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Exploring Pattern-Aware Travel Routes for Trajectory Search

LING-YIN WEI and WEN-CHIH PENG, National Chiao Tung University

WANG-CHIEN LEE, The Pennsylvania State University

With the popularity of positioning devices, Web 2.0 technology, and trip sharing services, many users are
willing to log and share their trips on the Web. Thus, trip planning Web sites are able to provide some
new services by inferring Regions-Of-Interest (ROIs) and recommending popular travel routes from trip
trajectories. We argue that simply providing some travel routes consisting of popular ROIs to users is not
sufficient. To tour around a wide geographical area, for example, a city, some users may prefer a trip to
visit as many ROIs as possible, while others may like to stop by only a few ROIs for an in-depth visit. We
refer to a trip fitting the former user group as an in-breadth trip and a trip suitable for the latter user
group as an in-depth trip. Prior studies on trip planning have focused on mining ROIs and travel routes
without considering these different preferences. In this article, given a spatial range and a user preference
of depth/breadth specified by a user, we develop a Pattern-Aware Trajectory Search (PATS) framework to
retrieve the top K trajectories passing through popular ROIs. PATS is novel because the returned travel
trajectories, discovered from travel patterns hidden in trip trajectories, may represent the most valuable
travel experiences of other travelers fitting the user’s trip preference in terms of depth or breadth. The PATS
framework comprises two components: travel behavior exploration and trajectory search. The travel behavior
exploration component determines a set of ROIs along with their attractive scores by considering not only
the popularity of the ROIs but also the travel sequential relationships among the ROIs. To capture the
travel sequential relationships among ROIs and to derive their attractive scores, a user movement graph is
constructed. For the trajectory search component of PATS, we formulate two trajectory score functions, the
depth-trip score function and the breadth-trip score function, by taking into account the number of ROIs in
a trajectory and their attractive scores. Accordingly, we propose an algorithm, namely, Bounded Trajectory

Search (BTS), to efficiently retrieve the top K trajectories based on the two trajectory scores. The PATS
framework is evaluated by experiments and user studies using a real dataset. The experimental results
demonstrate the effectiveness and the efficiency of the proposed PATS framework.
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1. INTRODUCTION

Due to the wide availability of Global Positioning System (GPS) technology, many
portable devices, such as mobile phones, navigation systems, and GPS loggers, are
now location aware. Using these GPS-equipped devices, people can log and share their
trajectories on the Web [CarWeb 2010; EveryTrail 2009; Bikemap 2010]. Thanks to
these technological advances and the availability of trajectory data, research, and
applications on trajectory data mining [Jensen et al. 2007; Li et al. 2007; Giannotti et al.
2007; Lee et al. 2007, 2008; Jeung et al. 2008a, 2008b; Zheng et al. 2008], trajectory data
management [Wang et al. 2008; Lange et al. 2008; Tian et al. 2009; Cudré-Mauroux
et al. 2010], and trajectory search [Chen et al. 2005, 2010; Sherkat and Rafiei 2008]
have attracted considerable research efforts in recent years.

Trajectory search is an essential function for many applications and Web sites, for
example, EveryTrail [EveryTrail 2009], a trip sharing community. In such Web sites,
users are able to share trips and connect with other travelers. By specifying a city
name (e.g., Taipei) or a spatial range, a user may retrieve all trajectories that go across
the spatial range or the city boundary. Trajectory search also exists in other forms.
For example, by specifying a sample trajectory as a query, similar trajectories can be
retrieved. Recently, an efficient algorithm for finding K trajectories that best connect a
given set of Regions-Of-Interest (ROIs) from a trajectory dataset is proposed in Chen
et al. [2010]. Nevertheless, while this pioneering work makes significant advances in
trajectory search, it is constrained by the assumption that users already have a priori
knowledge regarding the ROIs in the planned trajectory before the query is issued.
Without this knowledge, the users may have to try out a number of different ROI
sets, which is very time consuming. Without making such assumptions, in this article,
we propose a trajectory search framework that comprises a number of innovative
trajectory mining, ranking, and searching techniques to support efficient trajectory
search.

For trip planning, a variety of trip recommendation services have been developed
[Takeuchi and Sugimoto 2007; Li et al. 2008; Zheng et al. 2009b; Zheng and Xie 2011;
Wei et al. 2010; Cao et al. 2010; Choudhury et al. 2010; Lu et al. 2010]. A significant
amount of research efforts have focused on mining ROIs from users’ travel data. In
Yoon et al. [2010, 2011], travel routes are derived by specifying the start and end
points as well as the duration of the trip. The studies in Choudhury et al. [2010] and
Lu et al. [2010] provide another way to discover travel routes from geotagged photos
shared by users. However, these travel routes only reveal the visiting sequences of
ROIs without indicating the detailed routes. Additionally, users may have different
preferences regarding how to tour around a city or a scenic area. To tour around a wide
geographical area, for example, a city, some users may prefer a trip to visit as many
ROIs as possible, while others may like to stop by only a few ROIs for an in-depth visit.
We refer to a trip fitting the former user group as an in-breadth trip and a trip suitable
for the latter user group as an in-depth trip. In this article, we aim to develop a service
framework to search for trajectories passing through popular ROIs from archived trip
trajectories. The trajectory search query is formulated as follows.

Definition 1.1 (Top K Trajectory Search). Given a trajectory dataset, a top K trajec-
tory search query, specified by a spatial range and a user preference of depth/breadth,
retrieves the top K trajectories, each of which passes through some popular ROIs within
the specified spatial range, from the trajectory dataset.

For instance, a user would like to take a tour in Taipei. He/she could specify a spatial
range using an online map service to cover Taipei as well as his/her preference for an
in-breath or in-depth trip. In this article, we develop a Pattern-Aware Trajectory Search
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Fig. 1. An example of travel patterns.

(PATS) framework to support the aforementioned trajectory search. As its name indi-
cates, PATS is novel because the returned trajectories, representing the most valuable
experiences of other travelers fitting the user’s trip preference in terms of breath or
depth, are obtained based on discovered travel patterns hidden in trip trajectories. In
order to retrieve the top K trajectories that meet in-breadth trips or in-depth trips
from a trajectory dataset, some challenging issues (summarized as follows) need to be
tackled:

—discovering a set of ROIs and inferring how attractive these ROIs are based on travel
patterns hidden in users’ trajectories;

—designing trajectory score functions to tailor in-depth or in-breadth trips; and
—developing an efficient trajectory search algorithm to support time-critical online

trajectory search.

Our design of the PATS framework comprises two components: (1) travel behavior
exploration, and (2) trajectory search. In the travel behavior exploration component,
we first extract ROIs, where an ROI is a region if the region has been passed through
by a certain number of trajectories. For example, in Figure 1, if we set the threshold
of identifying ROIs as 2, we could derive the set of ROIs {R1, R2, R3, R4}. As shown in
Figure 1, given the set of ROIs, users still have no idea how to plan a trip. For trip
planning, a number of ROIs and a travel sequence of ROIs, referred to as a travel route,
should be determined. Therefore, the extracted ROIs only reflect the popularity degree
of regions, which is not sufficient for trip planning. For example, a travel route, for
example, R2 → R1 → R4, may be planned given the set of ROIs. Note that, according
to the three trajectories in Figure 1, there is no such travel route which hints that the
route may be impracticable. Thus, in this article, we explore travel patterns that refer
to travel sequential relationships among the ROIs hidden in the trajectory dataset,
for trip planning. By aggregating travel sequential relationships among ROIs, travel
patterns indicate not only sequential relationships but also transition probabilities
among ROIs. By inferring the reachability of an ROI from travel patterns, we could
determine the attractive score of the ROI. The reachability of an ROI describes how
likely a user would be to pass the ROI when traveling around the region. Consequently,
we construct a user movement graph, where each vertex represents an ROI and the
edges indicate possible transitions between ROIs. In light of the user movement graph,
we propose an Attractive Score (AS) algorithm for ROIs via the Markov process.

In Figure 1, Tr1 is likely to be an in-breadth trip because it passes through four ROIs.
On the other hand, Tr2 and Tr3 are likely to be in-depth trips. The two trajectories Tr2

and Tr3 have the same number of ROIs. With regard to how to quantify the in-depth
degree of trips, we claim that not only the number of ROIs but also the attractive scores
of the ROIs should be considered. As a result, for the trajectory search component, we
formulate two trajectory score functions, the depth-trip score function (DT ) and the
breadth-trip score function (BT ), by taking into account the number of ROIs in a
trajectory and the attractive scores of ROIs. To provide online trajectory search, the
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response time is critical. Accordingly, we propose a Bounded Trajectory Search (BTS)
algorithm to efficiently retrieve the top K trajectories based on the two trajectory
scores. The main idea of algorithm BTS is to incrementally reduce the searching space
to find the top K trajectories without calculating the scores of all the trajectories passing
through the user-specified spatial range. To evaluate the proposed PATS framework, we
conduct experiments and user studies using a real trajectory dataset. The experimental
results show that the PATS framework is able to not only effectively but also efficiently
retrieve the top K trajectories consisting of popular ROIs.

The contributions of this article are summarized as follows.

—We propose a new trajectory search framework to support trip planning without
requiring prior knowledge of ROIs in the specified spatial range.

—We employ a user movement graph to capture travel patterns hidden in a trajectory
dataset and develop an algorithm to determine the attractive scores of the ROIs.

—We design two trajectory score functions DT and BT to tailor in-depth and in-breadth
trips, respectively.

—We propose an algorithm BTS for efficiently retrieving the top K trajectories ranked
according to DT or BT.

—We perform a comprehensive performance evaluation of PATS by extensive experi-
ments and user studies using a real dataset. The experimental results demonstrate
the effectiveness and the efficiency of the proposed PATS.

The rest of the article is organized as follows. In Section 2, related works are presented.
In Section 3, the overview of our framework is given. The design of travel behavior
exploration is presented in Section 4. In Section 5, the online trajectory search is
described. The experimental results are provided in Section 6. Finally, this work is
concluded in Section 7.

2. RELATED WORKS

In this section, we first present existing works about trajectory search and then review
the research on ROI recommendation. Finally, the existing research works on trip
planning are presented.

2.1. Trajectory Search

A considerable amount of research efforts have been put into searching for similar
trajectories [Chen et al. 2005; Trajcevski et al. 2007]. An important issue for similar
trajectory search is to measure the similarities between the specified trajectory and
other trajectories. Thus, most studies focus on the similarity formulation. The authors
in Chen et al. [2005] propose an efficient algorithm to discover similar trajectories
that have similar geographical movements according to the distance measurement,
edit distance on real sequence. Furthermore, by performing translations and rotations
on trajectories, the authors in Trajcevski et al. [2007] explore a dynamic similarity
measurement in terms of velocity patterns of trajectories and motion transformation.
In Chen et al. [2010], the authors formulate a new kind of trajectory search. Given
a set of ROIs, the top K trajectories that best connect the given ROIs are derived.
The best-connected trajectories are evaluated according to the sum distance between
trajectories and a given set of ROIs. The query for the aforementioned trajectory search
problem is different from a top K trajectory search query in this article. That is, users
do not need to specify a set of ROIs for a top K trajectory query in this article. Our
top K trajectory search problem fits some trip planning scenarios in which users may
not know the ROIs in advance. Even if users are aware of ROIs, they still require
travel routes to indicate visiting sequences among them. However, given a set of ROIs,
the number of travel routes that pass these ROIs is huge and it is hard to identify
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which routes are of interest to the users. In PATS, we not only extract ROIs but also
derive travel routes according to a user preference of depth/breadth. These features
distinguish our work from others.

2.2. ROI Extraction and Recommendation

Several studies have been developed to extract and recommend ROIs [Simon and
Fröhlich 2007; Abowd et al. 1997; Park et al. 2007]. In Simon and Fröhlich [2007], the
authors recommend ROIs which are not only close but also visible to users. According
to user preferences, ROIs are recommended by a user’s historical preferences in Abowd
et al. [1997], Park et al. [2007], and Yoon et al. [2009]. Notice that these ROIs are
predefined and derived from existing tour guides or travel information. Therefore,
some studies further develop approaches to automatically determine ROIs from a set
of trajectories. In Kang et al. [2005], Takeuchi and Sugimoto [2007], Giannotti et al.
[2007], and Li et al. [2010], the authors develop density-based algorithms to discover
ROIs that are frequently visited by users. By observing the stay time of regions, the
authors in Hariharan and Toyama [2004] and Li et al. [2008] extract ROIs whose stay
time is longer than a predefined time threshold. In addition to the extraction of ROIs,
the authors in Zheng et al. [2009b], Zheng and Xie [2011], and Cao et al. [2010] propose
an HITS-based algorithm and a PageRank-based algorithm to assign a score to each
ROI. The main theme of the preceding research works is just to extract ROIs from a
set of trajectories, but they do not discuss how to derive travel routes. Consequently,
the problem setting of these works is different from ours.

2.3. Trip Planning

Trip planning problems are studied in Kumar et al. [2005], Gonzalez et al. [2007],
Tian et al. [2009], and Yoon et al. [2010, 2011], Choudhury et al. [2010], and Lu et al.
[2010]. Given a source and a destination, the studies in Kumar et al. [2005], Gonzalez
et al. [2007], and Tian et al. [2009] focus on planning the shortest/fastest trip between
a given source and a specified destination. In [Yoon et al. 2010, 2011], the authors
target travel route recommendations which should connect the given start and end
points within the time duration constraints. Furthermore, in recent years, the authors
in Choudhury et al. [2010] and Lu et al. [2010] have aimed at analyzing the geotagged
photos from Flickr. They propose other ways to extract ROIs from photo information
and to generate travel routes from their analysis of photos. However, these travel routes
reveal the visiting sequences of ROIs without indicating detailed routes, and the travel
routes are generated without considering a user’s preference for breadth/depth. We
claim that without a prior knowledge of ROIs, PATS is able to recommend the top K
trajectories according to a user’s preference.

3. OVERVIEW OF PATS

As presented earlier, in this article, given a spatial range and a user preference of
breadth/depth, we aim at deriving the top K trajectories. Note that each trajectory is
in fact one of the existing trajectories within or across the specified spatial range, and
thus the detailed trip information (i.e., turn-by-turn) for a travel route is available.
One challenging task behind PATS is how to derive interest scores of trajectories, and
the interest score of a trajectory reflects a user preference of breadth/depth. In PATS,
interest scores of each trajectory are determined by the number of ROIs and their
corresponding attractiveness. To deal with the aforementioned issue, an offline compo-
nent, a travel behavior exploration component, is developed. In addition, PATS has a
trajectory search component to support online trajectory search. These two components
of PATS are detailed as follows.

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 3, Article 48, Publication date: June 2013.



48:6 L.-Y. Wei et al.

Fig. 2. The overview of the proposed framework.

(a) The web interface (b) The Android smart phone interface

Fig. 3. Implementations of our framework.

Travel behavior exploration component. The main task of the travel behavior explo-
ration component is to extract a set of ROIs and to derive their attractive scores. We
adopt a density-based approach developed in prior works [Giannotti et al. 2007; Li
et al. 2010] to determine ROIs. With the set of ROIs, we consider the travel sequential
relationships among the ROIs and propose a user movement graph to capture travel
sequential relationships. In the user movement graph, a vertex represents one ROI and
edges indicate the transition relationships among ROIs. In light of the user movement
graph, we exploit Markov models to assign attractive scores to the ROIs.

Trajectory search component. Through this online component, users issue their
queries via our developed Web interface or Android application to retrieve the top K tra-
jectories. Explicitly, Figure 3(a) shows the Web interface, where a user can move/adjust
the spatial range on Google map, and the spatial range specified in the Google map is
then issued to PATS. In Figure 3(a), the entire spatial range shown in the Web interface,
which is marked by the black bounded box, is the spatial range specified. Moreover, the
spatial range shown in Figure 3(b) is the input of PATS for our Android application.
Once the spatial range and a user preference of depth/breadth are submitted, the top
K trajectories and nearby attractions (i.e., points of interest) are displayed on the map.

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 3, Article 48, Publication date: June 2013.
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Clearly, these trajectories are within or across the spatial range issued. For instance,
in Figure 3(a), each trajectory is numbered by its rank, and the route of each trajectory
is depicted by green lines. For our Android application, the search results of the trajec-
tories are ranked and shown in the right of Figure 3(b). The determination of interest
scores of trajectories is discussed later. To efficiently retrieve the top K trajectories, we
propose a Bounded Trajectory Search (BTS) algorithm, which is presented in Section 5.

4. DESIGN OF TRAVEL BEHAVIOR EXPLORATION IN PATS

The design of travel behavior exploration in PATS is to determine a set of Regions-Of-
Interest (ROIs) with their attractive scores. The travel behavior exploration component
is performed in an offline manner. Given a set of trajectories, the travel behavior explo-
ration component first generates ROIs. With the set of ROIs derived, a user movement
graph is constructed to capture travel behavior hidden in a trajectory dataset. In light
of the user movement graph, we further propose an Attractive Score (AS) algorithm to
assign scores to ROIs.

4.1. Determination of Regions-of-Interest

Without loss of generality, a trajectory is expressed by Tr = <p1, p2, . . . , pn>, and
each data point at time ti is denoted as pi = (lati, loni, ti), where the location of data
point pi is represented as a latitude/longitude pair, represented as (lati, loni). Note
that locations of data points derived from GPS have measurement bias or sampling
error [Pfoser and Jensen 1999]. To deal with these errors, map-matching methods [Lou
et al. 2009; Newson and Krumm 2009] could be applied. In addition, to automatically
infer semantics of trajectories, the approaches developed in Yan et al. [2010a, 2011]
could be adopted. In this article, each trajectory is shared by users and thus each
trajectory reflects a travel route, which indicates a visiting sequence of some landmarks
or sightseeing locations. These locations are ROIs and are usually visited by many
users. Given a set of trajectories, prior works in Giannotti et al. [2007], Li et al. [2008],
Zheng et al. [2009a, 2009b], Kang et al. [2005], and Wei et al. [2010] typically employ a
density-based approach to extract ROIs with a high density of passing-by trajectories.
Accordingly, we use the density-based approach in Giannotti et al. [2007] to extract
ROIs.

The approach in Giannotti et al. [2007] explores grids and uses a density-based
concept for the extraction of ROIs. Explicitly, given a set of trajectories and a grid
length, the whole geographical space is divided into nonoverlapping grids and the
density of each grid is calculated as the number of distinct trajectories passing through
it. A trajectory passes through a grid, which means that some data points of the
trajectory are located in the grid. If the density of a grid exceeds a given minimum
density threshold, the grid is extracted and it is thus identified as one ROI, R =
{R1, R2, . . . , Rm}, where each Ri represents one ROI and m is the number of derived
ROIs. Once a set of ROIs is derived, a travel route of a trajectory is extracted, where
the travel route is represented as a sequence of ROIs. Note that a travel route of a
trajectory is regarded as the feature of this trajectory; and for a trajectory Tr, we
denote its travel route as Tr.VS. To facilitate the presentation of our article, the set
of travel routes extracted from the trajectory dataset is called a Travel Route Dataset
(TRD).

In reality, the geographical space is divided into a set of functional zones that have
different shapes. For example, Figure 4(a) depicts the different functional zones in
northern Taiwan, and these functional zones have different shapes. As mentioned
before, in our work, the whole space is divided into grids. In Giannotti et al. [2007],
nearby grids whose density values are larger than a predefined threshold can be merged
into a larger ROI, so it can also be realized in our work. Figure 4(b) shows travel
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(a) (b)

Fig. 4. Real trajectory distribution in northern Taiwan and the functional zones in this area [Urban and
Rural Development Department, New Taipei City Govement, Taiwan 2010].

trajectories around northern Taiwan. As shown in Figure 4(b), the region A would be
merged as an ROI. By referring to Figure 4(a), this ROI belongs to a functional zone (i.e.,
a national park), which demonstrates that the generation of ROIs could have different
shapes. By referring to function zones provided by governments, ROIs that are not
related to sightseeing could be filtered out. For example, region B in Figure 4(b) is part
of a residential area in a city, which is not a sightseeing region. Consequently, though
the space is divided into grids, the determination of ROIs could still discover different
shapes via merging grids. Moreover, by referring to function zones in geographical
information, ROIs could be refined.

4.2. Construction of User Movement Graph

In our framework, each ROI is associated with an attractive score. If an ROI is likely to
be visited by users, it has a higher attractive score. Moreover, not only the popularity
of ROIs (that is, the number of user visits) but also the travel behaviors among ROIs
should be considered in the formulation of attractive scores. We claim that the attrac-
tive scores of ROIs will reflect how likely it is that users will reach the corresponding
ROIs from historical travel trajectories shared by users. Intuitively, each trajectory
reveals a travel sequential relationship among ROIs. By aggregating travel sequen-
tial relationships from a set of trajectories, transition probabilities among ROIs could
be derived. Based on the transition probabilities, we could infer the reachability of
an ROI. Therefore, a user movement graph is built to capture traversal relationships
among ROIs. Different from semantic trajectories [Yan et al. 2010a, 2010b, Yan et al.
2011] developed for high-level representations of trajectories, for example, transporta-
tion modes in moves, we focus on exploring travel patterns, that is, travel sequential
relationships among the ROIs, hidden in users’ travel trajectories in this article.

Given a set of ROIs R and a travel route dataset TRD, a user movement graph is a
weighted directed graph UMG = (R, E), where each vertex represents one ROI and a
directed edge <Ri, Rj> exists if there is at least one travel route containing a direct
visiting sequence from Ri to Rj . In UMG, each edge is assigned a weight which is the
transition probability between two ROIs.

The weight of each edge is derived by aggregating the transition relationships from
a set of trajectories. To derive a weight on an edge from Ri to Rj , a possible method
is to count the number of pairs <Ri, Rj> in the given travel route dataset and divide
it by the total number of <Ri, Rh> for all Rh �= Ri. However, the weight on the edge
from Ri to Rj would be mainly influenced by one travel route. For instance, given
three travel routes Tr1.VS : R1 ��� R2 ��� R3 ��� R1 ��� R2, Tr2.VS : R1 ��� R4, and
Tr3.VS : R1 ��� R4, we can derive the weight on the edge from R1 to R2 to be 1

2 since
<R1, R2> appears twice in Tr1.VS. Moreover, since <R1, R4> also appears in Tr2.VS
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Table I. Travel Route Dataset

Tid Sequence of ROIs (Travel Route)

Tr1 R1 ��� R4 ��� R7

Tr2 R2 ��� R5 ��� R7 ��� R4 ��� R5 ��� R6

Tr3 R1 ��� R5 ��� R7

Tr4 R2 ��� R4 ��� R8

Tr5 R2 ��� R5 ��� R7

Tr6 R5 ��� R7 ��� R8 ��� R6

Tr7 R3 ��� R5 ��� R1

Tr8 R3 ��� R6 ��� R2

Tr9 R5 ��� R9 ��� R6

Tr10 R4 ��� R7 ��� R9

and Tr3.VS, the weight on the edge from R1 to R4 is also equal to 1
2 . We argue that

these two traversal relationships associated with <R1, R2> and <R1, R4> should be
treated differently because <R1, R4> comes from two travel routes. In other words, our
framework emphasizes the number of travel routes that have a corresponding traversal
relationship. Given a pair of ROIs <Ri, Rj> and a trajectory Tr, if the travel route
Tr.VS has a one-step traversal relationship from ROI Ri to ROI Rj , this relationship
is contained by Tr, denoted as <Ri, Rj> ⊂ Tr. Since one travel route may have more
than one traversal relationship <Ri, Rj>, we define an individual out-degree of an ROI
from a given trajectory as follows.

Definition 4.1 (Individual Out-Degree of an ROI with respect to a Given Trajectory).
Given an ROI Ri ∈ R and a trajectory Tr, the individual out-degree of Ri with given Tr
is defined as

deg+(Ri|Tr) = |{Rj |<Ri, Rj> ⊂ Tr, Ri �= Rj}|.

For instance, given the travel route dataset in Table I, deg+(R5|Tr2) =
|{Rj |<R5, Rj> ⊂ Tr, R5 �= Rj}| = |{R6, R7}| = 2. Accordingly, we define the weights
of edges by aggregating the transition relationships from different travel routes in
TRD next.

Definition 4.2 (Weight of a Directed Edge). Given a travel route dataset TRD and
the corresponding user movement graph UMG = (R, E), for each directed edge
<Ri, Rj> in UMG, the weight of <Ri, Rj> is defined as

w<Ri ,Rj > =

∑

Trh∈TRD,<Ri ,Rj>⊂Trh

1

deg+(Ri|Trh)

|

⋃

Rl∈R,Ri �=Rl

{Trk|Trk ∈ TRD,<Ri, Rl> ⊂ Trk}|
.

Based on Definition 4.2, we judiciously determine weights of edges in a user move-
ment graph. For example, consider the travel route dataset in Table I and a set of ROIs
R = {R1, R2, R3, R4, R5, R6, R7, R8, R9}, the directed edge <R1, R4> exists since there
is at least one trajectory (e.g., Tr1) whose travel route takes one-step traversing from
R1 to R4. Since only Tr1 contains <R1, R4>, the numerator for the weight of <R1, R4>

is calculated as

∑

Trh∈TRD,<R1,R4>⊂Trh

1

deg+(R1|Trh)
=

1

deg+(R1|Tr1)
= 1.
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Fig. 5. An example of UMG derived from the travel routes in Table I.

Moreover, since a user at R1 may possibly move to R4 and R5 (based on Tr1 and Tr3),
the denominator for the weight of <R1, R4> is calculated as

|
⋃

Rl∈R,R1 �=Rl

{Trk|Trk ∈ TRD,<R1, Rl> ⊂ Trk}| = |{Tr1} ∪ {Tr3}| = 2.

Consequently, we have w<R1 ,R4> = 1
2 . Given a travel route dataset in Table I, the user

movement graph is shown in Figure 5.

4.3. Algorithm AS: Attractive Score for ROIs

In light of the user movement graph, we develop an algorithm to derive the attractive
scores of ROIs. According to discovered travel behaviors represented by the user move-
ment graph, we could simulate that how a user traverses among ROIs. For example,
given the user movement graph in Figure 5, a user in ROI R2 is likely to move into
ROI R5 (respectively, R4) with the probability of 2

3 (respectively, 1
3 ). Since the weights

of the edges in the user movement graph indicate transition probabilities among ROIs,
we derive the attractive scores of ROIs based on the concept of the Markov process
and propose an attractive score algorithm. Similar to the PageRank value for each Web
page [Brin and Page 1998], the attractive scores of ROIs are formulated as follows.

Definition 4.3 (Transition Matrix). Given a user movement graph UMG = (R, E),
the transition matrix of UMG is defined as

M =

⎛

⎜

⎜

⎜

⎝

1 − α α · w<R1 ,R1> · · · α · w<Rm,R1>

1 − α α · w<R1 ,R2> · · · α · w<Rm,R2>

...
. . .

1 − α α · w<R1 ,Rm> · · · α · w<Rm,Rm>

⎞

⎟

⎟

⎟

⎠

,

where a parameter α ∈ [0, 1) and w<Ri ,Ri> = 0 for all Ri ∈ R.

Definition 4.4 (Attractive Score of an ROI). Given a user movement graph UMG =
(R, E) and the corresponding transition matrix M, the attractive scores of vertices in
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ALGORITHM 1: Attractive Score (Algorithm AS)

Input: A travel route dataset, a density threshold θ , a grid length l, and a parameter α.
Output: Attractive scores of ROIs
/* Preprocessing */
Divide a map into grids with a grid size l by l;
Scan trajectories in the raw trajectory dataset to calculate the accumulated density of each grid;
Generate a set of ROIs R with density threshold θ ;
Merge nearby ROIs whose density is larger than θ ;
Generate a travel route dataset TRD by ROIs in R;
/* User movement graph UMG(R, E) generation */
Each element in R forms a vertex;
Scan the travel route in TRD to generate edges, weights on edges and the transition matrix M;
/* Attractive score */
Let S0(Ri) = 1 for each vertex Ri ∈ R;
j = 0;
repeat

(S j+1(R1) · · · S j+1(Rm))T = M · (1 S j (R1) · · · S j (Rm))T ;
j + +;

until ∀Ri ∈ R, S j (Ri) converges;

∀Ri ∈ R, S(Ri) = S j (Ri);
return {S j (Ri)|Ri ∈ R};

Table II. Attractive Scores of ROIs in Figure 5

R1 R2 R3 R4 R5 R6 R7 R8 R9

S(Ri) 0.36 1.51 0.15 1.11 1.45 1.59 1.34 0.97 0.53

R are defined as
⎛

⎜

⎜

⎜

⎝

Si(R1)

Si(R2)
...

Si(Rm)

⎞

⎟

⎟

⎟

⎠

= M ·

⎛

⎜

⎜

⎜

⎝

1

Si−1(R1)
...

Si−1(Rm),

⎞

⎟

⎟

⎟

⎠

,

where Si(Rj) is the i-round attractive score of vertex Rj and S0(Rj) = 1 for each Rj ∈ R.

Note that the final round attractive score of Ri is represented by S(Ri) for each
Ri ∈ R.

As shown in Algorithm AS, all ROIs have an initial attractive scores of 1. Then, the
attractive scores of the ROIs are calculated iteratively in a round-by-round manner.
When the scores are stabilized, which means they are almost the same as the scores
derived in the prior round, Algorithm AS stops and the final attractive scores of the
ROIs are generated accordingly.

Consider the example in Figure 5. Let α = 0.85. In the first round, all the initial
attractive scores of the ROIs are set to 1. We iteratively compute the scores of ROIs
using Algorithm AS. In this example, the attractive scores of ROIs converge on the
twelfth round. The final attractive scores of the ROIs are shown in Table II.

Since algorithm AS is similar to the PageRank algorithm, we can apply the power
method [Golub and Loan 1996] to calculate the scores of the ROIs. According to the
study Bahmani et al. [1989], the average time complexity to derive the attractive scores
of the ROIs that are stabilized is O(log(n − logǫ)), where n is the number of vertices in
the user movement graph UMG = (R, E) and 0 < ǫ < 1.

5. DESIGN OF TRAJECTORY SEARCH IN PATS

The trajectory search component in PATS provides a search interface for issuing a
spatial range K and a user preference depth/breadth. Then, PATS will retrieve the top
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K trajectories tailored with a user preference specified. In light of attractive scores of
ROIs derived, we formulate two score functions: one for an in-depth trip and the other
for an in-breadth trip. Next, we propose a Bounded Trajectory Search algorithm (BTS)
to efficiently retrieve the top K trajectories.

5.1. Trajectory Score Functions

In this section, we formulate two score functions to reflect in-depth trips and in-breadth
trips. Note that the output of the trajectory search in PATS is the set of top K trajec-
tories. The top K trajectories are those that have higher scores. Clearly, the score of a
trajectory will be determined by its corresponding travel route. As mentioned before,
a travel route of a trajectory is a visiting sequence of ROIs. Therefore, the score of a
trajectory is highly related to not only the number of ROIs but also to the attractive
scores of the ROIs.

To measure the scores of a trajectory, two kinds of trip scenarios should be considered:
(1) A trip includes a few ROIs with higher attractive scores (i.e., in-depth); (2) a trip
includes as many ROIs as possible (i.e., in-breadth). For the in-depth trip, a user may
like to go around some ROIs with higher attractive scores even if the number of ROIs
is few. The ROIs for an in-depth trip are expected to have a certain level of quality in
terms of their average attractive score. Given a spatial range Q, RQ is the set of ROIs
that are within the spatial range Q. Therefore, a trajectory Tr has its Depth-Trip score,
denoted as DT (Tr), and DT (Tr) is formulated as

DT (Tr) =
1

|{Ri|Ri ∈ Tr.VS ∩ RQ}|

∑

{Ri |Ri∈T r.V S∩RQ}

S(Ri).

On the other hand, the Breadth-Trip score of a trajectory Tr, denoted as BT (Tr), is
defined as

BT (Tr) =
∑

{Ri |Ri∈T r.V S∩RQ}

S(Ri).

With the preceding formulas, each trajectory is able to have two trajectory scores:
depth-trip score and breadth-trip score. If a user would like to have an in-depth trip
(respectively, in-breadth trip), our framework will return the top K trajectories accord-
ing to the depth-trip (respectively, breadth-trip) scores of the trajectories. Note that if
a trajectory only has only a few data points within the spatial query range, we only
extract these data points of the trajectories (i.e., the subtrajectory) into the search
result.

A naive algorithm to perform trajectory search in PATS consists of three steps:
(step 1) Given a spatial range Q, the set of ROIs within Q (i.e., RQ) should be generated
first; (step 2) Extract the trajectories whose travel routes contain ROIs in RQ; and
(step 3) Calculate both depth-trip scores and breadth-trip scores for the trajectories
derived in step 2. A running example for the naive algorithm is given, where the travel
route dataset of trajectories is shown in Table I and the attractive scores of the ROIs is in
Table II. Assume that a user issues one spatial range Qand a user preference is set to in-
depth trip. As shown in Figure 6, the set of RQ is {R2 R5, R6, R7, R8}. Then, in step 2 of the
naive algorithm, there are ten candidate trajectories (i.e., Tr1, . . . , Tr10) selected since
the travel routes of these trajectories have ROIs that match some ROIs in RQ. For each
trajectory selected, the depth-trip score is computed. For example, DT (Tr3) ≈ 1.395
since ROIs R5 and R7 are in Tr3.VS ∩ RQ (i.e., DT (Tr3) = 1

2

∑

Ri∈T r3.V S∩RQ
S(Ri) =

1
2 (S(R5) + S(R7)) = 1.395). Similarly, DT (Tr2) = 1

4

∑

Ri∈T r2.V S∩RQ
S(Ri) = 1

4 (S(R2) +

S(R5)+ S(R6)+ S(R7)) = 1.48. The depth-trip scores of the aforesaid 10 trajectories are
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Fig. 6. An illustrative example of a trajectory search.

Table III. Scores of Trajectories by DT in Table I

Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8 Tr9 Tr10

DT (T ri) 1.34 1.48 1.395 1.24 1.433 1.338 1.45 1.55 1.52 1.34

shown in Table III. If K is set to 5, the top 5 trajectories (i.e., {Tr8, Tr9, Tr2, Tr7, Tr3})
are in the search result.

Since the number of trajectories is huge, the efficiency of the trajectory search is
important. Thus, we propose a bounded trajectory search algorithm in PATS.

5.2. Algorithm BTS: Bounded Trajectory Search

The idea of algorithm BTS is to properly maintain score bounds of quantified trajec-
tories and utilize score bounds to eliminate the cost of unnecessary searching for the
trajectories that are explicitly not in the top K trajectories.

In PATS, all ROIs are indexed using an R-tree structure. To efficiently retrieve
trajectories within ROIs, we implement an inverted trajectory list and for each ROI,
and a list of trajectories whose travel routes include that ROI is obtained.

In algorithm BTS, two bounds are maintained: one is the lower bound of the scores
(called score bound for simplicity) corresponding to tentatively qualified top K trajecto-
ries and the other is the search bound of ROIs to be examined. Given a spatial range Q
and a threshold K, we first extract a set of ROIs within Q. Then, these ROIs are sorted
by their attractive scores in decreasing order. We denote the sorted list of ROIs as
R

s
Q = <Rs

1, . . . , Rs
h>, where S(Rs

i ) ≥ S(Rs
i+1) for all integer i and 1 ≤ i < |RQ|. BTS iter-

atively examines ROIs in the sorted list to retrieve candidates for the top K trajectories
and to compute their scores. When an ROI is examined, the corresponding trajectories
going through this ROI are retrieved. If the number of the retrieved trajectories is
smaller than K, algorithm BTS will select the next ROI from R

s
Q. On the other hand, if

the number of the retrieved trajectories is greater than or equal to K, the score bound
is set as the score of the K-th trajectory in the retrieved trajectories. The definition
of score bound for the lower bound of the scores corresponding to tentatively qualified
trajectories is defined as follows.

Definition 5.1 (Score Bound for Candidate Trajectories). Given a set of tentatively
qualified candidate trajectories T , the lower bound of the scores (i.e., score bound)
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ALGORITHM 2: Bounded Trajectory Search

Input: A raw trajectory dataset, a user movement graph UMG = (R, E), a spatial range Q, and
a rank-threshold K.

Output: Top K trajectories.
for each trajectory Tr in the trajectory dataset do

A sequence of GPS points of trajectory Tr is transformed into a sequence of ROIs in R;
The inverted trajectory lists of corresponding ROIs are generated;

end
R

s
Q

← Sort ROIs in RQ in decreasing order by attractive scores of ROIs;

Let a set of candidate trajectories T = ∅;
Let SBRT = Rs

h,Rs
i ∈ R

s
Q

,i = 1;

while Rs
i ≤ SBRT do

T = T ∪ {Tr|Rs
i ∈ Tr.AS,∀Tr ∈ T T D}. //T T D: transformed trajectory dataset

for each trajectory Tr ∈ T do
Calculate DT (Tr) (or BT (Tr)) with respect to spatial range Q;

end
Update LBST ,SBRT ;
i = i + 1;

end

return Top K trajectories in T ;

of the trajectories in T is defined as LBST = DT (Tr) (or BT (Tr)), where DT (Tr) (or
BT (Tr)) is the score at rank K in T .

With the score bound derived LBST , algorithm BTS can easily eliminate trajectories
whose scores are smaller than LBST since these trajectories are not qualified for the
top K trajectories. Note that not all ROIs in the sorted list R

s
Q should be examined.

Thus, the aforementioned search bound for ROIs is used to determine which trajec-
tories should be retrieved as candidates for the top K trajectories. The search bound
in ROIs with respect to LBST for different trajectory score functions is defined as
follows.

Definition 5.2 (Search Bound for ROIs with respect to LBST ). Given a LBST and a
sequence R

s
Q, the search bound to be examined for ROIs is defined as

SBRT = Rs
l ,

where for trajectory score function DT ,

l = max
{

i|S
(

Rs
i

)

≥ LBST , ∀i ∈ IN, 1 ≤ i ≤ |RQ|
}

,

and for trajectory score function BT ,

l = max

⎧

⎨

⎩

i|
∑

i≤ j≤|RQ|

S
(

Rs
j

)

≥ LBST , ∀i ∈ IN, 1 ≤ i ≤ |RQ|

⎫

⎬

⎭

.

Notice that IN is a set of the natural numbers.
With the aforesaid two bounds, BTS iteratively examines ROIs in R

s
Q to retrieve

candidates for the top K trajectories until SBRT is met. For each iteration, LBST and
SBRT are updated accordingly. Clearly, the search space for the top K trajectories
within the spatial range Q is reduced since not all trajectories passing through Q are
retrieved for trajectory score computation, which significantly improves the efficiency
of the trajectory search.

Consider the travel route set of trajectories TRD in Table I as an example. A spa-
tial range Q (i.e., the rectangle shape in Figure 6) is issued and a threshold K is set
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Table IV. Example of Bounded Trajectory Search with Trajectory Score DT

Round T LBST SBRT

Initial ∅ ∞ R8

1-round {Tr8, Tr9, Tr2, Tr6} ∞ R8

2-round {Tr8, Tr9, Tr2, Tr5, Tr6, Tr4} 1.338 R7

Final round {Tr8, Tr9, Tr2, Tr7, Tr5, Tr3, Tr6, Tr4} 1.433 R5

to 5. We can derive R
s
Q = <R6, R2, R5, R7, R8> by ranking scores in Table II. Note

that the attractive scores are derived in the example in Section 4.3. Then, we se-
quentially scan the ROIs in R

s
Q one by one to determine which trajectories are to be

selected as candidates for the top 5 trajectories. The detailed rounds of BTS are shown
in Table IV. Here, we use DT as our trajectory score function for illustration. In the
initial round, the parameters in BTS are set as T = ∅, LBST = ∞, and SBRT = R8.
In the first round, algorithm BTS selects R6 in R

s
Q to determine those trajectories

that pass through R6. Via our trajectory invert list, we could have DT (Tr2) = 1.48,
DT (Tr6) = 1.338, DT (Tr8) = 1.55, and DT (Tr9) = 1.52. These trajectories are put
into T in a decreasing order in terms of their scores (i.e., T = {Tr8, Tr9, Tr2, Tr6}).
Since the number of trajectories in T is smaller than 5, we need to include more tra-
jectories. Therefore, the next ROI R2 in R

s
Q is selected and the trajectories passing

through R2 are retrieved. Two trajectories (i.e., Tr4 and Tr5) pass through R2 and
their scores are computed as DT (Tr4) = 1.24 and DT (Tr5) = 1.433. Hence, we have
T = {Tr8, Tr9, Tr2, Tr5, Tr6, Tr4}. Since |T | > 5, the top 5 trajectories in T are deter-
mined by their scores. The top 5 trajectories in T are Tr8, Tr9, Tr2, Tr5, and Tr6 and
the score of the fifth trajectory is DT (Tr6) = 1.338. Accordingly, LBST is set to 1.338.
Based on the value of LBST , SBRT would be updated. Here, SBRT is used to shrink
the ROI searching space, thereby reducing the search space of candidates for the top 5
trajectories. By Definition 5.2, SBRT is set to R7 since the attractive scores of R6, R2,
R5, and R7 are greater than LBST = 1.338. Note that R8 is eliminated from the search
space since the trajectories passing through the ROIs listed before R8 in R

s
Q should

have been examined before R8 is reached. Yet the remaining trajectories in R8 do not
have DT scores higher than LBST and thus are not qualified. Here, we still need to scan
the inverted trajectory list of the next ROI R5 in R

s
Q. After deriving DT (Tr3) = 1.395

and DT (Tr7) = 1.45, we also update T as {Tr8, Tr9, Tr2, Tr7, Tr5, Tr3, Tr6, Tr4}. Since
the fifth trajectory in T is Tr5, LBST = DT (Tr5) = 1.433. Meanwhile, we are able
to tighten the search bound (i.e., SBRT = R5), since the attractive scores of R6,
R2, and R5 are greater than LBST = 1.433. At this point, since SBRT is reached,
the final answer for the top 5 trajectories is derived as {Tr8, Tr9, Tr2, Tr7, Tr5}. The
search result is the same as that of the naive algorithm in Section 5.1. In this exam-
ple, we do not need to retrieve Tr1 and Tr10 for the top K trajectories, reducing the
search cost.

Given a user movement graph UMG = (R, E) and a trajectory dataset D, the time
complexity of the bounded trajectory search algorithm is O(n(logn + m) + λmlogm),
where n = |R|; λ is the number of the scanned ROIs and λ ≤ n; m is the number of
candidate trajectories and m ≤ |D|. In Algorithm BTS, the ROIs which overlap the
query range are sorted in decreasing order by their attractive scores and the maximum
number of ROIs covered by the query range is n, and thus the time complexity of this
step is O(nlogn). Let the number of scanned ROIs be λ and the number of trajectories
passing the λ be m. The time complexity for calculating the scores of the m trajectories
is O(mn) because each trajectory passes at most n ROIs. To update the score bound for
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candidate trajectories needs O(mlogm) and it is performed at most λ time, and thus
the time complexity is O(λmlogm). Therefore, the overall time complexity is O(n(logn+
m) + λmlogm).

5.3. Analysis of Algorithm BTS

In this section, we analyze the correctness of algorithm BTS. The goal of our analysis is
to prove that the accuracy of a search result derived by algorithm BTS is good compared
to the naive algorithm. In algorithm BTS, by selecting ROIs within a given spatial
range, trajectories passing through the selected ROIs are retrieved as candidates for
the top K trajectories. The search bound of ROIs to be examined is used as a stop
criteria. It is not necessary to retrieve remaining trajectories because trajectories not
examined within the search bound are not qualified as the top K trajectories at all. In
BTS, we only select trajectories that certainly pass through the ROIs before SBR in R

s
Q

as candidates for the top K trajectories. If a trajectory only passes through the ROIs
after SBR in R

s
Q but not any other ROI before SBR in R

s
Q, this trajectory would not

be selected as a candidate for the top K trajectories. In short, all trajectories passing
through the spatial range are separated into two sets. The trajectories that only pass
through the ROIs after SBR in R

s
Q, are put in the Noncandidate Set, denoted as NS.

The remaining trajectories that certainly go through the ROIs before SBR in R
s
Q are

put in a Candidate Set, denoted as CS. Hence, in BTS, we only select all trajectories in
CS as candidates of top K trajectories. To prove the correctness of BTS, we should prove
that there does not exist a trajectory in NS which should be in the top K trajectories. In
other words, we prove that the scores of the trajectories in CS are larger than those of
the trajectories in NS. The correctness of BTS is proved by Theorem 5.5 and Theorem
5.8 with respect to different trajectory score functions.

In Theorem 5.5, we prove the correctness of BTS with the trajectory score function
DT . To prove the correctness of BTS, we prove that the scores of the top K trajectories
discovered by BTS are larger than the scores of the trajectories that are not selected as
candidates by BTS, that is, the minimum trajectory score of the trajectories in CS must
be larger than the maximum trajectory score of the trajectories in NS. Before proving
Theorem 5.5, we prove two lemmas used in Theorem 5.5. Lemma 5.3 is used to find out
the maximum trajectory score from NS. Lemma 5.4 is used to find out the minimum
trajectory score from CS.

In Lemma 5.3, we show how to determine the value of the maximum average of a set
of numbers selected from a given set of numbers.

LEMMA 5.3. Given a set {xi}
n
i=1 where xi > 0 for 1 ≤ i ≤ n and xi > xi+1 for 1 ≤ i < n,

max{ 1
|S′|

∑

x∈S′ x|S′ ⊆ {xi}
n
i=1} = x1.

PROOF. Let S = {xi}
n
i=1. Suppose all nonempty subsets of S are S1

1 , S1
2 , . . . , S1

n, S2
1 , S2

2 ,

. . . , S2
Cn

2
, . . . , Si

1, . . . , Si
Cn

i
, . . . , Sn

1 , where Si
j is a nonempty subset of size i and 1 ≤ j ≤ Cn

i

for i ∈ IN and 1 ≤ i ≤ n.
Let a nonempty set Si

max be the subset that has the maximum average in Si
j for

1 ≤ j ≤ Cn
i .

For each i ∈ IN and 1 ≤ i ≤ n, it is trivial that a nonempty subset Si
max is {x j}

i
j=1 and

the average of the elements in the subset is 1
i

∑i
j=1 x j .

Then we claim that the average of the elements in Si
max is greater than the average

of the elements in Si+1
max for i ∈ IN and 1 ≤ i < n. We prove that 1

i

∑i
j=1 x j > 1

i+1

∑i+1
j=1 x j

for i ∈ IN and 1 ≤ i < n.
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For i ∈ IN and 1 ≤ i < n, since x j > xi+1 for 1 ≤ j ≤ i,

1

i

i
∑

j=1

x j −
1

i + 1

i+1
∑

j=1

x j =
1

i(i + 1)

⎛

⎝(i + 1)
i

∑

j=1

x j − i

i+1
∑

j=1

x j

⎞

⎠ =
1

i(i + 1)

⎛

⎝

i
∑

j=1

x j − ixi+1

⎞

⎠

=
1

i(i + 1)

i
∑

j=1

(x j − xi+1) > 0.

Due to that 1
i

∑i
j=1 x j > 1

i+1

∑i+1
j=1 x j for i ∈ IN, the average of the elements in S1

max is
the maximum average and the maximum average is x1.

In Lemma 5.4, we show how to determine the value of the minimum average of a set
of numbers selected from a given set of numbers.

LEMMA 5.4. Given a set {xi}
n
i=1 where xi > 0 for 1 ≤ i ≤ n and xi > xi+1 for 1 ≤ i < n,

min{ 1
|S′|

∑

x∈S′ x|S′ ⊆ {xi}
n
i=1} = xn.

PROOF. The proof is similar to the proof of Lemma 5.3.

Similarly, Lemma 5.3 and Lemma 5.4 hold even though a part of the distinct elements
in set S are equal.

THEOREM 5.5 (CORRECTNESS OF BTS WITH DT SCORE FUNCTION). Given a sequence of
ROIs R

s
Q, the corresponding set of trajectories T ′ that pass through at least one ROI in

R
s
Q and a set of candidate trajectories T with LBST and SBRT , the scores of top K in

T are larger than the scores of the trajectories in T ′/T .

PROOF. It is trivial to show that the set of candidate trajectories T is contained in
T ′. Suppose that there exists a trajectory in T ′/T such that the score of the trajectory
is greater than the score of one of the top K trajectories in T . Let the size of R

s
Q be

m and SBRT = Rs
h. If a trajectory in T ′/T , the trajectory does not pass through any

ROI Rs
i for 1 ≤ i ≤ h, or it will be in T . The reason is that BTS selects trajectories

that pass through the ROIs in {Rs
1, . . . , Rs

h}. Hence, a trajectory in T ′/T only passes
through ROIs in {Rs

h+1, . . . , Rs
m}. We claim that max{DT (Tr)|Tr ∈ T ′/T } = S(Rs

h+1).
Since S(Rs

i ) ≥ S(Rs
i+1) for each i and h + 1 ≤ i ≤ m, the maximum score of a trajectory

that only passes through ROIs in {Rs
h+1, . . . , Rs

m} is S(Rs
h+1) by Lemma 5.3. Similarly,

we further claim that the min{DT (Tr)|Tr ∈ T } = S(Rs
h). Since S(Rs

i ) ≥ S(Rs
i+1) for

each 1 ≤ i ≤ h, the minimum score of a trajectory that only passes through ROIs
in {Rs

1, . . . , Rs
h} is S(Rs

h) by Lemma 5.4. Since S(Rs
h) > S(Rs

h+1), we derive that the
maximum trajectory score in T ′/T is less than the minimum trajectory score in T .
However, the minimum trajectory score is smaller than or equal to the score of the Kth
trajectory in T . Then, there does not exist a trajectory in T ′/T such that the score of
the trajectory is greater than the score of one of the top K trajectories in T . Hence, the
scores of the top K trajectories in T are larger than the scores of trajectories in T ′/T
by contradiction.

Similarly, we prove the correctness of BTS with the trajectory score function BT in
Theorem 5.8. Lemma 5.6 and Lemma 5.7 used in Theorem 5.8 are first proved.

LEMMA 5.6. Given a set {xi}
n
i=1 where xi > 0 for 1 ≤ i ≤ n and xi > xi+1 for 1 ≤ i < n,

max{
∑

x∈S′ x|S′ ⊆ {xi}
n
i=1} =

∑n
i=1 xi.
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PROOF. Let S = {xi}
n
i=1. Suppose all nonempty subsets of S are S1

1 , S1
2 , . . . , S1

n,

S2
1 , S2

2 , . . . , S2
Cn

2
, . . . , Si

1, . . . , Si
Cn

i
, . . . , Sn

1 , where Si
j is a non-empty subset of size i and

1 ≤ j ≤ Cn
i for i ∈ IN and 1 ≤ i ≤ n.

Let a nonempty set Si
max be the subset that has the maximum summation in Si

j for
1 ≤ j ≤ Cn

i .
For each i ∈ IN and 1 ≤ i ≤ n, it is trivial that a nonempty subset Si

max is {x j}
i
j=1 and

the summation of the elements in the subset is
∑i

j=1 x j .

Then, we claim that the summation of the elements in Si
max is smaller than the

summation of the elements in Si+1
max for i ∈ IN and 1 ≤ i < n. Thus, we prove that

∑i
j=1 x j <

∑i+1
j=1 x j for i ∈ IN and 1 ≤ i < n.

For i ∈ IN and 1 ≤ i < n, since xi+1 > 0 for each i and 1 ≤ i ≤ n,

i+1
∑

j=1

x j −

i
∑

j=1

x j = xi+1 > 0.

∑i+1
j=1 x j >

∑i
j=1 x j for i ∈ IN holds, showing that the summation of the elements in

Sn
max is the maximum summation and the maximum summation is

∑n
i=1 xi.

LEMMA 5.7. Given a set {xi}
n
i=1 where xi > 0 for 1 ≤ i ≤ n and xi > xi+1 for 1 ≤ i < n,

min{
∑

x∈S′ x|S′ ⊆ {xi}
n
i=1} = xn.

PROOF. The proof is similar to the proof of Lemma 5.6.

THEOREM 5.8 (CORRECTNESS OF BTS WITH BT SCORE FUNCTION). Given a sequence of
ROIs R

s
Q, the corresponding set of trajectories T ′ that passes through at least one ROI

in R
s
Q and a set of candidate trajectories T with LBST and SBRT , the scores of top K

in T are larger than the scores of the trajectories in T′/T.

PROOF. The proof for the correctness of BTS with the BT score function is similar to
the proof of Theorem 5.5 using Lemma 5.6 and Lemma 5.7.

6. PERFORMANCE EVALUATION

6.1. Dataset and Setting

In this section, we conduct experiments to evaluate the performance of our framework.
We crawl travel and biking trajectories around Taiwan from EveryTrail and Bikemap
[Bikemap 2010; 2009]. There are 6,548 trajectories and 1,301,192 GPS data points. To
extract ROIs, the whole space is divided into grids and the grid length is set to l meters.
The impact of grid length will be discussed in our experiments later. A performance
study of algorithm BST is investigated. Furthermore, to evaluate the scalability of
algorithm BTS, we vary the data size by the number of trajectories in the spatial range
(denoted as |TQ|) and the number of ROIs in the spatial range (i.e., |RQ|). The default
settings of some important parameters are that the grid length l = 300 meters, the
rank-threshold K = 10, the parameter α = 0.85, and the minimum density threshold
θ = 10. All experiments are performed on a computer with AMD Phenom II X4 955
processors and 4GB of memory.

6.2. Effectiveness of PATS

In this section, we first conduct experiments to demonstrate trajectories derived under
two score functions (i.e., DT and BT ) in PATS. Then, a user study is performed to
solicit users’ feedback to justify the effectiveness of PATS.
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Fig. 7. Attractions in Kenting, Taiwan [Kenting National Park Headquarters, Taiwan 2011].

(a) rank 1 (b) rank 2 (c) rank 3

Fig. 8. Top 3 trajectories retrieved under the trajectory score function DT in Kenting.

6.2.1. Top K Trajectories under Different Trajectory Score Functions. We first demonstrate the
search result of PATS under different trajectory score functions. The spatial range is the
range of Kenting, one of the popular travel areas in Taiwan. The attractions in Kenting
[Kenting National Park Headquarters, Taiwan 2011] are depicted in Figure 7. Figure 8
(respectively, Figure 9) shows the top 3 trajectories retrieved under the score function
DT (respectively, BT ) by PATS. As shown in Figure 8(a) and Figure 9(a), the length
of the top trajectory ranked by DT is smaller than that of the top trajectory ranked
by BT . Clearly, trajectory score function DT includes the ROIs having high attractive
scores since the score function DT aims at maximizing the average attractive score of
ROIs. With the score function BT , long trajectories, passing through many ROIs, are
rank highly in the search results.

6.2.2. Quality Evaluation of Top K Trajectories in PATS. In this section, we solicit users’
feedback to evaluate the quality of search results of PATS. In our user study, we
randomly invited 30 users from campuses to rate the top K trajectories of PATS.
The users consist of 16 females and 14 males, and their ages are between 22 to 35.
We provided two search results by issuing spatial ranges: One spatial range covers
Kenting and the other is the area of Sun Moon Lake. Due to the fact that we have
a sufficient number of trajectories in Kenting and Sun Moon Lake, the search result
of these two spatial ranges are sufficient. The spatial ranges for Kenting and Sun
Moon Lake are shown in Figure 7 and Figure 10(a), respectively. In our user study, we
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(a) rank 1 (b) rank 2 (c) rank 3

Fig. 9. Top 3 trajectories retrieved under trajectory score function BT in Kenting.

(a) attractions in Sun Moon Lake (b) top 1 trajectory under (c) top 1 trajectory under

Fig. 10. Top-1 trajectory retrieved under different trajectory score functions in Sun Moon Lake.

only set K to be 1. Thus, the top trajectory is retrieved under two score functions. For
the spatial range of Kenting scenic area, the top trajectory retrieved for an in-depth
trip and the top trajectory retrieved for an in-breadth trip are shown in Figure 8(a)
and Figure 9(a), respectively. For the spatial range of Sun Moon Lake scenic area,
Figure 10(b) and Figure 10(c) show the top 1 trajectories retrieved for an in-depth trip
and an in-breadth trip, respectively. In addition, the attractions in Sun Moon Lake
area are illustrated in Figure 10(a).

For each top trajectory under two score functions, we asked the users to rate their
interest in the trajectory via four levels: very interested, interested, somewhat inter-
ested, or not interested. To provide a quantitative measure, we assigned interest scores
to these levels from 3 (very interested) to 0 (not interested). To analyze the effectiveness
of the retrieved routes for different travel requirements, the users were divided into
two groups: one group of users prefer in-depth trips while the other group of users like
in-breadth trips. In the user study, 47% of users preferred in-depth trips (denoted as
UD) and 53% preferred in-breadth trips (denoted as UB). To evaluate the performance
in different travel scenarios, for each retrieved route, we aggregated the rating of each
group and averaged the interest scores.

The experimental results of the effectiveness of PATS are presented in Figure 11.
As shown in Figure 11(a), given the spatial range in Kenting scenic area, the users
in group UD are indeed more interested in our recommended in-depth trip (i.e., top
trajectory derived by the score function DT ), because the average interest score of a
recommended in-depth trip is higher than the average interest score of a recommended
in-breadth trip. In addition, given the query range in Kenting scenic area, the users
in group UB liked our recommended in-breadth trip (i.e., top trajectory retrieved by
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Fig. 11. Quality of trajectories retrieved in PATS for spatial queries in Kenting and Sun Moon Lake.
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Fig. 12. Effect of different grid lengths.

trajectory score function BT ) because the average interest score of a recommended in-
breadth trip is higher than the average interest score of a recommended in-depth trip.
Similarly, Figure 11(b) shows the result of evaluating the users’ feedback for the top
trajectory in Sun Moon Lake area. Therefore, the experimental results show that the
quality of trajectories derived by PATS is high, and thus PATS could provide different
travel routes for two kinds of user preferences.

6.3. Efficiency of Algorithm BTS in PATS

Since algorithm BTS supports online trajectory search in PATS, the efficiency of
algorithm BTS is next examined. We compare algorithm BTS with the naive algorithm
(algorithm Naive) described in Section 5.1. In the following, the results derived by
algorithm BTS with trajectory score functions BT and DT are denoted as BTS-BT
and BTS-DT, respectively. We evaluate the efficiency of algorithm BTS by varying grid
length l, rank-threshold K, and the trajectory data sizes.

6.3.1. The Impact of Grid Length. In Figure 12, we fix the spatial range such that there is
about 1000 trajectories within the spatial range (i.e., |TQ| = 1000) in the experiment.
As show in Figure 12, the response time of the three algorithms decreases as the grid
length increases. The reason is that the number of ROIs would decrease when the
value of grid length l increases. Thus, the computation cost for deriving trajectory
scores is decreased due to a smaller number of ROIs. In addition, both BTS-BT and
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Fig. 13. Effect of different rank-threshold K.
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Fig. 14. Sensitivity analysis of algorithm Naive and BTS with varied |TQ| and |RQ|.

BTS-DT outperform algorithm Naive. This shows the advantage of using bounds to
reduce search space for the top K trajectories. Although using a larger grid length can
improve the efficiency of query time, the discrimination of trajectories is reduced. This
is because each trajectory is likely to have the same travel route. Thus, trajectories will
have the same trajectory score in terms of depth-trip and breadth-trip scores.

6.3.2. The Impact of Rank-Threshold. Figure 13 shows the effect of K on BTS which dis-
covers the top K trajectories. In the experiment, the spatial range includes 100 ROIs
and 1600 trajectories (i.e., |RQ| = 100 and |TQ| = 1600). As can be seen in Figure 13,
when the value of K increases, the response time of BTS-BT and that of BTS-DT slightly
increases because more candidate trajectories are involved in calculating their trajec-
tory scores. Although the response time of the Naive algorithm is not affected by K, the
response time of algorithm Naive is much larger than that of BTS-BT and BTS-DT.

6.3.3. The Impact of Trajectory Data Size. For scalability, two factors affect the perfor-
mance of online trajectory search. One is the number of ROIs and the other is the
number of trajectories. To evaluate the effect of a different number of trajectories (i.e.,
|TQ|), we randomly choose |TQ| trajectories that pass through a specified spatial range
and vary the number of trajectories (i.e., |TQ| ranges from 500 to 2500). In addition,
we fix the number of ROIs in the spatial range as 500 (i.e., |RQ| = 500) by randomly
choosing 500 ROIs within the spatial range. As shown in Figure 14(a), the response
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time of the three algorithms increases as |TQ| increases. However, the response times
of BTS-DT and BTS-BT are smaller than that of algorithm Naive. Since algorithm BTS
is able to reduce the search space for retrieving the top K trajectories, it results in a
shorter response time. The performance is prominent when |TQ| is large.

Similarly, to evaluate the effect of a different number of ROIs, we randomly choose
|RQ| ROIs within the spatial range by varying |RQ| from 100 to 500. Then, we fix the
number of trajectories that pass through the spatial range to be 2000. As shown in
Figure 14(b), when |RQ| increases, the response times of algorithm Naive and BTS-BT
(or BTS-DT) slightly increase. This is because that with the increase of |RQ|, the cost of
trajectory score calculation would increase. Note that BTS-BT and BTS-DT still have
better performance than algorithm Naive. The preceding experimental results show
that algorithm BTS in PATS is efficient enough to support online trajectory search.

7. CONCLUSIONS AND FUTURE WORKS

In this article, we have dealt with the problem of searching for pattern-aware travel
routes from trajectory datasets. We have developed a framework comprising travel be-
havior exploration and trajectory search components, to search the top K trajectories
with a user preference of depth/breadth. We have built a user movement graph to cap-
ture travel behaviors. Then, we have proposed algorithm AS to infer attractive scores
of ROIs. In light of attractive scores of ROIs, we have formulated a depth-trip score
function and a breadth-trip score function for trajectories. To support time-critical on-
line query, we have proposed algorithm BTS without compromising the accuracy of the
search results. We have evaluated our framework using a real dataset and have studied
the performance of our framework under different parameter settings. In particular,
user studies have been conducted and from these studies, our framework effectively
derives interesting travel routes according to user preference of depth/breadth. In ad-
dition, the experimental results demonstrate the efficiency of our framework as the
query time is less than one second overall. In the future, we will develop more complex
travel requirements, such as combining both in-depth and in-breadth patterns and
considering the travel time of travel routes. Moreover, for the determination of ROIs,
we will explore the attractions from social media using photos and check-in records.
With the use of social media, users’ travel experiences could be emphasized for travel
route planning. In addition, to derive more informative travel routes, we will develop
more semantic high-level trajectory search from semantic trajectories.
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