
Exploring Pattern Selection Strategies for Fast Neural Network Training

Szilárd Vajda, Gernot A. Fink
Department of Computer Science

TU Dortmund
Otto-Hahn Str. 16, 44221, Dortmund, Germany

{szilard.vajda, gernot.fink}@udo.edu

Abstract—Nowadays, the usage of neural network strategies
in pattern recognition is a widely considered solution. In this
paper we propose three different strategies to select more
efficiently the patterns for a fast learning in such a neural
framework by reducing the number of available training
patterns. All the strategies rely on the idea of dealing just with
samples close to the decision boundaries of the classifiers. The
effectiveness (accuracy, speed) of these methods is confirmed
through different experiments on the MNIST handwritten digit
data [1], Bangla handwritten numerals [2] and the Shuttle data
from the UCI machine learning repository [3].

Keywords-fast pattern selection; neural networks; machine
learning;

I. INTRODUCTION

In the last few decades, the popularity of different neural
network (NN) strategies increases in the domain of pattern
recognition, signal processing, image processing, etc. This
is due to the fact, that NNs can easily be manipulated, the
network topology can be adapted to different problems [4],
[1] and the training mechanisms are defined with a strict
mathematical rigor [4].

However, the main asset is that the NN can define its own
classification rules automatically during the training process,
without considering any a-priori knowledge. A network
generalizes if and only if the internal rule can classify both
training and test set, respectively [5]. If there is no a-priori
knowledge about the data, to achieve generalization during
the training, a huge amount of data should be considered
for learning purpose. Hence, the training becomes quite a
challenging task. Moreover, the computational complexity of
such a training is high and we have to deal with the course
of dimensionality [4]. Therefore, to achieve a fast and good
generalization over the training process, an accurate pattern
selection strategy is an important task in the classification
chain.

The training of such a NN consists in updating the different
weights in between the connected neurons belonging to
different layers. This set of updated weights defines the hyper-
planes which separate the input space into the corresponding
class boundaries. Different authors [5], [6] have shown that
the pertinent information for a better generalization lies close

to the class boundaries. Our selection strategies are guided
by these conclusions.

In this paper, we explore three new strategies to select the
relevant patterns for a faster training. The first method selects
the hard patterns using the same network for selection and
training incrementally, while the last two methods select first
the hard patterns close to the class boundaries and afterwards
a NN is trained. We validated and compared our selection
methods considering several benchmark data sets.

II. RELATED WORK

Many researchers proposed different data selection strate-
gies to reduce the amount of data and to achieve faster
training and better generalization. One trend is the so-called
incremental learning defined by Engelbrechts [7]. In this
framework the classifiers start with an initial subset selected
somehow from a candidate set. During the learning process,
at specified selection intervals, some new samples are selected
based on some error measures [8] from the candidate set
and these patterns are than added to the training set. While
these wrapper methods use the target classifiers, some other
techniques based on filtering do not use the classifier itself.
They do some pre-selection on the data first and afterwards
a classifier is trained with that data.

The main idea for this second trend, especially considered
to train multilayer neural networks [5], lies in the fact that the
decision surfaces (hyper-planes) defined during the training
procedure mainly depend on the training samples adjacent
to the decision boundaries.

In [5] the authors propose a method which selects randomly
”pair data” based on the Euclidean distance, selecting in a
binary scheme the closest patterns belonging to different
classes. The method can be extended for multiclass problems
and promising results have been reported for the Iris data
[3].

The dataset condensing method described by Choi et al.
[6] is based on a k-nearest neighbor method to estimate the
posterior probabilities. By definition, the data which lies on
the decision surface has a posterior probability of 0.5, while
the rest is far from the decision surface and, therefore, of
minor importance to proper training. Although, the results
reported are impressive, they have applied this method just to

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.714

2905

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.714

2917

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.714

2913

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.714

2913

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.714

2913

binary classification tasks. A similar strategy was proposed
in [9] to reduce the input data for a SVM based training. In
order not to affect the SVM accuracy the authors proposed
a heuristic as well for the estimation of the k value based
on neighbors’ entropy.

All these strategies describe similar solutions to detect
such items from a dense data set which can really contribute
with relevance to the learning process. Our algorithms also
exploit similar ideas of looking for those special (relevant)
items close to the decision boundaries.

III. PATTERN SELECTION STRATEGIES

The objective of the pattern selection strategies is to
minimize the data requirements of learning. The selection
process can be considered a kind of data compression, by
selecting a relevant subset from the existing data.

A. Hard patterns selection (HPS)

The goal of HPS is to build at run-time a learning corpus
based on least mean square by selecting the ”hard patterns”
during the training from the available training set. Unlike
Engelbrecht [7], we propose a selection criterion based on the
error committed by the classifier, selecting those candidates
that have been misclassified previously.

Let Dn = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a training
set where xi ∈ Rq and yi ∈ {C1, C2, . . . , CM} where n
denotes the number of samples in the corpus, q is the input
space dimension, M stands for the classes, while Ci is the
corresponding class label. The objective is to achieve good
generalization by adjusting the weights by learning. This is
a nonlinear optimization problem, where we minimize the
additive error function:

E(Dn|W) =

n∑
i=1

E(yi|xi,W). (1)

E stands for the error, while W is the NN’s weights. The
training starts with a reduced subset D0 ⊂ Dn and increases
the training set incrementally. Rather than attempting to
minimize the error function (Eq.1), we minimize the error
components:

E(Dn|W) = E(Dn0 |W) + . . .+ E(Dnk
|W). (2)

ni is the ith size of the training set satisfying the relation:
Dn0 ⊂ Dn1 ⊂ . . . ⊂ Dnk

⊂ Dn where n0 < n1 < . . . <
nk << n.

Let us denote by Global Learning Corpus (GLC) the
whole available data, by Global Validation Corpus (GVC)
the patterns which guide the training, by Global Test Corpus
(GTC) the test patterns and by Dynamic Learning Corpus
(DLC) the minimal set of patterns contributing to the training.
Let us also denote by NN the neural network and by N the
iterator which provides the number of new pattern candidates
to be added at each stage. M denotes the number of classes.
The detailed algorithm description can be found in Fig. 1.

Initialization:
DLC = {xi ∈ GLC | i = 1,M}
GLC = GLC \DLC

Database Building:
do

do
NN← TrainNet(DLC)

while (NetErr(NN,DLC)> λ1)
if (NetErr(NN,GVC)< λ2) then STOP end if
else

if (NetErr(NN,GLC)< λ1) then STOP end if
else
DLC = DLC ∪ {xj ∈ GLC | j = 1, N}
GLC = GLC \DLC

end else
end else

while (|GLC| > 0)
Results:
NN contains the modified weight set
DLC contains the selected patterns subset

Figure 1: Hard pattern selection algorithm

The algorithm initializes the DLC set by selecting one
sample (xi) for each class. Then it performs the training
with these samples until the error is less than a threshold
(λ1). The NN is tested with GVC. If the error criterion is
satisfied, the algorithm stops. Otherwise, we pick-up the N
worst recognized elements from GLC and move them into
DLC and restart the training. The algorithm stops when the
error is reduced or there are no more available patterns in
GLC.

B. Support vectors selection (SVS)

Support Vector Machines (SVM) are a statistical learning
architecture that perform structural risk minimization by
defining margins between the data to be separated. The
patterns that belong to the margins (Fig. 2) are the critical
ones –so called Support Vectors (SVs)–, hence directly
affecting training [9].

While Shin and Choi [10] proposed some initial pattern
selection to avoid the computational burden in the quadratic
programming (QP) for the SVM training, we select those
SVs to train a NN. The method performs first an optimization
which yields the largest margin between classes. Secondly,
all the samples (xi, yi) ∈ Dn (previous notation considered)
which satisfy the equation of the margins defined by the QP
optimization are selected and considered to train the NN.

C. Density based selection (DBS)

Looking at the points in the Fig.3, we can easily distinguish
the different clusters. This is due to the fact that within
each cluster we have a typical density of points which is
considerably higher than outside the cluster. This idea has
been exploited by the DBSCAN algorithm [11]. Our strategy
is also based on this presumption, namely, the samples that

29062918291429142914

Figure 2: Support vectors defining the margins

lie at the margins of the clusters have less similar neighbors,
so probably they are closer to the hyperplanes that separate
the different class samples.
Let us denote by β-neighborhood of a point (xi, yi) ∈ Dn

the Nβ(xi, yi) = {(xj , yj) ∈ Dn|dist(xi, xj) < β, i 6= j},
where dist()̇ is the Euclidean distance.

Considering the β-neighborhood of a point, we define
the notion of (xi, yi) is density reachable from (xj , yj) if
(xi, yi) ∈ Nβ(xj , yj)), |Nβ(xj , yj)| ≥ Pmin, where yi = yj
and Pmin is the minimal number of identically labeled points
which should be around point xi.

The proposed data selection process is based on the β-
neighborhood of a point. We select into the reduced dataset
all the points which are not density reachable considering a
given number of k (number of neighbors). The k parameter
controls the degree of the data reduction. These points will
be at the boundaries of the different classes. If the training
can deal with this ”boundary data” [5] there is no more need
to train the samples which are inside the clusters.

IV. RESULTS

A. Data description

The experiments were performed using several datasets.
The MNIST corpus [1] contains 60, 000 and 10, 000 nor-
malized handwritten digit data for training and testing,
respectively. The ISI-Bengali handwritten digit data [2]
contains 19,391 and 4,000 for training and testing. The
digits in these datasets are gray-valued 28× 28 pixel images.
Finally, we also considered the Shuttle dataset [3] from
the UCI repository, containing 43,500 and 14,500 samples,
respectively. Each Shuttle data point is described by 9 features
representing 7 different classes.

B. Network setup

For the experiments, a fully connected multi-layer per-
ceptron with sigmoid transfer function has been used. Con-
ventional error back-propagation minimizing a squared error

Figure 3: Data clusters with the extreme points

metric was considered to train the network. The topology
of the network was set based on the dataset and trial runs.
The number of units in the input layer corresponds to the
dimension of the input space, while the number of output
units is the same as the number of classes to be separated.
For the digit data we considered a 784-500-10 topology [8],
while for the Shuttle data we used a 9-15-7 network setup.

C. Results

Selecting only 1, 960 from 60, 000 samples of the MNIST
data by the HPS, we obtained 98.36% recognition accuracy.
While loosing 0.22% of accuracy using just 3.26% of the data
we realize a 13x speed-up. Such a speed gain is enormous
considering the tremendous time consumption to select the
ideal topology and learning parameter for a neural network
[6]. For the ISI data a 8x speed-up has been achived selecting
only 1,210 samples from the possible 19, 391, but a 6.33%
accuracy loss has been observed.

The Shuttle data is not suitable for the HPS method as a
heavy unbalanced aspect can be detected between classes.

The SVS and DBS results are reported in Tab.I and Tab.II,
respectively. The speed results for the SVS were calculated
based on the SVM training, SVs selection and the NN training.
Similarly, for the DBS the time consumed for the density
reachability calculus and the NN training has been considered.
These results are less impressive in speed terms but still
promising. The moderate speed gain is due to the fact that in
this case the classifier has not been used during the selection
and a totally independent method has been considered. The
achieved accuracy for SVS (98.74%) is even higher than
using the total data from MNIST, but the speed is just 3x
faster than the original solution. For the Shuttle data the
SVS method results in a 10x speed-up and a higher accuracy
(99.82%).

29072919291529152915

Data Orig[%]/samp. Red.[%]/samp. Speed
MNIST 98.59/60,000 98.74/12,223 3x

ISI 94.35/19,391 94.40/9,415 1.5x
Shuttle 99.80/43.500 99.82/1,209 10x

Table I: Results concerning the SVS method

Data Orig[%]/samp. Red.[%]/samp. Speed
MNIST 98.59/60,000 98.44/12,000 2.5x

ISI 94.35/19,391 92.38/5,817 2.6x
Shuttle 98.80/43,500 76.47/4,351 1.1x

Table II: Results concerning the DBS method

A kind of superiority can be distinguished for the SVS
over the DBS method which can be explained by the fact
that, the support vectors detected by the SVM training are
optimized for the margins lying in between the different
clusters. Meanwhile, the density based solution is more
sensitive to noise and can introduce into the training set
isolated elements, i.e. outliers which can distort the results.

V. CONCLUSION

In this paper we presented one wrapper method (HPS) and
two filter methods (SVS, DBS) to select the ”most relevant”
patterns that help a neural network to achieve high accuracy
and realize a considerable speed-up in the training procedure
which can be helpful to test different network topologies and
parameter settings.

While the filter method (HPS) produces an impressive 13x
speed gain as the selection and training process fuse, the
SVS method guided by SVs produces more accurate scores.
The reported results are comparable with the state-of-the-art
results (99.7%–MNIST[1], 98.2%–ISI[2], 99.8%–Shuttle[3])
but our primary goal is not to achieve the highest accuracy
but rather to achieve a fast model training. This time gain will
allow researchers to test several network topologies using
different parameters to refine their recognition systems. The
presented methods are general and our tests performed on
different type of datasets show the success of these selection
strategies.

REFERENCES

[1] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices
for convolutional neural networks applied to visual document
analysis,” in Int. Conf. on Document Analysis and Recognition,
2003, pp. 958–963.

[2] U. Bhattacharya and B. Chaudhuri, “Handwritten numeral
databases of indian scripts and multistage recognition of mixed
numerals,” Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 3, pp. 444–457, 2009.

[3] A. Asuncion and D. Newman, “UCI machine
learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[4] C. M. Bishop, Pattern Recognition and Machine Learning,
2nd ed. Springer, October 2007.

[5] K. Hara and K. Nakayama, “A training method with small
computation for classification,” Int. Joint Conference on Neural
Networks, vol. 3, pp. 543–548, 2000.

[6] S.-H. Choi and P. Rockett, “Reducing the training times
of neural classifiers with dataset condensing,” in Joint Int.
Workshops on Advances in Pattern Recognition, 2000, pp.
650–657.

[7] A. P. Engelbrecht, “Selective learning for multilayer feedfor-
ward neural networks,” in Int. Work-Conference on Artificial
and Natural Neural Networks, 2001, pp. 386–393.

[8] S. Vajda, H. Cecotti, Y. Rangoni, and A. Belaid, “A learn-
ing strategy using pattern selection for feedforward neural
networks,” in Int. Workshop on Frontiers in Handwriting
Recognition, 2006, pp. 145–150.

[9] H. Shin and S. Cho, “Neighborhood property–based pattern
selection for support vector machines,” Neural Comput.,
vol. 19, no. 3, pp. 816–855, 2007.

[10] ——, “Fast pattern selection for support vector classifiers,” in
Advances in Knowledge Discovery and Data Mining, 2003,
pp. 376–387.

[11] M. Ester, H.-p. Kriegel, S. Jörg, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in Int. Conf. on Knowledge Discovery and Data
Mining, 1996, pp. 226–231.

29082920291629162916

