimmune encephalomyelitis (EAE)—a murine model of 
multiple sclerosis, SKG arthritis [a model of rheumatoid arthritis that 
spontaneously develops in the SKG strain of mice (99)]; graft versus host 
disease (GVHD), and colitis.
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and represent intriguing therapeutic opportunities for the 
future development of metabolically focused interventions for 
inflammatory disease. Toward this end, it will be important to 
determine the non-metabolic functions of glycolytic enzymes in 
other systems. For example, the mitochondrial localization of 
HK-II is important for cardiomyocyte function and interven-
tions at this level of glycolysis might be anticipated to impact the 
heart (15, 16). In the kidney, podocytes were recently shown to 
express high levels of PKM2, and the non-metabolic functions 
of the enzyme in this context appear to play essential disease-
potentiating roles in the context of diabetic nephropathy (77). 
Indeed, an important step toward realizing the therapeutic 
potential of targeting the non-metabolic functions of glycolytic 
enzymes during inflammation is to better understand these 
functions within and beyond the context of immunity. Finally, 
just as particular inflammatory processes are often associated 
with a unique cytokine profile (e.g., TNF-α and rheumatoid 
arthritis or IL-17A and psoriasis), the metabolic proclivities 
and peculiarities of cells driving inflammation may also differ 
based on disease-specific contexts. Further investigation into the 
nuances of immune cell metabolism in the in vivo setting and 
how this relates to their inflammatory functions are needed to 

better elucidate and potentially target the relationship between 
metabolism and inflammation during disease.

COnCLUSiOn

The metabolic requirements that support immune-mediated 
inflammatory responses are well established in  vitro and 
increasingly so in vivo. Elevated consumption of glucose plays 
an important role in inflammatory responses of T cells, where 
glycolytic processes can serve to generate ATP, produce meta-
bolic intermediates that are important for anabolic processes 
and even alter the epigenetic landscape of the activated cell. To 
achieve this, activated immune cells must upregulate expression 
of metabolic machinery, many of which serve non-metabolic 
functions in the cell that are directly linked to modulating the 
inflammatory response. Research in cancer cells has led to the 
identification of many non-metabolic functions of glycolytic 
enzymes (100, 101), and only recently are these functions 
beginning to be assessed in the context of inflammation. Just as 
research into the metabolic activity of cancer cells provided the 
foundations for immunometabolic studies to identify the unique 
bioenergetic requirements of immune cell subsets, so too may 
the non-metabolic functions of glycolytic enzymes discovered in 
cancer cells instruct an alternative way of looking at the relation-
ship between metabolism and inflammation. Importantly, this 
alternative approach may generate interventions that are more 
readily translatable to the clinical setting than therapies that 
overtly impinge on enzymatic activity of metabolic machinery.

In addition to those listed here, other isoforms of glycolytic 
machinery with known non-metabolic properties in cancer 
cells, such as phosphofructokinase-1 (102), seem to be selec-
tively induced in immune cells in response to distinct stimuli. 
Determining how these contribute to the T  cell inflammatory 
program is of interest. Conversely, activation-induced proteins 
that are not classically associated with metabolism, such as CD69 
(103), may also play metabolic roles that are important for inflam-
matory immune responses. In addition, byproducts of metabolic 
processes, such as PEP (10), lactate (104, 105), succinate (19, 66, 
106–108), citrate (109), 2-hydroxyglutarate (110), α-ketoglutarate 
(111), and others (102), are gaining increasing recognition for the 
non-metabolic roles they play as direct modulators of inflamma-
tion. Further exploration into the unique ways in which metabolic 
processes contribute to immune responses may reveal exploitable 
opportunities to destabilize the relationship between metabolism 
and inflammation for therapeutic benefit.
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