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Abstract

Rendering synthetic data (e.g., 3D CAD-rendered im-

ages) to generate annotations for learning deep models

in vision tasks has attracted increasing attention in recent

years. However, simply applying the models learnt on syn-

thetic images may lead to high generalization error on re-

al images due to domain shift. To address this issue, re-

cent progress in cross-domain recognition has featured the

Mean Teacher, which directly simulates unsupervised do-

main adaptation as semi-supervised learning. The domain

gap is thus naturally bridged with consistency regulariza-

tion in a teacher-student scheme. In this work, we advance

this Mean Teacher paradigm to be applicable for cross-

domain detection. Specifically, we present Mean Teacher

with Object Relations (MTOR) that novelly remolds Mean

Teacher under the backbone of Faster R-CNN by integrat-

ing the object relations into the measure of consistency cost

between teacher and student modules. Technically, MTOR

firstly learns relational graphs that capture similarities be-

tween pairs of regions for teacher and student respectively.

The whole architecture is then optimized with three consis-

tency regularizations: 1) region-level consistency to align

the region-level predictions between teacher and student,

2) inter-graph consistency for matching the graph struc-

tures between teacher and student, and 3) intra-graph con-

sistency to enhance the similarity between regions of same

class within the graph of student. Extensive experiments

are conducted on the transfers across Cityscapes, Foggy C-

ityscapes, and SIM10k, and superior results are reported

when comparing to state-of-the-art approaches. More re-

markably, we obtain a new record of single model: 22.8%

of mAP on Syn2Real detection dataset.

1. Introduction

Deep Neural Networks have been proven to be highly

effective for learning vision models on large-scale dataset-

∗This work was performed at JD AI Research.
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Figure 1. Object detection on one real image by (a) directly apply-

ing Faster R-CNN trained on images from 3D CAD models and

(b) domain adaptation of Mean Teacher in this work.

s. To date in the literature, there are various datasets (e.g.,

ImageNet [41] and COCO [25]) that include well-annotated

images useful for developing deep models across a variety

of vision tasks, e.g., recognition [15, 47], detection [13, 40],

and semantic segmentation [2, 27]. Nevertheless, given a

new dataset, the typical first step is still to perform inten-

sive manual labeling, which is cost expensive and time con-

suming. An alternative is to utilize synthetic data which is

largely available from 3D CAD models [34], and the ground

truth could be freely and automatically generated. However,

many previous experiences have also shown that reapplying

a model learnt on synthetic data may hurt the performance

on real data due to a phenomenon known as “domain shift”

[50]. Take the object detection results shown in Figure 1

(a) as an example, the model trained on synthetic data from

3D CAD fails to accurately localize the objects such as per-

son and car. As a result, unsupervised domain adaptation,

which aims to utilize labeled examples from the source do-

main and numerous unlabeled examples in the target do-

main to reduce the prediction error on the target data, can

be a feasible solution for this challenge.

A recent pioneering practice [9] in unsupervised do-

main adaptation is to directly simulate this task as

semi-supervised learning. The basic idea is to develop

Mean Teacher [48], the state-of-the-art technique in semi-

supervised learning, to work in cross-domain recognition

task by pursuing the consistency of two predictions under

perturbations of inputs (e.g., different augmentations of im-

age). As such, the domain gap is naturally bridged via the

consistency regularization in Mean Teacher, which enforces

the predictions of two models (i.e., teacher and student) to
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Figure 2. A sketch of cross-domain binary classification task with

two labeled examples/regions in source domain (large blue dots)

and three unlabeled examples/regions of one image in target do-

main (blue circle), demonstrating how the choice of the unlabeled

target samples affects the unified fitted function across domains

(gray curve). (a) A model with no regularization is flexible to fit

any function that correctly classifies only labeled source data. (b)

A model trained with augmented labeled source data (small blue

dots) learns to produce consistent results around labeled data. (c)

Mean Teacher [9] locally enforces the predictions to be consistent

to the noise around each individual target sample, pursuing addi-

tional local smoothing of fitted function (gray curve). (d) Mean

Teacher with inter-graph consistency simultaneously adapts target

samples to make the holistic graph structure of them resistant to

the noise. (e) Mean Teacher with intra-graph consistency enforces

additional consistency across target samples of same class, further

improving fitted function with long-range smoothing.

be consistent to the perturbations/noise around each unla-

beled target sample (Figure 2 (c)). Mean teacher aims for

learning a more smooth domain-invariant function than the

model trained with no regularization (Figure 2 (a)) or on-

ly augmented labeled source data (Figure 2 (b)). In this

paper, we novelly consider the use of Mean Teacher for

cross-domain detection from the viewpoint of both region-

level and graph-structured consistencies. The objective of

region-level consistency is to align the region-level classifi-

cation results of teacher and student models for the identical

teacher-generated region proposals, which in turn implicitly

enforces the consistency of object localization. The inspi-

ration of graph-structured consistency is from the rationale

that the inherent relations between objects within one image

should be invariant to different image augmentations. In

the context of Mean Teacher, this kind of graph-structured

consistency (i.e., inter-graph consistency) is equivalent to

matching the graph structures between teacher and studen-

t models (Figure 2 (d)). Another kind of graph-structured

consistency, i.e., intra-graph consistency, is additionally ex-

ploited to reinforce the similarity between image regions of

same class within the graph of student model (Figure 2 (e)).

By consolidating the idea of region-level and graph-

structured consistencies into Mean Teacher for facilitating

cross-domain detection, we present a novel Mean Teacher

with Object Relations (MTOR), as shown in Figure 3. The

whole framework consists of teacher and student modules

under the same backbone of Faster R-CNN [40]. Specif-

ically, each labeled source sample is only passed through

student module to conduct supervised learning of detection,

while each unlabeled target sample will be fed into both

teacher and student with two random augmentations, en-

abling the measure of the consistency between them to the

induced noise. During training, with the same region pro-

posals generated by teacher, two relational graphs are con-

structed via calculating the feature similarity between each

pair of regions for teacher and student. The whole MTOR is

then trained by the supervised detection loss in student mod-

el plus three consistency regularizations, i.e., region-level

consistency to align the region-level predictions, inter-graph

consistency to match the graph structures between teacher

and student, and intra-graph consistency to enhance the sim-

ilarity between regions of same class in student. With both

region-level and graph-structured consistencies, our MTOR

could better build invariance across domains and thus obtain

encouraging detection results in Figure 1 (b).

2. Related Work

Object Detection. Recent years have witnessed remark-

able progress in object detection with deep learning. R-

CNN [14] is one of the early works that exploits a two-

stage paradigm for object detection by firstly generating re-

gion proposals with selective search and then classifying the

proposals into foreground classes/background. Later Fast

R-CNN [13] extends such paradigm by sharing convolution

features across region proposals to significantly speed up

the detection process. Faster R-CNN [40] advances Fast R-

CNN by replacing selective search with an accurate and ef-

ficient Region Proposal Networks (RPN). Next, a few sub-

sequent works [7, 8, 18, 22, 23, 33, 46] strive to improve the

accuracy and speed of two-stage detectors. Another line of

works builds detectors in one-stage manner by skipping re-

gion proposal stage. YOLO [37] jointly predicts bounding

boxes and confidences of multiple categories as regression

problem. SSD [26] further improves it by utilizing multiple

feature maps at different scales. Numerous extensions to the

one-stage scheme have been proposed, e.g. [10, 24, 38, 39].

In this work, we adopt Faster R-CNN as the detection back-

bone for its robustness and flexibility.

Domain Adaptation. As for the literature on domain

adaptation, while it is quite vast, the most relevant category

to our work is unsupervised domain adaptation in deep ar-

chitectures. Recent works have involved discrepancy-based

methods that guide the feature learning in DCNNs by min-

imizing the domain discrepancy with Maximum Mean Dis-

crepancy (MMD) [28, 29, 30]. Another branch is to exploit

the domain confusion by learning a domain discriminator

[11, 12, 44, 49]. Later, self-ensembling [9] extends Mean

Teacher [48] for domain adaptation and establishes new

records on several cross-domain recognition benchmarks.

All of the aforementioned works focus on the domain adap-

tation for recognition, and recently much attention has been

paid to domain adaptation in other tasks, e.g., object de-

tection [4, 35] and semantic segmentation [5, 16, 53]. For

domain adaptation on object detection, [45] uses transfer

component analysis to learn the common transfer compo-

nents across domains and [35] aligns the region features

with subspace alignment. More Recently, [4] constructs a
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Figure 3. The overview of Mean Teacher with Object Relations (MTOR) for cross-domain detection, with teacher and student models

under the same backbone of Faster R-CNN (better viewed in color). Each labeled source image is fed into student model to conduct

the supervised learning of detection. Each unlabeled target image xt is firstly transformed into two perturbed samples, i.e., xS
t and xT

t ,

with different augmentations and then we inject the two perturbed samples into student and teacher model separately. During training,

with the same set of teacher-generated region proposals RT
xt

that shares between teacher and student, two relational graphs, i.e., GT
xt

and GS
xt

, are constructed via calculating the feature similarity between each pair of regions for teacher and student, respectively. Next,

three consistency regularization are devised to facilitate cross-domain detection in Mean Teacher paradigm from region-level and graph-

structured perspectives: 1) Region-Level Consistency to align the region-level predictions between teacher and student; 2) Inter-Graph

consistency for matching the graph structures between teacher and student, and 3) Intra-Graph Consistency to enhance the similarity

between regions of same class within the graph of student. The whole MTOR is trained by minimizing the supervised loss on labeled

source data plus the three consistency losses on unlabeled target data in an end-to-end manner. Note that the student model is optimized

with stochastic gradient descent and the weights of teacher are the exponential moving average of student model weights.

domain adaptive Faster R-CNN by learning domain classi-

fiers on both image and instance levels.

Summary. Similar to previous work [4], our approach

aims to leverage additional unlabeled target data for learn-

ing domain-invariant detector for cross-domain detection.

The novelty is on the exploitation of Mean Teacher to bridge

domain gap with consistency regularization in the contex-

t of object detection, which has not been previously ex-

plored. Moreover, the object relation between image re-

gions is elegantly integrated into Mean Teacher paradigm

to boost cross-domain detection.

3. Mean Teacher in Semi-Supervised Learning

We briefly review semi-supervised learning with Mean

Teacher [48]. Mean Teacher consists of two models with the

same network architecture: a student model fS parameter-

ized by wfS and a teacher model fT parameterized by wfT .

The main idea behind Mean Teacher is to encourage predic-

tions of teacher and student consistent under small perturba-

tions of inputs or network parameters. In other words, with

the inputs of two different augmentations for the same un-

labeled sample, teacher and student models should produce

similar predicted probabilities. Specifically, in the standard

setting of semi-supervised learning, we have access to la-

beled set XL = {(xl, yl)} and unlabeled set XU = {xu}.

Given two perturbed samples xS
u and xT

u of the same unla-

beled sample xu, the consistency loss penalizes the differ-

ence between the student’s prediction fS(x
S
u ;wfS ) and the

teacher’s fT (x
T
u ;wfT ), which is typically computed as the

Mean Squared Error:

Lcons(xu) = ||fS(x
S
u ;wfS )− fT (x

T
u ;wfT )||

2
2. (1)

The student is trained using gradient descent, while the

weights of the teacher wfT at t-th iteration are the expo-

nential moving average of the student weights wfS : wt
fT

=

α · wt−1
fT

+ (1 − α) · wt−1
fS

. α is a smoothing coefficient

parameter that controls the updating of teacher weights.

Hence, the total training loss in Mean Teacher is com-

posed of supervised cross entropy loss on labeled samples

and consistency loss of unlabeled samples, balanced with

the tradeoff parameter λ:

L =
∑

(xl,yl)∈XL

LCE(xl, yl) + λ ·
∑

xu∈XU

Lcons(xu). (2)

4. Mean Teacher in Cross-Domain Detection

In this paper we remold Mean Teacher in the detection

backbone (e.g., Faster R-CNN) for cross-domain detection

by integrating the object relations into the measure of con-

sistency regularization between teacher and student. An

overview of our Mean Teacher with Object Relations (M-

TOR) framework is depicted in Figure 3. We begin this
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section by elaborating the problem formulation. Then, a

region-level consistency, which is different from the gener-

ic consistency at image-level in primal Mean Teacher, is

provided to facilitate domain adaptation at region-level. In

addition, two kinds of graph-structured consistencies (inter-

graph and intra-graph consistencies) are introduced to ex-

plore object relation in Mean Teacher, enabling the interac-

tion between regions, which further enhance domain adap-

tation. Finally, the overall objective combining various con-

sistencies along with its optimization strategy are provided.

4.1. Problem Formulation

In unsupervised domain adaptation, we are given Ns la-

beled images Ds = {(xs, Bs)} in source domain and Nt

unlabeled images Dt = {xt} in target domain, where Bs

denotes the bounding box annotation for source image xs.

The ultimate goal of cross-domain detection is to design

domain-invariant detectors depending on Ds and Dt.

Inspired by the recent success of consistency-based

methods in semi-supervised learning [1, 20, 48] and Mean

Teacher in cross-domain recognition [9], we formulate our

cross-domain detection model in a Mean Teacher paradigm

by enforcing the predictions of teacher and student mod-

els consistent under perturbations of input unlabeled tar-

get sample. Accordingly, each labeled source sample xs is

passed through student module to perform supervised learn-

ing of detection. Meanwhile, each unlabeled target sample

xt is firstly transformed into two perturbed samples (i.e.,

xT
t and xS

t ) with different augmentations, and then fed in-

to teacher and student models separately. This enables the

measure of consistency between student and teacher. Dur-

ing training, different from Mean Teacher in cross-domain

recognition [9] that solely encourages generic image-level

consistency, we consider the consistency at a finer granular-

ity (i.e., region-level), which is tailored for object detection.

Moreover, two graph-structured consistencies are especially

designed to exploit object relations in the context of Mean

Teacher, which further boosts adaptation by aligning the re-

sults depending on the inherent relations between objects.

Specifically, given the identical set of region proposal-

s RT
xt

= {rt} generated by teacher model F T , we con-

struct two relational graphs GT
xt

and GS
xt

to learn the affini-

ty matrix that captures the relation between any pair of re-

gions in teacher and student, respectively. Note that we use

Gxt
∈ {GT

xt
,GS

xt
} for simplicity, i.e., Gxt

denotes the graph

in either teacher GT
xt

or student GS
xt

. More precisely, by

treating each region in teacher/student as one vertex, the re-

lational graph is constructed as Gxt
= {Vxt

, Ext
} , where

Vxt
denotes the set of predictions for all region proposals

in teacher/student and Ext
is a (|Vxt

| × |Vxt
|) affinity ma-

trix whose entry measures the similarities between every t-

wo regions. Ext
is symmetric, and represents an undirected

weighted graph. On the basis of two constructed relation-

al graphs, we make the detection backbone—Faster R-CNN

transferable across domains in Mean Teacher paradigm with

three consistency regularization: 1) region-level consisten-

cy (Section 4.2) to align the region-level predictions of the

vertices in teacher and student graphs sharing the same s-

patial location, 2) inter-graph consistency (Section 4.3) for

matching the graph structures (i.e., the affinity matrices) of

teacher and student graphs, and 3) intra-graph consistency

(Section 4.4) to enhance the similarity between regions be-

longing to the same class within the graph of student.

4.2. Region­Level Consistency

Unlike [9] that pursues image-level consistency to per-

turbations of inputs in recognition, we facilitate Mean

Teacher in cross-domain detection by exploiting region-

level consistency under the identical region proposals be-

tween teacher and student. The design of region-level con-

sistency helps to reduce the local instance variances such as

scale, color jitter, random noise, etc, which in turn implicit-

ly enforces the consistency of object localization.

Technically, given the two perturbed samples xT
t and xS

t

of one unlabeled target sample xt, they are fed into teacher

and student detectors under the same backbone (i.e., Faster

R-CNN) separately. Faster R-CNN is a two-stage detec-

tor consisting of three major components: a Base Convo-

lution Neural Network (Base CNN) for feature extraction,

a Region Proposal Network (RPN) to generate candidate

region proposals, and a Region-based Convolution Neural

Network (RCNN) for classifying each region. Hence, with

the input of xT
t , the Base CNN of teacher F T

Conv firstly pro-

duces output feature map fTxt
. Next, depending on the output

feature map fTxt
, a set of region proposals RT

xt
= {rt} are

generated via RPN in teacher F T
RPN :

f
T
xt

= F
T
Conv(x

T
t ),RT

xt
= F

T
RPN (fTxt

). (3)

For each region proposal rt ∈ RT
xt

, a ROI pooling layer is

utilized to extract a fixed-length vector fTr from the feature

map fTxt
, which represents the region feature of rt in teach-

er. The RCNN in teacher F T
RCNN further takes each region

feature fTr as input and classifies it into one of the C fore-

ground categories and a catch-all background class. Here

the prediction of each region is the probability distribution

over background plus foreground categories, which is de-

noted as dT
r = F T

RCNN (fTr ). As such, by accumulating the

predicted results of all region proposals, the entire detection

output of xT
t in teacher is denoted as VT

xt
= {dTr }. Simi-

larly, for student model FS , another perturbed image xS
t is

fed into its Base CNN FS
Conv to produce the feature map

fSxt
. Note that instead of generating another set of region

proposals for xS
t via RPN in student, we directly take the

region proposals from teacher RT
xt

as the ones in student:

f
S
xt

= F
S
Conv(x

S
t ),R

S
xt

= RT
xt
. (4)
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That is, we endow teacher and student with the same set of

region proposals, enabling the interaction between teacher

and student for measuring region-level consistency. Given

region proposals RS
xt

and feature map fSxt
, we can acquire

the region feature fSr for each region proposal and the corre-

sponding probability distribution dSr = FS
RCNN (fSr ), lead-

ing to the entire detection results in student VS
xt

= {dS
r }.

As such, the region-level consistency is measured as the

distance between the prediction of teacher VT
xt

and that of

student VS
xt

. To focus more on foreground samples and sta-

bilize the training in the challenging cross-domain detec-

tion scenario, we follow [9] and adopt confidence thresh-

olding to filter out background region proposals and low-

confidence foreground region proposals with noise. For

each region proposal rt ∈ RT
xt

of teacher model, we com-

pute the confidence as qTr = maxj∈C(d
T
rj), where C is

the set of C foreground categories and dT
rj is the predict-

ed probability of j-th foreground category. If qTr is below

the confidence threshold ǫ, we eliminate the region propos-

al in RT
xt

. With the refined region proposal (RT
xt

), and the

corresponding region-level predictions of teacher and stu-

dent (VT
xt

= {dTr } and VS
xt

= {dSr }), the Region-level

Consistency Loss (RCL) is calculated as the average of

Mean Squared Error between the region-level predictions

of teacher and student for all region proposals:

L
RCL
xt

=
1

|RT
xt
|
·
∑

r∈RT
xt

||dT
r − d

S
r ||

2
2. (5)

4.3. Inter­Graph Consistency

The region-level consistency only individually aligns

the predictions of each region proposal in teacher and s-

tudent, while leaving the relations between regions unex-

ploited. Thus, inspired from graph structure exploitation

[31, 32, 51, 52] in computer vision tasks, we devise a nov-

el graph-structured regularization, i.e., inter-graph consis-

tency, to measure the consistency of graph structures under

perturbations of inputs by matching the affinity matrices of

graphs constructed in teacher and student models. The ra-

tionale of inter-graph consistency is that the inherent rela-

tions between objects within each image should be invariant

to different image augmentations.

In particular, for the graph constructed in teacher GT
xt

=
{VT

xt
, ET

xt
}, the affinity matrix of teacher ET

xt
is obtained by

defining each entry as the similarity between two regions.

For instance, given two region proposals rm, rn ∈ RT
xt

, the

entry (ET
xt
)m,n in ET

xt
is calculated as the cosine similarity

between the region representations (fTrm and fTrn ):

(ET
xt
)m,n =

fTrm · fTrn

||fTrm ||2 · ||f
T
rn
||2

. (6)

Similarly, we achieve the affinity matrix of student ExS
t

by

measuring the cosine similarities between every two regions

in student. Accordingly, the IntEr-Graph Consistency Loss

(EGL) is defined as the Mean Squared Error between the

affinity matrices of graphs in teacher and student models:

L
EGL
xt

=
1

|RT
xt
|2

· ||ES
xt

− ET
xt
||22. (7)

4.4. Intra­Graph Consistency in Student

Inspired from self-labeling [21, 42] for domain adapta-

tion, the inter-graph consistency is devised to further rein-

force the similarity between regions of same class within the

graph of student with the supervision from teacher. Specif-

ically, since no label is provided for target samples in unsu-

pervised domain adaptation settings, we directly utilize the

teacher to assign each region proposal rt ∈ RT
xt

a “pseu-

do” label: l̂r = argmaxj∈C(d
T
rj). Next, a (|RT

xt
| × |RT

xt
|)

supervision matrix MT
xt

is naturally generated to indicate

whether two regions belong to the same category:

(MT
xt
)(m,n) =

{

1 if l̂rm = l̂rn ,

0 otherwise.
, (8)

where l̂rm and l̂rn denote the pseudo labels of two regions

rm, rn ∈ RT
xt

, respectively. Thus, given the the affinity

matrix of student ES
xt

and the supervision matrix MT
xt

, the

intrA-Graph consistency Loss (AGL) is defined as:

L
AGL
xt

=

∑

1≤m,n≤|RT
xt

|

(MT
xt
)(m,n) · (1− (ES

xt
)(m,n))

max(1,
∑

1≤m,n≤|RT
xt

|

(MT
xt
)(m,n))

. (9)

Note that LAGL
xt

is triggered when at least two regions share

the same pseudo label in Rτ
xt

. By minimizing the inter-

graph consistency loss, the similarity between regions with

the same pseudo label in student is enhanced, pursuing low-

er intra-class variation within the graph of student.

4.5. Optimization

Training Objective. The overall training objective of

our MTOR integrates the supervised loss Lsup on labeled

source data Ds and three consistency losses, i.e., region-

level consistency LRCL
xt

in Eq.(5), inter-graph consistency

LEGL
xt

in Eq.(7) and intra-graph consistency LAGL
xt

in Eq.(9)

on unlabeled target data Dt:

L =
∑

(xs,Bs)∈Ds

Lsup(xs, Bs)+λ·
∑

xt∈Dt

(LRCL
xt

+L
EGL
xt

+L
AGL
xt

),

(10)

where λ is the tradeoff parameter.

Weights Update. The student network FS is opti-

mized with standard SGD algorithm by minimizing L. The

weights of teacher network F T at iteration t are updated as

the exponential moving average of student weights:

w
t
FT = α · wt−1

FT + (1− α) · wt−1
FS , (11)

where α denotes smoothing coefficient parameter.
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5. Experiments

We conduct extensive evaluations of our MTOR for

cross-domain detection in two different domain shift s-

cenarios, including one normal-to-foggy weather transfer

in urban scene (Cityscapes [6] → Foggy Cityscapes [43])

and two synthetic-to-real transfers (i.e., SIM10k [19] → C-

ityscapes and 3D CAD-rendered images → real images in

Syn2Real detection dataset [34]).

5.1. Dataset and Experimental Settings

Dataset. The Cityscapes dataset (C) is a popular seman-

tic understanding benchmark in urban street scenes with

pixel-level annotation, containing 2,975 images for train-

ing and 500 images for validation. Since it is not dedicat-

ed for detection, we follow [4] and generate the bounding

box annotations by the tightest rectangles of each instance

segmentation mask for 8 categories (person plus 7 kinds of

transports). Foggy Cityscapes (F) is a recently proposed

synthetic foggy dataset which simulates fog on real scenes.

Each foggy image is rendered with clear image and depth

map from Cityscapes. Thus the annotations and data split

in Foggy Cityscapes are inherited from Cityscapes. SIM10k

(M) dataset contains 10k images rendered from computer

game—Grand Theft Auto V (GTA 5) with bounding box

annotations for cars. The Syn2Real detection dataset is

the largest synthetic-to-real object detection dataset to date

with over 70k images in the training, validation and test-

ing domains. The training domain consists of 8k synthet-

ic images (S) which are generated from 3D CAD models.

Each object is rendered independently and placed on a white

background. The validation domain includes 3,289 real im-

ages from COCO [25] (O) and the testing domain contains

60,863 images from video frames in YTBB [36] (Y).

Normal-to-Foggy Weather Transfer. We follow [4]

and evaluate C → F for transfer across different weather

conditions. The training set in Cityscapes is taken as source

domain. We use the training set in Foggy Cityscapes as tar-

get domain and results are reported on its validation set.

Synthetic-to-Real Image Transfer. We consider two

directions for synthetic-to-real transfers: M → C and S →
O/Y. For M → C, we utilize the entire SIM10k as source do-

main and leverage Cityscapes training set as target domain.

The results are reported on Cityscapes validation split. For

S → O/Y on Syn2Real detection dataset, we take the train-

ing set (synthetic images) as source domain and the valida-

tion set (COCO)/testing set (YTBB) as target domain. Since

the annotations of testing set are not publicly available, we

submit results to online testing server for evaluation.

Implementation Details. For C → F and M → C, we

adopt the 50-layer ResNet [15] pre-trained on ImageNet

[41] as the basic architecture of Faster R-CNN backbone.

For the more challenging S → O/Y, the Faster R-CNN

backbone is mainly constructed on 152-layer ResNet. For

all transfers, we utilize “image-centric” sampling strategy

[13]. Each input image is resized such that its scale (short-

er edge) is 600 pixels. Each mini-batch contains 2 images

per GPU, one from the source domain and the other from

the target domain. We train on 4 GPUs (so effective mini-

batch size is 8) and each image has 128 sampled anchors,

with a ratio of 1:3 of positive to negatives [13]. We im-

plement MTOR based on MXNet [3]. Specifically, the net-

work weights are trained by SGD optimizer with 0.0005

weight decay and 0.9 momentum. The learning rate and

maximum training epoch are set as 0.001 and 10 for all ex-

periments. The confidence threshold ǫ is empirically set to

0.98 for C → F and M → C, and 0.99 for S → O/Y. The

tradeoff parameter λ in Eq.(10) and the smooth coefficient

parameter α in Eq.(11) is set as 1.0 and 0.99, respective-

ly. Moreover, our MTOR is firstly pre-trained on labeled

source data. For data augmentations on target images, we

firstly augment each target image with the same spatial per-

turbation including random cropping, padding, or flipping.

Next, we additionally perform two different kinds of image

augmentations with random color jittering (i.e., brightness,

contrast, hue and saturation augmentations) or PCA noise,

resulting in two perturbed target samples, one for studen-

t and the other for teacher. Following [4], we report mAP

with a IoU threshold of 0.5 for evaluation.

Compared Approaches. To empirically verify the mer-

it of our MTOR, we compare the following methods: (1)

Source-Only directly exploits the Faster R-CNN model

trained on source domain to detect objects in target sam-

ples. (2) DA[4] designs two domain classifiers to allevi-

ate both image-level and region-level domain discrepancy,

which are further enforced with a consistency regularizer.

(3) MTOR is the proposal in this paper. Moreover, we de-

sign three degraded variants trained with region-level con-

sistency (MTORR), region-level plus inter-graph consis-

tency (MTORRE), and region-level plus intra-Graph con-

sistency (MTORRA). (4) Train-on-target is an oracle run

that trains Faster R-CNN on all the labeled target samples.

5.2. Performance Comparison and Analysis

Normal-to-Foggy Weather Transfer. Table 1 shows the

performance comparisons on Foggy Cityscapes validation

set for C → F transfer. Overall, the results with regard to

mAP score indicate that our proposed MTOR achieves su-

perior performance against state-of-the-art technique (DA).

In particular, the mAP of MTOR can achieve 35.1%, mak-

ing 3.1% absolute improvement over the best competitor

DA. The performances of Source-only which trains Faster

R-CNN only on the labeled source data can be regarded

as a lower bound without adaptation. By additionally in-

corporating the domain classifier in both image and region

level, DA leads to a large performance boost over Source-

only, which basically indicates the advantage of alleviat-
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Table 1. The mean Average Precision (mAP) of different models on Foggy Cityscapes validation set for C → F transfer.

RCL EGL AGL person rider car truck bus train mcycle bicycle mAP

Source-only 25.7 35.9 36.0 19.4 30.8 9.7 29.0 28.9 26.9

DA [4] 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0

MTORR X 30.8 41.5 44.1 21.6 37.8 35.1 26.7 35.8 34.2

MTORRE X X 28.7 40.1 45.9 22.9 38.0 38.6 26.9 34.9 34.5

MTORRA X X 29.6 41.2 43.7 22.2 38.4 40.9 27.8 35.3 34.9

MTOR X X X 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1

Train-on-target 31.4 42.6 51.7 28.8 43.4 40.2 31.7 33.2 37.9

Table 2. The Average Precision (AP) of car on Cityscapes valida-

tion set for M → C transfer.
RCL EGL AGL car AP

Source-only 39.4

DA [4] 41.9

MTORR X 45.9

MTORRE X X 46.1

MTORRA X X 46.3

MTOR X X X 46.6

Train-on-target 58.6

ing the domain discrepancy over the source and target da-

ta. Note that for fair comparison, we re-implemented DA

based on the same 50-layer ResNet architecture. How-

ever, the performances of DA are still lower than our

MTORR, which utilizes region-level consistency regular-

ization in Mean Teacher paradigm. This confirms the ef-

fectiveness of enforcing region-level consistency under per-

turbations of unlabeled target samples for cross-domain de-

tection. In addition, by further integrating object relations

into Mean Teacher paradigm through graph-structured con-

sistency from inter-graph or intra-graph perspective, our

MTORRE and MTORRA improve MTORR. The result-

s demonstrate the advantage of inter-graph consistency to

match the graph structures between teacher and student, and

intra-graph consistency to enhance the similarity between

regions of same class in student. By simultaneously uti-

lizing region-level and two graph-structured consistencies,

MTOR further boosts up the performances, which indicates

the merit of jointly exploiting inter-graph and intra-graph

consistencies in Mean Teacher paradigm.

Synthetic-to-Real Image Transfer. The performance

comparisons for synthetic-to-real transfer task on M → C

are summarized in Table 2. Our MTOR exhibits better per-

formance than other runs. In particular, the AP of car for

MTOR can reach 46.6%, making the absolute improvement

over DA by 4.7%. Similar to the observations in normal-

to-foggy weather transfer, MTORR performs better than

DA by aligning region-level predictions in Mean Teacher

and the performance is further improved by incorporating

inter-graph and intra-graph consistency in MTORRE and

MTORRA. Combining all the three consistency regulariza-

tions, our MTOR achieves the best performance.

We further evaluate our approach for S → O/Y transfer

on the more challenging Syn2Real detection dataset. Ta-

ble 3 shows the performance comparisons on S → O trans-

(a) Source-

only

(b) DA

(c) MTOR

bicycle bicycle
horse horse

bicycle
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bicycle

horse
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personcar

Figure 4. Examples of detection results on COCO for S → O.

fer. A clear performance improvement is achieved by our

proposed MTOR over other baselines. Similar to the ob-

servations on the transfers across SIM10k, Cityscapes, and

Foggy Cityscapes, MTORR performs better than DA by

taking region-level consistency on target samples into ac-

count for cross-domain detection. Moreover, MTORRE and

MTORRA exhibit better performance than MTORR by ad-

ditionally pursuing inter-graph and intra-graph consistency

respectively, and further performance improvement is at-

tained when exploiting region-level consistency plus two

graph-structured consistencies by MTOR. We also submit-

ted our MTOR, Source-only, and DA to online evaluation

server and evaluated the performances on official testing set.

Table 3 summaries the performances on official testing set

YTBB for S → Y transfer. The results clearly show that our

MTOR outperforms two other baselines.

Qualitative Analysis. Figure 4 showcases four exam-

ples of detection results on COCO for S → O transfer by

three approaches, i.e., Source-only, DA and our MTOR. The

exemplar results clearly show that our MTOR can generate

more accurate detection results by exploring region-level

and graph-structured consistency in Mean Teacher paradig-

m to boost cross-domain detection. For instance, MTOR

correctly detects person in the fourth image which is missed

in Source-only and DA.

Effect of the Parameters λ and α. To clarify the ef-

fect of tradeoff parameter λ in Eq.(10) and smoothing co-

efficient parameter α in Eq.(11), we show the performance

curves with different tradeoff/smoothing coefficient param-

eters in Figure 5. As shown in the figure, we can see that

both mAP curves of λ and α are generally like the “∧”

shapes when λ varies in a range from 0.1 to 5.0 and α varies

in a range from 0.92 to 0.9999. The best performance is

achieved when λ is 1.0 and α is about 0.98.

Error Analysis of Highest Confident Detections. To
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Table 3. The mean Average Precision (mAP) of different models on Syn2Real detection dataset for S → O/Y transfers.

RCL EGL AGL plane bcycl bus car horse knife mcycl person plant sktbd train truck mAP

mAP on validation set (COCO) for S → O transfer:

Source-only 30.0 25.3 31.3 14.0 17.3 1.9 25.6 18.5 14.7 14.7 21.1 2.2 18.1

DA [4] 30.3 24.1 31.3 14.0 17.4 1.3 27.4 18.9 17.5 14.5 21.8 3.1 18.5

MTORR X 32.0 22.8 29.1 15.3 20.8 0.6 32.4 22.2 0.5 18.2 36.9 0.6 19.3

MTORRE X X 33.3 21.2 32.9 13.1 18.1 3.1 32.2 24.0 1.4 20.5 34.4 0.6 19.6

MTORRA X X 35.4 24.0 32.1 14.9 19.1 1.8 31.6 24.2 3.7 18.9 31.7 2.0 20.0

MTOR X X X 35.5 24.9 32.9 15.4 19.1 1.8 31.4 21.8 14.4 18.9 30.4 1.7 20.7

Train-on-target 84.5 52.2 77.5 58.7 76.1 28.9 65.4 71.9 49.2 70.5 83.8 52.5 64.3

mAP on official testing set (YTBB) for S → Y transfer:

Source-only 28.4 18.4 23.8 28.4 35.8 3.6 35.7 8.6 8.4 14.8 6.4 5.2 18.1

DA [4] 38.0 16.1 23.3 30.7 33.0 4.7 34.8 6.1 15.7 14.0 9.8 9.5 19.6

MTOR (Ours) X X X 42.8 21.0 31.3 33.3 42.9 10.2 38.5 7.2 12.9 18.0 7.2 8.2 22.8

34.2%

34.4%

34.6%

34.8%

35.0%

35.2%

m
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Tradeoff parameter 

0.1 0.2 0.5 1.0 2.0 5.0

34.2%

34.4%

34.6%

34.8%

35.0%

35.2%

35.4%
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A
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0.92 0.95 0.98 0.99 0.999 0.9999

Figure 5. Effect of parameters λ and α on C → F transfer.
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Figure 6. Error analysis of highest confident detections on C → F.

further clarify the effect of the proposed region-level and

graph-structured consistencies in Mean Teacher paradigm,

we analyze the accuracies of Source-only, DA and MTOR

caused by the highest confident detections on Foggy C-

ityscapes for C → F transfer. We follow [4, 17] and catego-

rize the detections into 3 types: Correct (IoU with ground-

truth ≥ 0.5), Mis-Localized (0.5 > IoU with ground-truth

≥ 0.3) and Background (IoU with ground-truth < 0.3).

For each class, we select top-K predictions where K is

the number of ground-truth bounding boxes in this class.

We report the mean percentage of each type across all cat-

egories in Figure 6. Compared to Source-only, DA and our

MTOR clearly improve the number of correct detections (o-

range color) and reduce the number of false positives (other

colors). Moreover, by leveraging region-level and graph-

structured consistencies in Mean Teacher, MTOR leads to

both smaller mis-localized and background errors than DA.

Visualization of Relational Graph. Figure 7 further

shows the visualization of an exemplar relational graph (i.e.,

the affinity matrix) learned by Source-only, DA and our M-

TOR on Foggy Cityscapes for C → F transfer. For each ap-

proach, we extract the region representation of each ground-

truth region and construct the relational graph by computing

cosine similarity between every two regions. Note that the

first three regions belong to car class and the rest four re-

gions fall into person class. Thus we can clearly see that

most intra-class similarities of MTOR are higher than those

of Source-only and DA. The results demonstrate the advan-

car1 car2
car3

person1

person2

person3

person4

(a) Source-only (b) DA (c) MTOR

Figure 7. Visualization of relational graph on Foggy Cityscapes.

tage of enforcing intra-graph consistency in MTOR, leading

to more discriminative region feature for object detection.

6. Conclusions

We have presented Mean Teacher with Object Relations

(MTOR), which explores domain adaptation for object de-

tection in an unsupervised manner. Particularly, we study

the problem from the viewpoint of both region-level and

graph-structured consistencies in Mean Teacher paradigm.

To verify our claim, we have built two relational graphs

that capture similarities between pairs of regions for teach-

er and student respectively. The region-level consisten-

cy is to align the region-level predictions between teacher

and student, which facilitates domain adaptation at region-

level. The inter-graph consistency further matches the graph

structures between teacher and student, pursuing a noise-

resistant holistic graph structure on target domain. In addi-

tion, intra-graph consistency is utilized to enhance the sim-

ilarity between regions of same class in student, which ide-

ally leads to graph with lower intra-class variation. Experi-

ments conducted on the transfers across Cityscapes, Foggy

Cityscapes, and SIM10k validate our proposal and analy-

sis. More remarkably, we achieve state-of-the-art perfor-

mance of single model on synthetic-to-real image transfer

in Syn2Real detection dataset.

Acknowledgments. This work was supported in part by

National Key R&D Program of China under contract No.

2017YFB1002203 and NSFC No. 61872329.

11464



References

[1] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and An-

drew Gordon Wilson. Improving consistency-based semi-

supervised learning with weight averaging. arXiv preprint

arXiv:1806.05594, 2018.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Trans. on PAMI, 2018.

[3] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. Mxnet: A flexible and efficient machine learn-

ing library for heterogeneous distributed systems. In Work-

shop on Machine Learning Systems, NIPS, 2016.

[4] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and

Luc Van Gool. Domain adaptive faster r-cnn for object de-

tection in the wild. In CVPR, 2018.

[5] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-

ented adaptation for semantic segmentation of urban scenes.

In CVPR, 2018.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Tim-

o Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016.

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

NIPS, 2016.

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In ICCV, 2017.

[9] Geoffrey French, Michal Mackiewicz, and Mark Fisher.

Self-ensembling for domain adaptation. In ICLR, 2018.

[10] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi,

and Alexander C Berg. Dssd: Deconvolutional single shot

detector. arXiv preprint arXiv:1701.06659, 2017.

[11] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. ICML, 2015.

[12] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 2016.

[13] Ross Girshick. Fast r-cnn. In ICCV, 2015.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[16] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. arXiv preprint arXiv:1612.02649, 2016.

[17] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun

Dai. Diagnosing error in object detectors. In ECCV, 2012.

[18] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In CVPR, 2018.

[19] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta,

Sharath Nittur Sridhar, Karl Rosaen, and Ram Vasudevan.

Driving in the matrix: Can virtual worlds replace human-

generated annotations for real world tasks? ICRA, 2017.

[20] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. In ICLR, 2017.

[21] Dong-Hyun Lee. Pseudo-label: The simple and efficient

semi-supervised learning method for deep neural network-

s. In Workshop on Challenges in Representation Learning,

ICML, 2013.

[22] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yang-

dong Deng, and Jian Sun. Light-head r-cnn: In defense of

two-stage object detector. arXiv preprint arXiv:1711.07264,

2017.

[23] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He,

Bharath Hariharan, and Serge J Belongie. Feature pyramid

networks for object detection. In CVPR, 2017.

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. In ICCV,

2017.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Ful-

ly convolutional networks for semantic segmentation. In

CVPR, 2015.

[28] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-

dan. Learning transferable features with deep adaptation net-

works. In ICML, 2015.

[29] Mingsheng Long, Jianmin Wang, and Michael I Jordan.

Deep transfer learning with joint adaptation networks. In

ICML, 2017.

[30] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Unsupervised domain adaptation with residual trans-

fer networks. In NIPS, 2016.

[31] Yingwei Pan, Yehao Li, Ting Yao, Tao Mei, Houqiang Li,

and Yong Rui. Learning deep intrinsic video representation

by exploring temporal coherence and graph structure. In IJ-

CAI, 2016.

[32] Yingwei Pan, Ting Yao, Tao Mei, Houqiang Li, Chong-Wah

Ngo, and Yong Rui. Click-through-based cross-view learn-

ing for image search. In SIGIR, 2014.

[33] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In CVPR, 2018.

[34] Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik,

Judy Hoffman, and Kate Saenko. Syn2real: A new bench-

mark forsynthetic-to-real visual domain adaptation. arXiv

preprint arXiv:1806.09755, 2018.

[35] Anant Raj, Vinay P Namboodiri, and Tinne Tuytelaars. Sub-

space alignment based domain adaptation for rcnn detector.

BMVC, 2015.

11465



[36] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. Youtube-boundingboxes: A large

high-precision human-annotated data set for object detection

in video. In CVPR, 2017.

[37] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, 2016.

[38] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster,

stronger. In CVPR, 2017.

[39] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 2015.

[42] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.

Asymmetric tri-training for unsupervised domain adaptation.

In ICML, 2017.

[43] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Se-

mantic foggy scene understanding with synthetic data. IJCV,

2018.

[44] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo,

and Rama Chellappa. Generate to adapt: Aligning domains

using generative adversarial networks. CVPR, 2018.

[45] Behjat Siddiquie, Vlad I Morariu, Fatemeh Mirrashed, Roge-

rio S Feris, and Larry S Davis. Domain adaptive object de-

tection. In WACV, 2013.

[46] Bharat Singh, Hengduo Li, Abhishek Sharma, and Larry S

Davis. R-fcn-3000 at 30fps: Decoupling detection and clas-

sification. In CVPR, 2018.

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincen-

t Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015.

[48] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NIPS, 2017.

[49] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrel-

l. Adversarial discriminative domain adaptation. In CVPR,

2017.

[50] Ting Yao, Chong-Wah Ngo, and Shiai Zhu. Predicting do-

main adaptivity: redo or recycle? In ACM MM, 2012.

[51] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring

visual relationship for image captioning. In ECCV, 2018.

[52] Ting Yao, Yingwei Pan, Chong-Wah Ngo, Houqiang Li, and

Tao Mei. Semi-supervised domain adaptation with subspace

learning for visual recognition. In CVPR, 2015.

[53] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao

Mei. Fully convolutional adaptation networks for semantic

segmentation. In CVPR, 2018.

11466


