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Abstract

We are constantly struggling to understand how nature works, trying to identify
recurrent events and looking for analogies and relations between objects or indi-
viduals. Knowing patterns of behavior is powerful and fundamental for survival of
any species. In this thesis, datasets of diverse systems related to transportation,
economics, sexual and social contacts, are characterized by using the formalisms of
time series and network theory. Part of the results consists on the collection and
analyzes of original network data, the rest focuses on the simulation of dynamical
processes on these networks and to study how they are affected by the particular
structures. The majority of the thesis is about temporal networks, i.e. networks
whose structure changes in time. The new temporal dimension reveals structural
dynamical properties that help to understand the feedback mechanisms responsible
to make the network structure to adapt and to understand the emergence and inhi-
bition of diverse phenomena in dynamic systems, as epidemics in sexual and contact
networks.
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Sammanfattning

Vi är ständigt kämpar för att först̊a hur naturen fungerar, försöker identifiera återkom-
mande evenemang och söker analogier och relationer mellan objekt eller individer.
Veta beteendemönster är kraftfull och grundläggande för överlevnad av arter. I
denna avhandling, dataset av olika system i samband med transporter är ekonomi,
sexuella och sociala kontakter, som kännetecknas av att använda formalismer av
tidsserier och nätverk teori. En del av resultatet utgörs av insamling och analys av
ursprungliga nätdata, fokuserar resten p̊a simulering av dynamiska processer i dessa
nätverk och att studera hur de p̊averkas av de särskilda strukturer. Huvuddelen av
avhandlingen handlar om tidsmässiga nät, i.e. nät vars struktur förändringar i tid.
Den nya tidsdimensionen avslöjar strukturella dynamiska egenskaper som hjälper
till att först̊a den feedback mekanismer som ansvarar för att göra nätverksstruktur
att anpassa sig och först̊a uppkomsten och hämning av olika företeelser i dynamiska
system, epidemier i sexuella och kontaktnät.
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Resumo

Constantemente nos esforçamos para entender como a natureza funciona, tentando
identificar eventos recorrentes e procurando por analogias e relações entre objetos
ou indiv́ıduos. Conhecer padrões de comportamento é algo poderoso e fundamental
para a sobrevivência de qualquer espécie. Nesta tese, dados de sistemas diversos,
relacionados a transporte, economia, contatos sexuais e sociais, são caracterizados
usando o formalismo de séries temporais e teoria de redes. Uma parte dos resultados
consiste na coleta e análise de dados de redes originais, a outra parte concentra-se
na simulação de processos dinâmicos nessas redes e no estudo de como esses proces-
sos são afetados por determinadas estruturas. A maior parte da tese é sobre redes
temporais, ou seja, redes cuja estrutura varia no tempo. A nova dimensão tempo-
ral revela propriedades estruturais dinâmicas que contribuem para o entendimento
dos mecanismos de resposta responsáveis pela adaptação da rede, e para o entendi-
mento da emergência e inibição de fenômenos diversos em sistemas dinâmicos, como
epidemiais em redes sexuais e de contato pessoal.
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Preface

The story of this thesis started long ago, after I received an email early in the
morning with my acceptance for the PhD program. Since then, life was like riding a
roller coaster, which means, ups and downs, loops and screams, but fun overall. But
before getting to another amusement ride, it is time to write down a summary of
my scientific years in Ume̊a. The idea of this thesis is to give a gentle introduction
and shortly review relevant literature to motivate and contextualize the research
presented in the papers that I co-authored. Whenever possible, I try to give my own
perspective of network science rather than simply reproducing what one can find in
other monographs and books.

In general, my research was driven by data analysis and computer simulations.
After all, I decided to include five original papers in this thesis, besides six other
papers not necessarily original. Each one has a particular story and importance in
my carreer. During the PhD program, I tried to not only write and publish research
papers but also make a connection with laypeople about my research. Initially, I
wrote an article for a physics pedagogical journal in Brazil. The focus was more
on teaching information spreading on networks than on producing original research.
Later on, this connection was indirect; three papers that I co-authored got the
media attention, from regular newspapers to popular science magazines in different
languages. For me, it was really important to establish this connection to people who
is actually funding our research, and surprisingly exciting to see the non-scientific
feedback. Within the scientific community, some of our papers crossed the borders of
physics and were noticed by Scott Cunningham, an economist who kindly invited us
to contribute a book chapter to the Handbook of the economics of prostitution. More
recently, together with my Brazilian collaborators, I had the pleasant experience to
get a review paper published in a prestigious physics journal. I do hope this review
also cross the borders of physics and be useful for diverse scientists out there.

During my earlier years as a PhD student, I have being involved in a project
about books. The main hypothesis was that when an author writes down a text, he
or she picks the words randomly from a large dictionary in his or her brain. As a
consequence, the word-frequency distribution depends on the length of the written
text and is characteristic of each author. That was certainly an interesting project
but a little detour of my research goals, especially, from the social and technological
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systems I wanted to study. Therefore, to wrap up the thesis focusing on networks, I
decided to skip the two papers related to the meta-book concept. I am also skipping a
project related to tracing the evolution of network structure by using node similarity
measures. This project is within the scope of the thesis, but since was concluded
during the writing of the thesis, I chose to simply acknowledge it here.

The following chapters are supposed to be as much non-technical as possible and
as such, readable by a scientist of any area of expertise. Indeed, even non-scientists
might find it pleasant to read. Technical details appear in the text but are mostly
left to the attached manuscripts. I start the thesis (Chapter 1) explaining the thesis
title and motivating the relevance of pattern detection in nature. In the next chap-
ter (Chapter 2), I introduce definitions and basic concepts of networks. In Chapter
3, some issues and challenges related to data collection are discussed together with
some thoughts about the potential of experimental network science. Chapters 4
and 5 are dedicated to introduce concepts and measures directly related to the pub-
lished papers, including a brief historical overview, and a summary of each paper.
The thesis closes with a chapter (Chapter 6) summarizing and connecting the main
contributions, and with little speculation about future research directions. I finally
suggest the reader to get a comfy seat, make a caipirinhaa and enjoy the reading.

Luis E C Rocha
July 1, 2011
Ume̊a, Sverige

aThere are strict (official) recommendations about the caipirinha making, but essentially it
consists on adding ice cubes in a lowball glass, a shoot of Brazilian cachaça, and limes smashed
with sugar (from sugarcane!).
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all cool “fika”s, dinners, scientific and non-scientific conversations. The feedback of
Tamás Nepusz, Gonzalo Travieso, Aaron Clauset, Devon Brewer, and Diego Rybski
contributed to improve the quality of my papers and should be remembered. I
am also grateful to Marco Aurélio Ubirajara Garcia Gomes for providing me an
opportunity several years ago that surely contributed to many decisions of my life,
especially related to working outside Brazil.

I am in debt to the helpful colleagues of the physics department, in special,
Ann-Charlott Dalberg, Katarina Hassler, Lena Burström, Jörgen Eriksson, Kjell
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Chapter 1

Introduction

The human being has an inherent capacity of detecting patterns of all sorts. It actu-
ally seems that we have a natural impulse to hunt for patterns. Identifying patterns
is indeed a key to success and overall, a necessity of daily life; once the pattern is
detected, in principle, the future can be predicted. That is powerful. Ordinary peo-
ple constantly struggles in this quest, they have to learn how much time is needed
to heat a cup of water, how frequent the buses depart from one station to another,
and more important, to please their peers, they have to learn how they behave,
and so on. Interestingly, humans are not so good on identifying random eventsa.
Experimental psychology has extensively studied such phenomena, a classic exam-
ple is the Gambler’s fallacy, where subjects believe that an increasing succession of
looses in a game, makes a win situation more likely [1]. This apparent contradiction
creates, sometimes, a blurred border between randomness and order that is difficult
to distinguish. Mathematics, however, helps to identify the border between these
two states [2].

“A mathematician, like a painter or a poet, is a maker of patterns.”
G H Hardy, 1941 [3]

To detect a pattern, first one has to define a system to study and observe its
behavior under certain circunstances. This observation is usually performed through
an experiment, where the experimenter controls some parameters and observes the
outcome [4]. Sometimes, there is no control, simply observation of the phenomenon.
Taking one or another direction depends on several factors as cost, time, technology,
ethical issues, etc. The most common approach is to take small parts of a system
and study their properties separately. This works well indeed. The problem appears
when one wants to understand the emergent phenomena created by collective behav-

aThere is an entertaining short article illustrating simple experiments where we fail to detect
random patterns, the name is “The illusion of randomness” written in 2001 by Richard A Muller,
just google it on the web.



2 Introduction

ior when these parts interact, that is generally not simply the sum of the individual
parts [5]. What happens then is that the observation has to happen at another level,
which is more difficult to control due to the number and complexity of parameters
that an experimenter would have to deal with. These challenges motivate the ob-
servational approach where the system is observed as it is. A different configuration
of the system is obtained by the natural system conditions and evolution, and not
by the experimenter control.

From a pragmatic point of view, an observation can be seen as the act of collect-
ing a set of properties of an entity at a certain moment in time and in space. The
trick is to map these properties into numbers and organize them in a meaningful
structure.

“... if you graph the numbers of any system, patterns emerge. Therefore,
there are patterns everywhere in nature.”
Max Cohen, main character of the movie PI, 1998 [6]

There are some ways of organizing these numbers such that patterns emerge,
one vastly adopted method is to arrange the measured values in mathematical series
that is a sequence of ordered numbers. Another idea is to organize them in a graph,
which is simply a collection of objects connected pairwise by a line representing the
relation between them. Once these structures are defined, the goal is to find regular
or irregular patterns, investigate their meaning and the reason of their emergence.
By knowing these patterns, ideally, one can predict and interfere in the future state
of the system.

This thesis is essentially about identifying patterns in diverse systems using
mathematical methods, in special network structures. The goal is to not only mea-
sure them, but whenever possible, use that information to understand the dynamics
of society both at the individual and at the technological level.



Chapter 2

Basics of networks

In the colloquial sense, a network is simply a bunch of connections. Networks emerge
when connections exist between objects. This is such a general concept that one finds
networks everywhere, some are more conspicuous, as the fisherman net or a spider
web, others more obscure, such as a network of related diseases [7] or subsequent
notes in a melody [8]. In daily life, people are continuously thinking in networks;
when one goes to work, he or she is aware of which pathways are possible, and
that some choices are faster than others. It is usually not difficult to identify gossip
super spreaders among the peers, and to cite a historical situation, even the medieval
Catholic church realized that certain individuals had disproportionate influence to
spread heresies [9].

Nonetheless, the network view of daily life was formalized, apparently for the first
time, by Leonard Euler in his classic study of the Königsberg bridges in 1735. A
reader familiar with Latin can appreciate the original manuscript about this problem
in ref. [10], others can simply check ref. [11] for an overview. Afterwards, networks
in one form or another arose in different fields of the science, from Kekulé’s diagrams
to Kirchhoff’s circuit laws. Only in 1878 the term graph (the mathematical term for
networks) was introduced by James J Sylvester to describe such general structures
visible everywhere [12]. Since then, mathematicians worked hard to study properties
of general graphs, and more recently, random graphs [13]. In parallel, mostly after
the 1950s, social scientists applied network ideas to understand the impact of social
ties on human relations [14]. Needless to say, science is a continuous activity strongly
influenced by the past. Even breakthroughs happen due to a combination of previous
results and other factors, which create the propitious environment for new ideas to
emerge. Such conditions were apparently met in 1999, when Barabási and Albert
published a seminal paper about the growth mechanism of the world wide web
[15]. Though networks have been reinvented and applied in different fields along the
years, after this publication, network science took the form as it has nowadays. Yet,
graph theory and social networks have their own path, many times, overlapping or
complementing network science.



4 Basics of networks

Figure 2.1: A simple network with 6 vertices and 7 edges.

2.1 Definition

Due to historical reasons, the terminology and many definitions used in network
science are borrowed from graph theory and social networks [13, 14]. Since there are
some differences though, it is safer to define terms as they are used by the so-called
complex network community [16].

In its simplest form, a network Γ is formally defined as a graph, by a set V (Γ) =
{i : i = 1, 2, . . . , N} of vertices (or nodes) and a set E(Γ) = {(i, j) : i and j ∈ V (Γ)}
of edges (or links, or ties). Sometimes one refers to a stub, i.e. a piece of an edge;
two connected stubs form an edge. A vertex typically represents an object (or an
individual), while an edge represents a relation between two objects (or the same
object). A pictorial view of a graph with 6 vertices and 7 edges is presented in
Figure 2.1. The number of vertices and edges in the network are given by the size
of the sets, respectively, N = |V (Γ)| and E = |E(Γ)|. A sub-network κ (or group
of vertices) of Γ is defined as a set of vertices V (κ), such that V (κ) ⊆ V (Γ) and
E(κ) ⊆ {(i, j) : (i, j) ∈ E(Γ) and i, j ∈ V (κ)}. A subnet can contain, for example,
only one vertex, the original network, or a null number of vertices. In the following
chapters, a mathematically informal description of the network is preferred.

2.1.1 General networks

The previous definition is simple, elegant, and contains all necessary ingredients to
define a network for any system. Nevertheless, it can be extended to include more
specific information of the system. In general, both the vertices and edges can have
quantities related either to intrinsic properties of the objects and relations they are
representing, or to the network structure itself.
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Figure 2.2: An illustration of temporal network; vertices correspond to horizontal lines,
and the vertical curved edges are available only at certain moments in time.

Since a vertex represents an object, it can have an identitya, an age, a geographic
position, or belong to a specific class of vertices. If the network has two classes
of vertices, for example, representing man and woman, this network is said to be
bipartite. In a dynamical description of a network, a vertex can be active or inactive
at certain moments in time. Generally speaking, any observable property of an
object can be mapped into a vertex intrinsic quantity.

The edges in turn can be directed, to represent an asymmetry in the relation
between two vertices, or undirected to disregard this factor. A typical example is
that a person A might consider person B as a friend but the reverse is not necessarily
true. Many times, asymmetric edges are removed to obtain a stronger definition of
connectivity, i.e. reciprocal edges are stronger than the unidirectional ones. Yet
another way to define weaker and stronger edges is by mapping real values, termed
weights, to edges in order to represent the strength of ties. To specify the moment an
edge is available or not, a time stamp can be associated to an edge (Fig. 2.2). Note
that these definitions are very general and by simple operations, one representation
can be converted to another. For example, a thresholding operation converts a
weighted edge into a simple unweighted edge, or the removal of time-stamps converts
a temporal network to its static version. Note, however, that once the information
is lost, the reversed operations are not as simple.

Networks can be also seen as multiple layers of vertices (the same or not) con-
nected by different edges [17, 18, 19, 20]. Such multi-layered networks are also called
multiplex. A typical situation is the fact that people have different relations (friend-
ship, romantic, workmate); each of them is a different contact network but they can
be combined into one multi-layered network (Fig. 2.3). The multi-layered network
is adequate when one wants to study the interdependence of different layers, for
example, the fact that firefighters organize themselves into communication networks
to control forest fire [18], or to study the Internet breakdown due to cascading power
grid blackout [20].

aThe true identity is usually replaced by aliases due to privacy issues.
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Figure 2.3: An illustration of a 2-layer or multiplex network. Both layers contain the
same 5 vertices, but the connections between them differ on each layer.

2.1.2 Data structure

Although networks are defined by using sets (from the formalism of graph theory,
see §2.1), working with them can be rather cumbersome on network problems. A
more suitable network representation is obtained, either as a matrix, or a list. For
practical reasons, the choice of one or another structure depends on the purpose
of the study. In the following, benefits and limitations of these data structures are
discussed.

Matrix

There are more than one way of mapping a network into a matrix. The most common
one is, perhaps, the adjacency matrix. In this representation, a NxN matrix A is
defined such that each row i or each column j represents one single vertex (i = j, the
same vertex). If two vertices are connected, the respective entry aij = 1, otherwise
aij = 0. There is a natural extension for weighted networks when the binary value
can be replaced by a real value N, resulting in the so-called weighted matrix W . An
example of a weighted network and the respective weighted matrix is given in Fig.
2.4.

The directed network is represented by making aij 6= aji. For the special case
of bi-partite networks, to reduce the matrix size, rows and columns can represent
vertices of different types, and the direction in the edges can be included by using
plus or minus signs in the respective entries.

Another less common representation in network science but more popular in
social networks is the incidence matrix I. In this case, the network is mapped into
a matrix of size NxE where the entry iij = 1 if the vertex and edge are incident,
and iij = 0 otherwise.

A dynamic network can be represented either by a 3-dimensional matrix where
the new dimension represents different time steps, or in case of knowing the mech-
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Figure 2.4: An illustration of a weighted network on the left, edge thickness represents
different weights. On the right, the corresponding mapping of the network into a weighted
matrix.

anism of edge evolution, a temporal function can be defined for a 2−dimensional
adjacency matrix rather than the usual single value, i.e. aij = fij(t).

The matrix format is usually adopted due to the viability to perform matrix
operations, both in mathematical and in computational contexts [21]. The most im-
portant shortcoming of the matrix data structure is that since the network is usually
sparse (E ≪ N2), the majority of the entries are zeros and, for large networks, this
representation wastes too much computer memory.

List

A widely used solution to deal with sparse matrices is to convert them into lists.
In general, direct matrix operations are more difficult to perform but several other
operations, e.g. queries, are faster. Technically, the adjacency list is an array of lists,
where each list corresponds to a different vertex i and contains the vertices that are
connected to ib. In such a structure, directed networks are represented by simply
removing a vertex from the respective list of vertex i. It is not so trivial to include
weights in this structure, but depending on the network, some mathematical tricks
can be used, for instance, by multiplying the vertex identity by 1000 and adding
values (i.e. weights) in the range [1, 999]. The original identity can be recovered by
dividing by 1000 and retaining only the integer part; the weight is the remainder
of the division. This structure is more useful when one wants to rapidly identify
the neighbors of a vertex (without weight). An example of adjacency list from the
unweighted version of the network in Fig. 2.4 is presented as table 2.1.

In the incidence list, however, each entry corresponds to an edge, and thus con-
tains the identity of the pair of connected vertices and respective edge-weights (if
any). This structure is very practical and generally used to store network data into
files. Incidence lists are especially suitable to represent networks with temporal in-

bOne can think in this array as a matrix where each row corresponds to one vertex i and the
columns k contain the identity j of the vertices adjacent to i.
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Vertex Neighbor 1 Neighbor 2 Neighbor 3

1 4 5 ∅
2 6 ∅ ∅
3 4 6 ∅
4 1 3 5
5 1 4 6
6 2 3 5

Table 2.1: An example of adjacency list corresponding to the unweighted version of the
network in Fig. 2.4. Note that ∅ corresponds to an empty entry.

Vertex 1 Vertex 2 Time Weight

B D 1 1.5
B C 2 2.2
C D 2 0.5
B C 3 1
B C 4 5.1
A B 6 2
A C 7 1.3

Table 2.2: An ordered list corresponding to the temporal network of Fig. 2.2. The weights
are random numbers shown to illustrate the data structure.

formation. Since each entry corresponds to an edge, the instant the edge is active
can be represented by simply setting the time-stamp in front of the connected pair.
An ordered list, therefore, can be obtained such that the initial entry is older than
the final entry, as table 2.2.

2.2 Models

A network model is aimed to reproduce the structure in some way. In essence, it
is a sequence of instructions to decide which vertices are connected to whom. For
practical purposes, network models can be either empirical or theoretical. In my
terminology, the empirical models are simply the graph representation of the ob-
served relation between objects. In other words, the system is converted into a
structure described (modeled) by a graph. The theoretical counterpart includes:
generative models intended to create synthetic graphs to study the dependence of
network structure; mechanistic models for experimenting about hypothetical mech-
anisms behind the network evolution; and null models, for hypothesis testing of the
empirical structures. It is common in the literature to only refer to the theoretical
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models as network models, while the empirical models (as I call) are simply the em-
pirical network, represented mathematically as a graph. Although these definitions
might rise some philosophical debate, the terminologies are equivalent in practice.

2.2.1 Empirical

In principle, it is possible to build a network for any natural or artificial system.
One only needs to define a set of vertices, corresponding to specific objects of the
system, and a rule to connect those vertices. There is indeed a plethora of networks
of the most diverse systems. In an attempt to collect a reasonable sample of the
state-of-the-art, in a tour de force, together with some collaborators, I co-authored
an extensive paper dedicated to review networks constructed from real data [22]. To
illustrate the empirical modeling, in the following sections some examples of empir-
ical networks are presented, separated in broad categories according to the general
method adopted to construct them [22]. This categorization is for pedagogical rea-
sons and certainly incomplete. The original datasets used in this thesis are described
separately in §3.1.

Proximity

The proximity method is based on the idea of connecting objects that are spatially
or temporally close. A typical example is the spatial network formed by connecting
the center of regions defined by a Voronoi tessellation or connecting overlapping
crossing points of a Delaunay triangulation [23], the first method being extensively
used by network practitioners to create geographical networks. A more abstract
proximity network is obtained by connecting subsequent words (the vertices) in a
text [24], or subsequent notes (the vertices) in a melody [8]. In this category one can
also include situations where two individuals are in contact during a certain period,
as the case of sexual contacts [25].

Coexistence

The coexistence method is performed by connecting a group of objects that shares a
common existence. This method generates a bi-partite network because the object
is represented by one type of vertex while the “common existence” is regarded as
another type of vertex. The original bipartite network can be converted into a
unipartite structure by simply connecting objects that share the common place, or
vice-versa. The bipartite representation is more informative but at the same time
more difficult to analyze. This method has been extensively adopted by the network
science community, for example, to form networks of individuals (vertex type A)
connected because they co-authored a paper (vertex type B) [26], or because they
shared the same ward (vertex type B) in a hospital [27].
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Communication

Networks created by using this methodology are also very common in the literature.
The idea is straightforward, simply connect two individuals or devices, if there is
a communication channel between them. Popular case studies are based in mobile
phone calls [28] or email exchange [29]. In those systems, the mobile phone or the
email owner defines a vertex, and the edge is established if one individual called or
emailed another one. These networks typically contain the number of calls (emails)
between the same pair of individuals as weights. Recently, phone calls and emails
have been used in the context of temporal networks (see §2.2.2 - Temporal) because
the time-stamps of the calls(emails) are commonly available in the datasets.

Confluence

The confluence method resembles the proximity method in some aspects. In this
case, vertices are defined by the crossing of different pathways such that the pathways
define the edges and the crossing points define the vertices of the network. Road
[30] and digital integrated circuit [31] networks are natural examples, where the
intersection of two or more roads, streets, or electronic circuits (the edges) define a
crossing point and thus a vertex.

Correlation

This method is more unconventional and is based on representing a time-series
(see §4.3 for a definition of time-series) by vertices and connecting these vertices
according to the correlation between the respective series. The mechanism has
been used in fields where time-series are popular and dataset abundant, as financial
[32] and climate [33] systems. A general method to construct networks from time-
series, including a review of the literature, is presented in ref. [34]. This method
captures density variations in the phase-space of the underlying dynamical system
into network structures [34].

Reference

In the reference network model, objects or individuals are connected if they refer to
each other. These networks are especially important to understand how ideas and
influence spread (or is created) in some environments, as in science or the virtual
world. A classical example is the citation networks, where new articles refer to pub-
lished articles, and consequently, create directed edges between the corresponding
vertices [35]. Another example is the world wide web, where websites refer to each
other through links [36].
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2.2.2 Theoretical

In order to understand how the empirical structures arise and to reproduce them,
it is a common practice to create a minimalistic model containing the essential
ingredients to obtain those structures. Theoretical network models are generally
stochastic processes aimed to reproduce certain structures of interest, not necessarily
observed in empirical networks. As part of the cycle of science, many times the
models are validated empirically by comparing with the structure of real networks
[37]. As with empirical networks, there is a full course menu of theoretical network
models, for some important models see ref. [16]. In the following sections, however,
only some relevant methods are reviewed.

Random

Most theoretical network models are indeed random and created by a stochastic pro-
cess. Nevertheless, one usually refer to the random network as the network formed
by connecting pairs of vertices with a uniform probability, or as in Solomonoff and
Rapoport original words [38]:

“Consider an aggregate of points, from each of which issues some number of
outwardly directed lines (axones). Each axone terminates upon some point
of the aggregate, and the probability that an axone from one point terminates
on another point is the same for every pair of points in the aggregate. The
resulting configuration constitutes a random net.”

This network model popularized after the formal proposal and subsequent study
of random graphs by Erdős and Rényi [39] among others [13]. To distinguish this
uniform probability model to other random models, many researchers refer to this
protocol as the Erdős-Rényi (or ER) model. The beauty of this model is its simplic-
ity, it only requests the number of vertices and a probability defining how likely two
of the vertices are connected. One of its important characteristics is the fact that
the vertices are, on average, connected to the same number of other vertices. The
dark side is that empirical structures simply do not follow these random structures
and in practice the random assumption is used only as a null model (see bellow
about null models).

Preferential attachment

The history of preferential attachment (also know as cumulative advantage or richer-
get-richer paradigm) models is relatively old; the first formal study dates back to
G Udny Yule who created a process aimed to explain the distribution of number of
species per genus of flowering plants [40]. This is quite extensive and difficult paper
to read; a more readable general derivation of a preferential attachment model is
proposed by Herbert A Simon to explain power-law distributions in diverse systems,



12 Basics of networks

e.g. the city-population, frequency of words in a book, income [41]. These models,
nonetheless, are general mechanisms not directly related to networks. The first
known attempt of a preferential attachment network model is due to Barabási and
Albert (also known as BA network). In 1999, they proposed a model, now known
to be a special case of Simon’s proposal [42], where they not only rediscover the
preferential attachment process but also creates a network structure not accounted
in previous models [15]. This seminal paper marks the breakthrough of modern
network science.

Their mechanism is relatively simple, intuitive, and creates networks with a pe-
culiar property where the distribution of edges per vertex obeys a power-law distri-
bution, i.e. there is no characteristic scale as in the random model. In their original
publication [15], the network growth is proposed in the following way:

“ ... starting with a small number (m0) of vertices, at every time step we add
a new vertex with m(≤ m0) edges that link the new vertex to m different ver-
tices already present in the system. To incorporate preferential attachment,
we assume that the probability pi that a new vertex will be connected to ver-
tex i depends on the connectivity ki of that vertex, so that pi(ki) = ki/

∑

j kj.”

Connectivity here is the number of edges connected to a vertex (see more about
connectivity in §4.1). One inconvenient of this model is that older vertices are more
likely to have more edges, which might not be the case in some networks.

Dynamic

Networks that change the structure over time are called dynamic networks. Such
networks have been studied in the context of spread of diseases and opinions [43, 44],
and game theory [45]. One example is the model proposed by Volz and Meyers where
the vertices are initially randomly connected and over time, they change partners
with a constant probability such that the number of edges (and vertices) are main-
tained [43]. Within this class, there is also the so-called adaptive networks where
the network topology depends on the dynamics on the vertices and a feedback of
the new network structure leads to new dynamical states [44]. A beautiful biological
example is the vessels (the network) controlling the blood flow in the body (the
dynamics); when there is some restriction of blood supply (ischemia), new arteries
are formed to improve the local flow, which implies in a new network structure [46].
An illustrative theoretical example is the study of epidemics affecting the network
structure in the model by Gross and co-authors. Starting with a random network,
a susceptible individual breaks an edge with infected vertices (with a certain prob-
ability) and then randomly rewire to another susceptible [47]. Dynamic networks
are rather unexplored field, one potential application is to use them to model the
influence of human behavior on the spread of diseases [48], and human reaction to
other critical events as traffic jams or cascade failures.
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Temporal

A temporal network is also a dynamic network but with a different characteristic; the
edges and vertices can be in active or inactive states, which means that the number
of edges and vertices available vary throughout time. In paper IV [49], a random
temporal network is proposed where vertices are assumed to be constantly available
but the edges appear only at certain instants in time, otherwise, they are idle and
cannot be used. One procedure to create this temporal network is to initially define
a rate of activity, or in other words, a probability pi for each vertex i to get an active
stub. Afterwards, following the set of rules bellow during a desired time interval,
one obtains a network structure.

For each time step:

1. For all vertices: with probability pi, activate a stub of vertex i

2. Collect all active stubs in a box and randomly connect pairs of vertices
in this box
⇒ If one stub is left alone, keep it for the next time step
⇒ This procedure generates an instantaneous network at this time step

3. Inactivate all the edges and return to 1) for the next time step

This mechanism is very general and the choice of pi defines the structure of the
network in terms of the number of edges per vertex (or degree distribution, see §4.1).
If pi = stubsi/∆T (where stubsi is the number of contacts – or degree §4.1 – vertex
i has during an interval ∆T ), or in other words, given a distribution of number of
edges per vertex, one can create a simple temporal network by distributing these
edges uniformly in time.

Null networks

Network practitioners usually compare measured structures with null models to as-
sess if a certain structure is representative or could be simply expected by chance.
The concept of null models come from hypothesis testing in statistics [50] and was
originally coined by Ronald Fischer in 1935 [51]. The null hypothesis, usually a de-
fault position assumed to be true, is challenged against a new hypothesis based on
empirical evidences; if the difference between the hypotheses are statistical signifi-
cant (typically, if the new hypothesis is expected to be observed more than 5% of the
time), one rejects the null hypothesis, otherwise, no conclusion is made. An illustra-
tive simple example is to compare the average score µ of pupils in two schools, the
null hypothesis H0 is that they are the same (H0 : µ1 = µ2) and the new hypothesis
may be that one is larger than the other (H1 : µ1 > µ2).

This formal analysis has been used to identify overrepresentation of motifs in
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biological circuits [52], but in practice, has not been extensively adopted by the net-
work science community in physics, computer science, and engineering. The typical
approach (the same followed in this thesis) is to simply compare the first and second
moments of empirical network quantities with null networks, and discuss the differ-
ences. For practical purposes, a gentle definition of a null model is given by Gotelli
and Graves [53]:

“A null model is a pattern-generating model that is based on randomization
of . . . data or random sampling from a known or specified distribution.
The null model is designed with respect to some . . . process of interest.
Certain elements of the data are held constant, and others are allowed to
vary stochastically to create new assemblage patterns. The randomization
is designed to produce a pattern that would be expected in the absence of a
particular . . . mechanism.”

The choice of the random network model depends in which structure one wants
to study. At the same time that one model is adequate to study, for example, the
pattern of number of edges per vertex, other models are more appropriate to analyze
the existence of a group of highly connected vertices. The choice of a null model is
indeed fundamental to properly assess the significance of observable structures. It
is still unanswered, for instance, the question of which are the proper null models
for studying temporal networks.

The previous theoretical models presented in this thesis can be certainly used
as null models. In the early years of network science, a common practice was to
compare the empirical network structure with the random network (see above the
definition). This is an adequate null hypothesis if one wants to show that the vertices
do not have a characteristic number of edges. Nevertheless, it is known nowadays
that the number of edges per vertex constrains the connectivity of vertices and thus
creates correlations in the network structure. The current approach is therefore to
reshuffle the edges maintaining the number of stubs per vertex fixed. One way to
perform this efficiently is to select two pairs of vertices and swap the reciprocal pairs,
repeating the procedure 4 times the number of edges in the network [54]. A similar
procedure can be performed to obtain a null model for temporal networks; two
edges are selected at random and their respective time stamps swapped accordingly
[55, 49].

Other models

It is important to cite some other simple network models widely used not only
in network science but in other areas of science. The following models are not
random but follow deterministic rules. The most popular perhaps is the lattice
structure. Lattice network structures are usually characterized by a high degree of
regularity of the connections and are found for example in crystal structures [56],
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hyperbolic structures [57] or when the space is discretized into grids [18]. Another
popular structure is the fully connected network, also called panmixing or well-mixed
assumption in some contexts as in epidemiology [58, 59, 60]; in this case all vertices
are connected to all other vertices. In both cases, the network structure is relatively
trivial but still, these network models are widely used since they are relatively simpler
to work analytically in comparison to the previous random models. As such, they
are frequently used as a first attempt to include network structure in a mathematical
model.





Chapter 3

Experimental network science

Network science is generally seen as a theoretical discipline although often relies on
empirical datasets. Independently of labels, collection of empirical data requires an
experimental procedure and consequently, brings a plethora of new challenges and
limitations that many times some individuals are not aware of. Since this thesis
is based on the study of original empirical networks, it is reasonable to dedicate
a chapter to shortly discuss the data collection procedures and limitations of the
studied datasets. Not going deeply in the subject, a short essay speculating about
a potential experimental network science is presented.

3.1 Data collection

The collection of network data follows different protocols depending on the source of
data and goal of the project. Biological data usually come from databases which are
voluntarily updated with the outcome of individual (many times, at a small scale)
experiments, for instance, the MIPS database for protein-protein interaction [61] or
the KEGG database for molecular interaction and reaction networks [62]. On the
other hand, in social sciences, interviews or questionnaires are performed in selected
samples of the population [63, 64]. Many data sets used in network science are
acquired through observational studies, sometimes called natural experiments. In
those cases, data are collected during a specific event where the researcher usually
has no control of the variables. This is especially common in large scale social,
economic, technological, ecological and epidemiologic problems. In practical terms,
the network variables of a system (e.g. the pairs of connected vertices) are simply
recorded during the event of interest, for example, the structure of contact pairs
can be collected during a disease outbreak, and for comparison, under a disease-free
state.

Information acquired by observing a representative subset of a population at
a defined time is called cross-sectional data. In contrast, case-control studies are
concerned about studying a group of individuals with a specific characteristic. This
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last category is relatively common in network research. Both methodologies give rise
to the concept of static network since usually one wants to learn about the network
structure irrespectively of the order of the contacts. Longitudinal studies, however,
consists on repeated observations of the same subjects (or objects) over periods
of time. This type of research has increased in recent years and is connected to
temporal networks. In this case, it is possible, for instance, to record the number of
edges of a vertex over time. Another form of longitudinal study is the cohort study.
A cohort is a group of individuals sharing a common characteristic or experience
within a period of time.

To provide simple practical examples of the data collection process, the datasets
discussed in this thesis are shortly described in the following sections together with
the methodology adopted to extract network information from each of them.

Airports and flights

Domestic and international flights are regulated by government agencies that usually
keep track of the regular flights within their jurisdiction. In case of Brazil, this
information is online and publicly available at an annual basis since 1995. The
files are in .pdf (www.adobe.com) and .doc (www.microsoft.com) formats. The
files consist of lists containing the routes between origin and destination airports,
together with the number of flights, passengers, cargo and post carried over the
year. Since the number of flights and airports are relatively small (Table 3.1), the
files were converted to plain text and edited by hand, converting airport names to a
numerical vertex identity. Different airports serving the same location (Metropolitan
area) are merged into one vertex. An edge was defined by connecting the vertices
representing the origin and destination airport, and the different quantities mapped
as edge-weights.

Consumer complaints

The Brazilian Department of Justice collects and maintains a list of resolved and
unresolved complaints received by companies during the previous year. At least for
the 2009 dataset, the system covered only about 59.2% of the country population.
The list is available as a .pdf file containing the name of the company and the re-
spective complaints, organized in number of events and category of complaint. This
file was converted to plain text and the text was automatically parsed by a code
written using Python programming language (www.python.org). A bipartite net-
work was formed by connecting companies (vertex type A) that received a certain
complaint (vertex type B) (Table 3.1). Most companies had a unique code num-
ber that could be used to guarantee the single identity. The original identity was
converted to a numerical vertex identity. The same companies reported in different
states are grouped as a single vertex. The complaints were in small number and
could be visually inspected to remove de-duplications.
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Type No. Vertices No. Edges Time / Resolution

Airports and flights ∼ 200 ∼ 1,000 12 years / 1 year
Consumer complaints 8,979 17,979 1 year / 1 year

Sexual contacts 16,730 50,185 2,232 days / 1 day

Table 3.1: Magnitude of the original networks presented in this thesis.

Sexual contacts

Using a website about commercial sex and sexuality, information about sexual en-
counters with escorts (sex-sellers) was collected. The website is a forum and as
such, escorts are organized in threads created by the forum members (or sex-buyers)
reviewing their encounters with a specific escort. New encounters with a previous
reviewed escort are reported in an existing thread about that same escort. The
webpages were downloaded and parsed using Python. Only anonymous information
is used. A bipartite network is straightforwardly obtained by connecting a mem-
ber who had a sexual encounter with an escort (Table 3.1). Information from the
reviews, e.g. type of sex and date, is mapped into vertices and edges accordingly.
To maintain the reliability of the Internet forum, the moderators claim to have a
constant and intensive screening policy to remove fake reviews, and de-duplication
of members and escorts.

3.2 Sampling and accuracy

Every empirical study relies on sampling a real system. One natural consequence
is that measured properties and conclusions are (or at least, should be) limited to
the observed sample. This apparent trivial statement is often neglected and many
times, one observation is (incorrectly) taken as a “proof” of a certain phenomenaa.
Empirical evidence validates a theory, but new evidences can either trash out or
strengthen the same theory. Therefore, caution is mandatory when extending con-
clusions from a specific sample to the whole population. In other words, having
studied the network of flights in Brazil does not necessarily mean, a priori, that the
same structures are observable in the US flight-network.

The sampling procedure itself can be tricky. Sampling edges (by selecting random
edges and storing all vertices connected to them) or vertices (by selecting all edges
connected to randomly chosen vertices) can lead to different network structures [66].
In special, Stumpf and collaborators discussed the fact that samples of scale-free
networks (sampling by choosing random vertices and the respective edges) are not

aHaving a physicist background, I see proof as a rather strong statement (popular during my
mathematical analysis courses) and as such, frequently misused in scientific contexts, see ref. [65]
for a pedagogical explanation.
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necessarily scale-free and this effect is more pronounced for larger scaling exponents
[67]. Another common sampling method (e.g. to crawl the world wide web or to
track chains of tested positive infected individuals) is the snowball sampling, in this
case, one starts in a seed vertex and goes collecting all contacts of the seed; the
contacts become the new seeds and the process is repeated until a certain number
of vertices or edges are collected. This sampling is highly biased because individuals
with many contacts tend to be selected more often and hard-to-reach groups tend to
be underrepresented [66, 68]. A method to overcome this bias, widely used in social
sciences, is the respondent-driven sampling, which combines the snowball sampling
with a weighting function to compensate for the non-random selection of subjects
(or objects) [68]. Another approach to assess sampling limitations is to go into the
other direction and try to predict missing edges and vertices in the already collected
sample. The prediction of missing edges from a given empirical network is indeed an
open research question. Some earlier ideas are based on comparing the (intrinsic or
topological) similarity of vertices and filling in edges between similar vertices [69].
Another recent approach consists in generating a set of hierarchical random graphs
that fits an empirical network, and connect the pairs of vertices that have an average
high probability of being connected in this hierarchical structures but are originally
not connected in the empirical network [70].

3.3 Experiments

Observational studies draw inferences about a system and frequently are the first
step in the cycle of scientific analysis. The next one is the theoretical formulation,
i.e. an hypothesis to explain the observation, and a model for prediction based on the
hypothesis, followed by experimental validation [4]. The current network research is
mostly based in the two initial steps, observation and theoretical analysis, but little
in the experimental validation.

Many network studies rely on comparing the network of a particular system con-
figuration with null network models for the same system, and then estimate how
much this configuration affects the network structure. Networks obtained during
critical or unlikely events are especially of interest when available. Another method
is to split the dataset into two parts, one for modeling and prediction, and another
for model validation. Computer simulations can be also used to perform experi-
ments (usually called in silico experiments). A simple in silico network experiment,
for instance, is to remove vertices with some desired topological characteristics and
then investigate the consequences for simulated disease spread in this scenario in
comparison to the original network (i.e. without removal of vertices). Strictly speak-
ing, computer experiments are indeed variations of the parameters of the model, or
simply different models for different scenarios. This abuse of the concept of experi-
mentation is completely acceptable but sometimes lead researchers to conclude that
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computer experiments are equivalent to real experiments.
Some people can argue that this experimental gap is due to the difficulty to

arrange large-scale complex network experiments, mainly because of cost, logistic
limitations, ethical issues [71, 72], control of variables, among other restrictions
[73]. This is actually true in many aspects; most people would agree, for instance,
that infecting a student with a virus to track its spread within a school would be
significantly unethical. Nevertheless, besides the studies in biology, some interesting
social experiments have been proposed in the literature, for example, the classic
Milgram experiment, where random chosen individuals in USA are requested to send
letters to a common destinatary (whose name and other info are known), solely by
passing the letters to acquaintances that supposedly are more likely to know the
target than themselves [74]. A similar experiment, at a global scale, was later
performed by using emails rather than regular post with similar results, i.e. about
six steps – intermediate contacts – separate any participant [75]. Yet Iribarrena
and Moro performed another experiment to study the effect of human activity in
the diffusion of information. Subscribers of an online newsletter were rewarded for
recommending it; the spread of the offering email was tracked at every step and a
chain of contacts were recorded [76]. These few examples illustrate the potential of
experimental research.

The availability of mobile sensors has also motivated several observational re-
search about mobility and contact patterns in relatively small environments, and
seem to be a promising intermediate step towards experimental setups [77, 78, 79].
However, the increasing coverage of smartphones with their extensive range of ap-
plets has not been exploited [80]. To go further on experimental network science,
another reasonable idea, not yet fully exploited too, is to use web 2.0 applications
[81, 82]. There is a multitude of social networks and virtual environments where
people constantly interact and are eager to participate in games and other collabo-
rative activities. Although the “virtual life” does not cover all the scope of network
science, it might provide fruitful insights about the interplay of network structure
and dynamical processes on the network.





Chapter 4

Network structure

In the previous chapters, general aspects of how to build networks following dif-
ferent mechanisms, and some limitations of networks to describe real systems were
discussed. In this chapter, the focus is in methods to quantify structures of networks.
Quantifying structures is the first step towards detecting patterns in the network.
Once a method to measure some network structure is established, the empirical
network can be compared against null models in an attempt to identify non-trivial
correlations in the network structure.

Network measures can be roughly divided into at least two categories, those
intended to measure static structures and those aimed to characterize the temporal
profile of the network. Static measures are rather developed nowadays but still
constitute the main interest of most of the network science community. On the other
hand, though some methods for dynamic networks have been proposed throughout
the years, only recently this branch of network science started to get more attention.
In the following sections, some relevant methods and measures from the literature
are reviewed, and to complement the chapter, there is a description of a multivariate
method applied to the analysis of static network structure.

4.1 Static

Static network measures have been mainstreaming network research since the early
days [16]. After all, the network itself is a static structure and as such has to be
characterized. To obtain a static network, one has to define a time interval and
collect all edges observable within this interval. When multiple time intervals are
defined and the respective networks recorded, one refers to each sample as snapshots
of the whole network.
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Paths and Distances

A path σ′
ij of length σ

′d
ij , connecting vertices i and j, is defined as a sequence S =

{i, . . . , m,m+1, . . . , j} of σ′
ij − 1 vertices from the set V , such that there is an edge

connecting vertex m with vertex m+ 1 in the sequence.

The shortest path σij between vertices i and j is defined as the geodesic and sets
the topological distance (number of edges) between two vertices. The normalized
average shortest-path σ over all possible vertices pairs is given in eqn. 4.1. The
diameter D is defined as the largest geodesic in the network, which is the minimum
distance necessary to move between any pair of vertices in the entire network.

σ ≡
1

N(N − 1)

∑

i 6=j

σd
ij (4.1)

By definition, any communication process (e.g. a phone call, a walker, an infec-
tion) occurring between one vertex and another has to pass through a sequence of
intermediate vertices and edges. In this aspect, the shortest path corresponds to the
optimal route in terms of shortest distance between any two vertices. Consequently,
the diameter characterizes which is the minimum number of hops one has to take
to go from any vertex in the network to any other.

Connected Components

If there is a path between vertices i and j, it means that j is reachable from i.
If a sub-graph of an undirected network contains vertices such that any two of
them are reachable from each other, then, the sub-graph is named a connected
component. The size of a connected component is given by its number of vertices
Ncc. A giant component exists when a connected component is much larger than
the other connected components in the network. A related concept is the strongly
connected component, which means that there is always a path between any two
vertices in the respective sub-graph of a directed network.

Betweenness

One can measure the centrality of a vertex h by counting the number of shortest
paths passing through this single vertex, i.e. |σij(h)|. The potential of vertex h to
intermediate information passing between vertices i and j can be defined as the
probability that h falls on a randomly selected geodesic between these vertices.
Therefore, considering all pairs of vertices, one gets eqn. 4.2 [83].

B′(h) ≡
N
∑

i,j:i<j and i 6=j 6=h

|σij(h)|

|σij|
(4.2)
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The measure was first proposed by Freeman in the context of social networks
and is frequently referred to as Freeman betweenness centrality to distinguish among
other centrality metrics [83]. This measure can be further normalized by the total
number of possible paths passing through h between any two vertices in the network
(eqn. 4.3).

B(h) =
B′(h)

(N − 1)(N − 2)
(4.3)

A related concept to the Freeman betweenness is the edge-betweenness. In that
case, one counts the geodesics passing through an edge rather than through a vertex
[84].

Degree and Strength

The neighbors ni of a vertex i are those vertices at distance one from i. The number
of edges between neighbors of i is given by ei. Higher order neighborhoods can be
defined and are frequently called hierarchies [85]. The degree ki of a vertex is a
measure of centrality and is given by its number of neighbors (eqn. 4.4), where aij is
the respective entry in the adjacency matrix (see §2.1.2). Vertices with degree much
higher than the average network degree are called hubs.

ki ≡
N
∑

i,j

aij (4.4)

In a directed network, in- (kin
i ) and out-degrees (kout

i ) are defined, respectively,
to edges pointing inwards and outwards to the vertex. In weighted networks, one
counts all weights wij of the edges connecting to vertex i to obtain its strength si
(eqn. 4.5).

si ≡
N
∑

i,j

aijwij (4.5)

k-cores

A connected component containing vertices with at least degree k is called k-core of a
network. A simple procedure to obtain this sub-network is to start with the original
network and iteratively remove all vertices of degree less than k. The resulting
sub-network(s) has(have) all vertices with degree higher or equal k and provides a
measure of network cohesion [86].
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Figure 4.1: Illustration of the shortest cycles in simple and bipartite networks.

Clustering and cycles

The term cluster is used to refer to a group of vertices more connected between them-
selves than with vertices outside the group. There are different ways of measuring
clustering, the choice depends on which type of clustering one wants to quantify.
The most popular methods include counting the number of short cycles or detecting
the community structure of a network.

Considering only the closest neighbors of a vertex, the local clustering coefficient
cci (or transitivity in social networks) can be defined by counting the proportion
of actual edges between common neighbors of a vertex i relative to the number of
possible edges between them (eqn. 4.6).

cci ≡
2ei

ni(ni − 1)
(4.6)

Another common method is to count the number of cycles. A d-cycle is defined
as a closed path σii of size σd

ii, that starts and ends at the same vertex but does
not pass more than once through the same intermediate vertices. The smallest
informative cycle depends on the type of network. A cycle of size 2 does not bring
more information than the edge itself. Cycles of size 3, in simple networks, quantify
the connectivity between common neighbors of a vertex. In bipartite networks, in
turn, the smallest cycle has size 4 and shows how likely two vertices of one type have
two vertices of another type in common (Fig. 4.1).

Communities

Communities, modules, or clustersa are different names typically used to describe the
same property, a group of vertices sharing some common characteristics or playing
similar roles in the network [87]. There are several ways of defining and detecting
communities using networks. The interested reader should look at ref. [88] for a
thorough review of the state-of-the-art community detection algorithms and meth-
ods.

aSometimes, the word cluster is avoided in the context of communities, where the word modules
are preferred.
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The most näıve method to group similar vertices is to simply look on the dataset
and separate vertices according to intrinsic properties (when available) of them,
e.g. male and female vertices. Nevertheless, one typically wants to automatically
detect hidden communities (unknown from visual data inspection) by using network
structure. One idea is to calculate the structural similarity between vertices, and
afterwards, organize them hierarchically according to the level of similarity. Such
approach is used, for instance, in paper III and briefly described in §4.2.

Figure 4.2: Pictorial network with three communities containing 6 (right), 5 (left), and
5 (bottom) vertices. Each pair of communities is connected by one edge.

The majority of methods, however, refers to communities as groups of vertices
more interconnected between themselves than with other vertices (Fig. 4.2). This
definition is as lousy as the definition of hubs, because there is no universally ac-
cepted way (threshold or other quantity) to define the border distinguishing between
communities. One common method, however, to quantify the over-connectivity of
vertices is through modularity, i.e. by comparing the density of edges in a subnet of
the sampled network, with a subnet (with the same set of vertices) where the edges
are randomly connected (null network). If a null network is defined by randomizing
the edges but maintaining the vertex-degree fixed, the modularity is written as eqn.
4.7, where gi corresponds to the group of i and δ(gi, gj) is the Kronecker delta. The
goal then is to fragment the network into subnets such that Q is maximized. One
such method, important for historical reasons, is to split the network by iteratively
removing edges with high edge-betweenness [84].

Q =
1

2E

∑

ij

(

aij −
kikj
2E

)

δ(gi, gj) (4.7)

A more efficient method (at least on benchmark networks [89]) is to let a random
walker explores the network and then measure the probability of jumps between



28 Network structure

vertices. In principle, highly interconnected vertices tend to trap the walker such
that it stays longer within that group (community) rather than moving between less
connected vertices [90].

Assortativity

Whether similar vertices are connected or not is a fundamental question. Given
any vertex attribute [16], one can measure the level of assortativity (likeness) of
the network vertices. In networks, a feature of interest is the degree. If vertices
of similar degree are preferably connected between themselves, the network is said
to be assortative. Conversely, if the connections are preferably between vertices
of opposite degrees, the network is disassortative. This network property can be
quantified by measuring the coefficient of assortativity r (eqn. 4.8), which ranges
between −1 (disassortative) and +1 (assortative). Note that δij is the Kronecker
delta.

r ≡

∑

ij(aij − kikj/2E)kikj
∑

ij(kiδij − kikj/2E)kikj
(4.8)

It is also possible to calculate the correlation between the degrees of the vertices
on both sides of an edge. For bipartite networks with vertices of types A and B, this
correlation is given by eqn. 4.9. The averages in this equation are taken by summing
over the different edges.

r ≡
〈kAkB〉 − 〈kA〉〈kB〉

√

〈k2
A〉 − 〈kA〉2

√

〈k2
B〉 − 〈kB〉2

(4.9)

Reciprocity

In directed networks, a vertex i pointing to a vertex j does not imply that the reverse
is also true. This reciprocity is important to measure the symmetry of the relations.
The symmetry of a single pair of vertices can be measured by a simple binary yes or
no, but for the entire network, the normalized reciprocity (in respect to a random
network) is given by eqn. 4.10 [91].

R ≡

∑N

i 6=j(aij − a)(aji − a)
∑N

i 6=j(aij − a)2
where: a ≡

∑N

i 6=j aij

N(N − 1)
(4.10)

Histograms

A histogram is a function of the number of occurrences of some quantity x (e.g.
the degree) within a range of values. If the histogram is normalized by the size of
the sample (total number of occurrences), then it transforms into the frequency or
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probability distribution p(x). The shape and exponents of this distribution permit
to identify universality classes of networks. Random networks, for instance, have
Poissonian degree distributions (eqn. 4.11a) in the limit of N ≫ E, while the
generative preferential attachment model results in networks with power-law degree
distributions (eqn. 4.11b)b.

p(k) =
〈k〉k

k!
e−〈k〉 (a) p(k) ∝ k−α (b) (4.11)

Therefore, rather than looking to summary statistics (e.g. mean and variance) of
some quantity, plotting the histograms can be quite informative to identify patterns
in the data. Since noisy distributions are specially common in small networks, it
turns to be difficult to infer the functional form of the distribution even by using
advanced statistical methods [92]. A common approach (by physicists) is to simply
plot the distribution of the desired measure and fit the curve using a least-square
method [50]. To reduce the noise before the fitting, typically the cumulative distri-
bution, P (x∗ ≥ x) =

∑xmax

x=x∗ p(x) is considered. Another method sometimes adopted
is to use logarithmic data binning; in this case, the histogram is binned on increasing
powers of 2 such that the binned values appear equally spaced in a logarithmic plot
(convenient to visualize power-law distributions).

Entropy

There are several statistics to reduce the information of the distribution function into
a single number; the most commons are the first and second moments, known as the
mean and variance. Another statistic is the entropy of the distribution (eqn. 4.12).
The entropy is a measure of disorder and it has been adopted in different contexts
(see e.g. [93]). Here, entropy is used as a simple measure of heterogeneity of a degree
distribution. In the limit of no heterogeneity, i.e. if the degree distribution has only
one value, p(x = x1) = 1 and p(x 6= x1) = 0, then Sdegree = 0. On the other hand,
S increases for increasing heterogeneity of the distribution.

Sdegree ≡ −
kmax
∑

k=1

pdegree(k) logǫ pdegree(k) (4.12)

Minimum spanning tree

A tree is a connected graph with no cycles in the structure. The number of edges
in the tree is thus equal to the number of vertices minus one. A star-like and line
graphs are limiting cases of tree structures. A spanning tree is a tree containing
all vertices of a graph and some of its vertices, therefore, any connected network,

bAlthough k is a discrete quantity, the approximation of k to a continuous variable is acceptable
in this context.
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weighted or not, can have multiple spanning trees. The minimum spanning tree
(MST) of a weighted network contains the minimum set of edges necessary to con-
nect all vertices such that the sum of the edge-weights is minimal. There are several
algorithms to extract this tree from a network. A relatively easy to understand is
the solution proposed by Prim [94]:

Start with V (Tree) = {i}, where the vertex i is an arbitrary starting vertex
of the network Γ and E(Tree) = {∅}

1. Until V (Tree) = V (Γ), repeat:

2. Choose an edge (i, j) with minimal weight such that i is in V (Tree)
and j is not
⇒If there are multiple edges with the same weight, pick any

3. Add j to V (Tree), and (i, j) to E(Tree)

This apparent mathematical amusement, the minimum spanning tree, can indeed
be useful in applied network problems. Suppose, for instance, that protesters are
concentrated in one point and they want to take over the central part of a city and
the plan is to have all crossing streets under control at the shortest time. Suppose
also, that each street has a different length and that they can only move in a group,
following the streets (the actual network) at the same speed c. The minimum span-
ning tree therefore provides the minimum total path that the group should follow
to reach all points in the shortest time. Note that there might exist a shortest path
between two crossing points that is not included in the final outcome, but the MST
only takes the global optimal solution.

Summary of paper I

In the early 2000s in Brazil, news about delays and chaos in the domestic
airports were increasingly being reported by the media. After becoming a
network enthusiast, I wondered how much of that was due to the network
of flights and its continuous changes. In the paper entitled “Structural
evolution of the Brazilian airport network”, I construct annual networks of
domestic regular flights between airports in Brazil and study how local and
global structures change during a period of 12 years. I find that, in terms
of network quantities such as degree, strength, and betweenness, vertices
change their relative rank and absolute values considerably throughout the
years. Thus, some airports become more central than others. Surprisingly
though, the degree and betweenness distributions are described by the same

cFor outsiders, this example probably turned to be more like a physicist amusement than a
proper illustration of an application.
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functional form irrespectively of the year, but with different parameter
values. In other words, while local structures change significantly, the
emergent network structure apparently continues to follow the same orga-
nizational principles. At a global scale, an optimization process seems to
take place, with the number of routes (or edges) decreasing while the traffic,
passengers and cargo carried (or weight) more than doubled in the 12-year
period. Profitable routes are maintained in contrast to the less popular ones
that are simply removed.

4.2 Multivariate analysis

To analyze multiple variables simultaneously one uses multivariate methods. These
methods are particularly interesting for network science because, due to construc-
tion, networks naturally have multiple degrees of freedom that can be used as differ-
ent input variables for the analysis. Nevertheless, though popular in different fields,
they have not been applied much to study network structure [95, 96]. In the follow-
ing sections, the concepts of feature vector and vector similarity are presented in the
context of networks, and then, a multivariate method, namely principal component
analysis, is introduced applied to network analysis.

Feature vector

Any object can be described by a vector of features v, i.e. a vector where each
entry contains a value corresponding to a different attribute of the object. In case
of networks, each vector vi corresponds to one vertex i, and these properties can
be either topological quantities as those described in §4.1 (e.g. degree, betweenness)
or intrinsic properties known from the dataset (e.g. the population size or income
per-capita, in case the vertex represents a city).
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Going for the network structure, one simple idea is to use the vertex neighbors
and the respective edge-weights as the features of the vector. Considering the entire
network with N vertices, a vector with N -dimensions is created for each single vertex
i such that each of these dimensions corresponds to one other vertex jd. In other

dNote that according to this general definition, self-loops, i.e. edges connecting the vertex with
itself, are accepted.
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words, each entry j in the vector i corresponds to the edge (i, j); for example, the
network of Fig. 2.4 are represented by a set of vectors in eqn. 4.13:

Vector similarity

Since the network features are mapped into the vector by real numbers, the similarity
of these vectors can be quantified by different methods. When the data are dense
or continuous, a good choice is to simply measure the Euclidian distance between
the two vectors; if the data is linearly correlated, then, the Pearson correlation is
an appropriate choice. A general suitable method for sparse non-linear data is the
cosine similarity. The cosine similarity between vectors vi and vj is given by eqn.
4.14, where | · | is the magnitude of the vector. The cosine similarity captures the
trend and disregards the magnitude of the vectors; as a result, it provides a similarity
scale ranging from −1 (least similar) to 1 (most similar).

cosine similarity =
vi · vj

|vi| |vj|
. (4.14)

Principal component analysis

The vectors can be correlated in this multi-dimensional space. If some dimensions are
correlated, it means that a variation in one dimension is equivalent to a variation in
another dimension. Therefore, if the correlation is strong, only one of the dimensions
suffices to describe the data points, and the other can be discarded without loosing
much information but with the benefit of a simpler representation (the use of less
dimensions).

Figure 4.3: Example of rotation to reduce the dimensionality of data. Due to large
correlation, the initial two-dimensional data points can be fairly explained by using one-
dimensional projection in the principal component 1 (PC1).

The multivariate method principal component analysis (PCA) is a general method
for this type of decorrelation and data reduction [97]. In the PCA, the axes in the
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original N -dimensional space are rotated to point towards the maximum variability
of data. The rotation matrix is the covariance matrix of the different dimensions
and the eigenvalues of this matrix provide a scale of data variability in the direc-
tions corresponding to the eigenvectors (named principal components, PCs) of the
rotation matrixe. Applying this rotation, the original set of points are projected
into the new N -dimensional space (Fig. 4.3). Consequently, PCs corresponding to
small variability (small eigenvalues) and thus, little associated information, can be
discarded without loss of relevant information.

Before performing the PCA, the data points are replaced by their Z-scores such
that all dimensions have zero mean and standard deviation equal to one. By doing
this standardization, the sum of all eigenvalues become equal to the number of
points, which corresponds to maximum variability. This procedure highlights the
variability contribution of the new axes (PCs) after performing the rotation, where
all eigenvalues larger than one provide more information than any of the original
axes. The contribution of each eigenvalue in the total variability is obtained by
dividing its value by the sum of all eigenvalues. The optimal number of PCs is
chosen by taking, for instance, the eigenvalues explaining a certain percentage of
the variability, say 95%, and discarding the rest. Another common methodology is
to simply take the two highest eigenvalues and project the data into their respective
PCs.

Summary of paper II

I frequently get this feeling that I am the only person unsatisfied with
a certain company, since others are enthusiastically typing their credit
card pin-codes around. Rather than complaining, I used to simply try the
company next door, but I quickly realized that it does not help much on
many occasions. In “The network organisation of consumer complaints” I
collect data about registered consumer complaints about Brazilian companies
and develop, together with Petter, a method to detect relations between these
companies. We extend the idea of feature vectors presented in the thesis
and apply to bipartite networks. Since a vertex of one type only connects
to vertices of another type, the vectors represent vertices of type A while
the dimensions represent the vertices of the opposite type. With our data,
each company vertex has a feature vector in which we associate a category
of complaint to each dimension. According to the network terminology,
we use information about contacts between the vertex (company) and its
first neighborhood (the complaints). Afterwards, we measure the vector
similarity between pairs of vertices (i.e. pairs of companies)

eThis method is also known as singular value decomposition.
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to obtain a new fully connected network where the edge-weights correspond
to the similarity level between the companies. Then, we extract the
minimum spanning tree of the new network and compare (with meta-data
from the dataset) if same sector companies are clustered together (in
branches of the tree). Since in this multidimensional space there are lots of
correlations, we perform the principal component analysis to remove them
and are able to identify that the best clustering of same sector companies
is obtained by using only 27 of the principal components (out of the initial
8827 dimensions). Furthermore, analyzing the bipartite network structure,
we identify that companies indeed fix the complaints. The fraction of
resolved complaints is independent but the number of complaints increases
sub-linearly with the company’s market value. Another interesting finding
is that the complaint categories appear to be organized in a hierarchical
way. Companies only get complaints of lower degree if they have already
got complaints of higher degree, in other words, when the company receives
few complaints, these complaints are common across the system (i.e.
received by other companies, and thus classified as high-degree complaints).
Nonetheless, companies with large number of complaints necessarily also
get those unusual (specific) complaints which are shared by few companies.

4.3 Dynamic

Research on networks has been devoted to quantify the static structure. Measuring
the dynamic changes is overall a relatively recent subject and consequently still lacks
an abundant menu of metrics. The traditional methodology has been to use the
static measures discussed in §4.1 to characterize the structures at different instants
in time and then analyze their temporal evolution [98]. Recently though, some
researchers are redefining static measures taking into account the temporal order of
the connections such that the edge exists only at certain moments in time and is
absent otherwise [99, 100, 101, 102]. In this section, some methods to characterize
the degree evolution are reviewed.

Time series

To study discrete time dependent data, one has to use a time series. A time series
g(t) is a sequence of values at displaced at regular intervals in time (where at ∈ R

and t is a non-negative integer). These values can be related to any structural or
non-structural network quantities. The time series formalism provides a way to
organize and analyze how such quantities change in time.
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Fourier analysis

The analysis of a time series can reveal several regularities on the data. One such
pattern is the cyclic nature of several phenomena, for example, due to daily (circa-
dian) or weekly rhythms. Using the time series formality, temporal cycles are regular
repetitions of values in the sequence at such that at = at+∆T , where ∆T is a fixed
interval of time, e.g. seven days.

A classic method to identify cycles is by using Fourier analysis. Fourier analysis
is based in the Fourier transform (eqn. 4.15) which is a method to convert a function
in the time (or space) domain to frequency or other reciprocal space. Performing
a Fourier analysis means that one assumes that the original time series is periodic
and can be approximated by a sum of sines of different frequencies and amplitudes f.
Therefore, the Fourier transform provides the spectrum of frequencies corresponding
to regular oscillations in the time series. This method is mostly adequate to identify
a priori sinusoidal signals, but more rectilinear shapes are reproduced by using the
fundamental frequency and its high order harmonics. The fundamental frequency
sets the length of the cycle (e.g. seven days) and the higher harmonics the shape of
the cycle (e.g. square-like).

G(f) =
T−1
∑

t=0

g(t) exp

(

−i2π
f

T
t

)

(4.15)

Detrended fluctuation analysis

Correlation functions can be used to detect memory effects in time series. In special,
the autocorrelation measures the similarity of the time series with its own tempo-
ral shifted version. If the autocorrelation function decays exponentially with the
time lag, the series has short-range memory. No memory is characterized by zero
autocorrelation for any time lag and is equivalent to a random walk process. The
more conspicuous scenario happens when the autocorrelation function decays as a
power-law, meaning that the series has long-range correlations (in simple words, it
means that even for a large time-lag, the series has a degree of similarity with the
original series).

One way to measure these correlations is by measuring the self-similarity of the
integrated version of the original signal (with mean zero). Self-similarity means that
the signal seems similar after a re-escaling operation, i.e. the variance grows linearly
with the length of the signal [103, 104]. The most popular and efficient method
to quantify the self-similarity is the detrended fluctuation analysis. In this method,
the original signal is separated into Nmax boxes of size L each, and local trends are

fRoughly speaking, it is an approximation method in the same spirit of expanding any function
in a Taylor series around a point, i.e. one assumes that a function can be approximately described
by a sum of polynomials at that point.
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removed (by subtracting from the signal its nth-order fit, yfit(t)) before the variance
is calculated (eqn. 4.16). The process is repeated for boxes of different sizes and
a line is obtained in a log-log plot of F (L). There is a direct correspondence of
the scaling exponent α with autocorrelation properties, if α = 0.5, there is none
or short-range correlations in the series, while 0.5 < α < 1 indicates long-range
correlations. The DNA sequences [103] and heart beat of health subjects [105] are
classic examples of signals with long-range correlations; recent applications include
observation of long-range correlations in email communication [104].

F (L) =

√

√

√

√

1

Nmax

Nmax
∑

t=1

[y(t)− yfit(t)]2 (4.16)

Preferential attachment

The mechanism of preferential attachment leads to a network with power-law degree
distribution (§2.2.2). One can go into the other direction and, for a given network,
quantify the intensity of the preferential attachment. This can be done by measuring
the probability (at a certain time t) of a vertex with degree ki(t) to get a new edge
at the time t+1 [106]. By fitting δ in eqn. 4.17 with maximum-likelihood estimates
for all vertices, one can infer the scaling of the growth, linear (δ = 1), sub- (δ < 1)
or super-linear (δ > 1).

Prob[ki(t+ 1) = ki(t) + 1] =
ki(t)

δ

∑

j kj(t)
δ

(4.17)

According to the Barabási-Albert model, linear preferential attachment creates
networks with scale-free degree distributions with exponent α = 3 in eqn. 4.11b
[15]. Sub-linear preferential attachment, however, results in networks which degree
distributions are better described by stretched exponentials [107], as in eqn. 4.18.

p(k) ∝ exp(−k/k0)
α (4.18)

Summary of paper III

I do like polemics and prostitution is certainly a topic that provokes heated
debates with strong positions on both sides. But rather than taking a judg-
mental attitude, as a physicist, I decided to search for data to understand
a little the dynamics of the activity. I crawled the web and found a forum
where sex-buyers review their encounters with sex-sellers. In the paper
“Information dynamics shape the sexual networks of Internet-mediated
prostitution”, Petter and I asked the help of Fredrik to study the dynamics
of the forum and how it was connected with real-life commercial activity.
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We focus on the section about members who had sexual encounters with
escorts, an expensive form of prostitution. Analyzing the temporal profile
of the reviews, we notice that well graded escorts have a higher tendency
to attract new customers, which in turn, write good reviews if satisfied
with the encounter. Contrary, unsatisfactory encounters are reflected into
bad reviews, which decrease the number of future customers. This feedback
between on and offline activity indicates the importance of the forum for
this type of business. A remarkable finding is that, both escorts and buyers
get into more risky behavior with experience. Although the offer of multiple
risky services benefits the escort by increasing its popularity and grades, it
also brings higher chances of getting an infectious disease. The activity
in the forum follows weekly cycles but exhibits broad distribution of inter-
contact time at a day-level, which means that an encounter may trigger
subsequent encounters with other members. In fact, we measure a linear
preferential attachment for short intervals, while slightly sub-linear scaling
is observed for longer time intervals. By connecting a member reviewing a
certain escort, we naturally obtain a sexual network. Thanks to the popu-
larity of the web site, the network is large with 16,730 vertices and 50,185
contacts. Surprisingly though, this sexual network is connected even though
spanning over 12 cities far apart in Brazil (at least 400 km). Nevertheless,
city boundaries create clustered structures reflected in the large number
of 4-cycle and in the large diameter relative to the respective random
networks. Contacts between cities follow the inverse-square law observed in
trading and communication patterns. Within a city, the number of sellers
scales sub-linearly with city population suggesting that this type of pros-
titution does not benefit as much from an increasing concentration of people.
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Dynamics on networks

In many systems, the network is the actual underlying structure where transmission
processes occur. The network of roads, for instance, defines the possible pathways
for vehicles to move around. An elegant example is the network of neurons in the
brain, where the neuronal cells (neurons) connected by synapses define, respectively,
the vertices and edges of the neuronal network; electric and chemical impulses in
turn travel between cells creating what is usually named consciousness [108]. There
are cases though, that the network structure is defined by the actual dynamical
process, for instance, the propagation of Internet chain letters creates a structure of
letter-senders connected to letter-receivers [109].

In this section, the focus is in the first scenario, i.e. in the impact of underlying
topological structures in dynamical processes taking place on top of, or simply, on
these network structures. Understanding how quantities propagate within a network
is fundamental to create methods to improve (e.g. in marketing) or to reduce (e.g.
in case of disease) the spreading.

5.1 Disease spreading

The spread of infectious diseases (e.g. HIV, Influenza) is a continuous challenge
of public health. A significant large number of people is infected every year irre-
spective of age, sex or income [110]. These infections spread through pathogens
by direct physical contact or close proximity, body fluids, vector organisms, among
other means. To reduce the impact of these diseases on the population, researchers
focus on either improving patient treatment (e.g. developing new medicines) or on
control of epidemicsa (e.g. by vaccination or informational campaigns). However, to
control an epidemic, one has to first understand how these diseases actually spread
throughout the population.

aEpidemics are essentially a regime where a more than usual number of individuals is infected
(where usual depends on the disease and period). This topic is discussed in details in §5.2.
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5.1.1 Homogeneous networks

Mathematical models have been applied in epidemiology as early as the 18th century.
Daniel Bernoulli, a well-known figure for physicists b, proposed an age-dependent
model to study the gain in life-expectancy if small-pox was eliminated as a cause of
death. A readable review of his original article is available in ref. [111]. A particular
class of mathematical models, much used nowadays, are the compartmental models,
which roots date back to the work of Hamer [112] in 1906; he proposed that the
population dynamics of a disease is proportional to the probability of one individual
being infected, the probability of another being susceptible, and the number of
contacts between them per unit time (contact-rate). In a modern formulation, the
idea is to divide the population into compartments containing individuals at different
stages of the infection dynamics and allowing them to move only between some of
the compartments. The basic assumption is that people within a compartment are
well mixed; this means that the population of a compartment can be described by a
density function. Therefore, the chance of a contact between individuals of different
types, i.e. the chance of an infection event, is proportional to the respective density of
infected (I) and susceptible (S) individuals, and happens with a certain probability
ρ [58, 60].

It is a common practice to choose simple disease models with as few compart-
ments as possible but still capturing the main properties one wants to study. The
SI (Susceptible-Infected) model is the simplest, yet is adequate to study the early
phase of an outbreak over shorter time scales than the duration of the disease. This
model also gives an upper bound of the number of reachable individuals, since once
infected the individual continues in this state. The mathematical framework of
compartmental models is general enough to permit more realistic and detailed ex-
tensions, including different stages to mimic specific diseases. A classic and perhaps
the most important example is the Kermack-McKendrick model. In this model, also
known as SIR (Susceptible-Infected-Removed), individuals obey the SI dynamics,
but once in the infected state, they move to a removed or recovered compartment
(with density R) with probability µ, where 1/µ = Tinfection, the period of infection
[113].

dS

dt
= −ρSI

dI

dt
= ρSI − µI

dR

dt
= µI

Since S, I and R represent densities, the sum over all compartments, N =

bHe proposed the now famous Bernoulli’s principle, stating that the pressure of a fluid decreases
with the increase in the speed of a fluid.
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S+I+R, is equal to one. Figure 5.1 shows the evolution of the number of individuals
in each compartment for ρ = 0.01 and µ = 0.1 and initial conditions S(0) = 0.99,
I(0) = 0.01 and R(0) = 0. The density of infected individuals during a period
of time is defined as the prevalence of the infection. The number of new cases of
infection, on the other hand, is called incidence.

Figure 5.1: Evolution of the density of individuals in each stage of SIR disease spread
model assuming well-mixed conditions and ρ = 0.01 and µ = 0.1.

The equation describing the variation of the number of infected individuals has
a peak at dI/dt = 0 (eqn. 5.1). This means that the number of infected individuals
may increase dI/dt > 0 or decrease dI/dt < 0 according to the parameters ρ and µ.

ρSI − µI = 0 ⇒
ρSI

µ
= I (5.1)

For a susceptible population with initial density of infected individuals I(0) ≪
S(0), the approximation S(0) ≈ 1 is valid and the ratio between infection and
recovery rates can be defined as:

R0 =
ρ

µ
= 1 (5.2)

Therefore, if R0 > 1, the number of secondary infections (number of individuals
infected by an initial source) has a non-zero probability of growing and the infection
can reach a large fraction of the population. Conversely, if R0 < 1, the density
of infected individuals vanishes exponentially. Note, however, that its validity is
restricted to the early disease outbreak (due to the chosen approximations). It turns
out that this quantity R0, the reproduction rate, is of fundamental importance for
modern epidemiology and typically take different forms for each disease spreading
model [58, 60]. Finally, for a disease transmitted through contacts, the endemic
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steady-state is given by R0xS = 1, which means that the disease survives within a
population without external inputs.

5.1.2 Heterogeneous networks

The homogeneous assumption (well-mixed population) is a simplified approach that
waves the fact that individuals interact following highly heterogeneous contact pat-
terns. To overcome these limitation, population structure has been introduced in
these models to account for different characteristics of subgroups of individuals,
for example, age structure[114] and risk behavior [115]. Another variation includes
models of metapopulation, where individuals are well-mixed within independent
groups and the interaction happens through the movement of individuals between
the groups [116, 117].

At an individual level, heterogeneity is introduced by using contact networks
[63, 118, 25]. The first attempt to model (a simple) disease spreading considering
the (heterogeneous) network structure is perhaps the study of site percolation in a
one dimensional small-world network model performed by Newman and Watts [119].
Noting that several empirical networks (e.g. world wide web or sexual networks)
relevant to the spread of virus/infections follow power-law like degree distributions,
Pastor-Satorras and Vespignani showed, by using a mean-field analysis of the SIR
model (eqn. 5.3, where k is the degree and pk is the degree distribution), that scale-
free networks with exponent 2 < α ≤ 3 lack epidemic threshold, meaning that any
small number of initially infected individuals can infect the whole network [120].

dIk
dt

= −µIk + ρk(1− Ik)Φ(λ) where: Φ(λ) =
∑

k

kpkIk
∑

s sps
(5.3)

The properties of the SIR model in static random networks are nowadays much
studied and several properties are derived analytically, as for example, the critical
epidemic threshold (eqn. 5.4) and the average outbreak size [121].

ρcritical =

∑

k kpk
∑

k k(k − 1)pk
(5.4)

It is generally hard to write down equations for disease spreading in networks
with more complex structures than random contact patterns, for example, in case
of degree-degree correlations, community structure [122], or existence of connected
components. One way to overcome these difficulties is to study the system by nu-
merical simulations. Numerical simulations are also used to validate analytical pre-
dictions [120, 121] and to study disease spreading directly in the empirical network
[49]. The general framework is to initially let all vertices susceptible, except by one
random vertex chosen as a source of infection. At each time step, an infected vertex
transmits the infection to all of its contacts with probability ρ. This probability in-
cludes the per-contact infection probability ρinfection and the actual probability that
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the contact exists at that time pcontact. Typically pcontact = 1 and thus ρ = ρinfection;
but the time scale can be renormalized by using pcontact = C/ET 6= 1, where C and
E are respectively the total number of contacts and the total number of unique pairs
in the network, and T is the time window.

5.1.3 Dynamic networks

The static network is adequate to represent contact structures that change more
slowly than the actual dynamical process taking place on the network [43, 120].
In case of disease spreading, it is assumed that the static representation is a good
approximation for rapidly spreading pathogens that can cause acute infection [123].
Nevertheless, although human daily movement, for example, seems to have a high
potential of predictability [124], contact patterns are dynamic and depending on
the time scale, the emerging contact structure can be quite different (ruling out the
static approximation) with certain individuals being more active every other time
[125, 126, 25].

Temporal information can be included in different forms as edge-weights, usually
by aggregating all contacts during a time interval [125, 127], or for example, by
counting the number of consecutive times that two individuals stayed in contact
[127]. Other temporal correlations, like concurrency [128]c, the order of contacts
[64, 98, 49], or seasonal effects [130], may affect disease spread as well. These effects
are lost in the static representation, unless line graphs are used [131], but then, the
network structure is removed, which is not desirable either.

During recent years, different mathematical models have been proposed to study
some consequences of network structure co-evolving with disease spreading [43, 123,
132, 133]. The model of Volz and Meyers, for instance, assumes that vertices change
partners with a certain rate but the number of partners is maintained fixed through-
out time. The rate of changing partners φ provides intermediate scenarios between
the border cases of static (φ = 0) and well-mixed (φ = 1) interaction; one observa-
tion is that the static approximation is valid when φ is small [43]. The complexity of
analytical models aimed to capture both network structure and dynamic evolution
can be appreciated in the set of eqns. 5.5, which corresponds to a general model
devised by Kamp [132]. In this model, for SIR epidemics, vertices born (at rate ν1)
and die (at rate ν2), and it is implicitly assumed that new vertices connect randomly
to vertices already in the systemd; preferential attachment and cluster structures can
be included after some mathematical endeavor [132].

cAlthough under debate [129], concurrency is usually claimed as a key player in the high preva-
lence of HIV in e.g. sub-Saharan Africa.

dIn this set of coupled differential equations, p̄k is the probability of an individual entering
the population to have k contacts; ḡ is the probability generating function of p̄k; and pAB is the
probability of an edge to point from vertex A to vertex B. See more details in ref. [132]
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dSk

dt
= −ρpSIkSk new infections

+η1Np̄k − η2Sk natural birth and death
+η1ḡ

′(1, t)(Sk−1 − Sk) contacts made with new vertices
−η2[kSk − (k + 1)Sk+1] conts. lost from dying vertices
−µpSI[kSk − (k + 1)Sk+1] conts. lost from vertices dying from infection

(5.5)

dIk
dt

= +ρpSIkSk new infections

−(η2 + µ)Ik death
+η1ḡ

′(1, t)(Ik−1 − Ik) contacts made with new vertices
−η2[kIk − (k + 1)Ik+1] conts. lost from dying vertices
−µpII[kIk − (k + 1)Ik+1] conts. lost from vertices dying from infection

5.1.4 Temporal networks

Research on dynamical processes in temporal networks is quite recent and has been
essentially based on numerical simulations. One way to simulate the disease spread-
ing models in a temporal network is to first map the original network into a time-
ordered list, as discussed in §2.1.2. After selecting a (single or multiple) source of
infection, a pointer goes through the ordered list updating the state of the vertices
according to the chosen model of disease spreading. The states can be updated at
each time step or at the available temporal resolution, for instance, after a day or
an hour. If opting for the first updating method, the order of the contacts within a
time unit should be randomized and averages taken to remove the bias (due to the
construction of the ordered list) of the order of contacts within a day (or within an
hour). Since real datasets usually have network structure spanning within a limited
time interval, boundary conditions have to be defined when the pointer reaches the
last contact (tF). One boundary condition is to simply finish the simulation at this
point, another is to adopt periodic boundary conditions which consists in the repe-
tition of the network after the end of the interval, i.e. the network at tF + 1 + ∆T
is the same as the network at t0 +∆T e. An algorithm to simulate different disease
spreading models (SI, SIR and SI1I2, the last containing two periods of different
infectivity, ρ1 and ρ2) in temporal networks is presented bellow:

eThis periodic boundary condition is equivalent to transforming any time-series into a periodic
series. In this case, the network is replicated periodically.
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1. Take one sample of the network (e.g. with X days)

2. Select the infection source in the sample

3. Go through the ordered list

3.1 If vertex i is infective

3.1.1 Infects its contact j at that day with probability ρ1 = ρ

3.1.2 Sets the starting day tj0 of infection of vertex j

4. After each day t

4.1 Counts the number of infective vertices

4.2 For all vertices k

• for SI:
do-nothing

• for SIR:
If duration of infection Tinfection = t− tj0
⇒ Remove vertex k

• for SI1I2:
If duration of (first period of) infection Tinfection−1 = t− tj0
⇒ Replace ρ1 = ρ2

4.3 Go back to step 3

Summary of paper IV

When I got the network about the sex-buyers and -sellers, my primary
idea was to study the spread of infections on that sexual network. After
all, many infections spread through sexual contacts and so far, connected
sexual networks at such large scale was unavailable. The same trio team up
again and in the paper “Simulated epidemics in an empirical spatiotemporal
network of 50,185 sexual contacts” we study, by using simulated SI and SIR
models, how the evolving sexual network affects the infection dynamics.
The innovative aspect of this project is that rather than considering the
static network structure, we use the actual time stamps on the edges, i.e.
if a contact happens at time δ, the respective edge is available at that time
and unavailable otherwise. Therefore, the network structure co-evolves with
the infection dynamics. The temporal network model reflects the contact’s
temporal heterogeneities. In this type of networks, the number of possible
paths if one wants to move between two vertices is much smaller than
in the static model. One consequence is that the distribution of the number of
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reachable vertices (from a random source) has a characteristic value,
however, skewed towards smaller values and with a surprisingly high chance
of small and null outbreaks. We also identify that the broad distribution of
inter-contact times causes the infection to spread faster than if the contacts
are regular in time. This result is the opposite of some recent research
using different networks, i.e. on other datasets the broad distribution of
inter-contact times slowdown the spread. Our findings can be (at least
partially) explained by the fact that in our network most of the vertices
join the network during short intervals, in other words, the vertices having
contacts during, say, the initial quarter of the network do not appear in
the final quarter. Nonetheless, not only the inhomogeneous inter-contact
patterns but also the network structure plays a role; clusters constrain the
dynamics such that the infection takes longer to spread in comparison to
random structures. One surprising fact is that the infection dynamics in
this contact structure has well-defined, high epidemic thresholds for both
SI and SIR models. To complement the paper, we study a more realistic
model of HIV spread and our simulations suggest that the specific type of
commercial sex of our dataset is not a reservoir of major importance for
HIV.

5.2 Control of epidemics

The definition of epidemics in the literature of epidemiology is quite general and
indeed depends on the specific case of study [134]. A working definition according
to “A dictionary of epidemiology” [59] is:

The occurrence in a community or region of cases of an illness, specific
health-related behavior, or other health-related events clearly in excess of
normal expectancy.

In the physics literature, however, an epidemic regime emerges when the out-
break, i.e. the number of infected individuals (or vertices), is different than zero.
A critical threshold usually characterizes the border between epidemic and non-
epidemic regimes. One goal of epidemics control is to increase this threshold; an-
other is to simply reduce the size of the outbreak. This is typically achieved by
vaccination or educational campaigns. In the physics literature, these campaigns
are usually indistinguishable and one generally refers to vaccination as the process
of targeting an individual to immunize or to remove from the dynamics.

Individuals behave differently and some possess more risks than others to either
get infected or transmit an infection. Due to limited resources and frequent inability
to reach all population in society, it is thus desirable to increase herd (population)
immunity by targeting as few individuals as possible. In terms of networks, this
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different behavior is reflected in the connectivity of the verticesf. Therefore, the
goal of the network studies is to identify such high-risk vertices by looking to the
vertex connectivity in the network. Within the physics community, vaccination
methods are closely connected to percolation problems [135]. In simple words, when
the water pass from the top of the coffee powder (in the filter) to the bottom, there
is a percolation (this scenario – above the percolation threshold – corresponds to
the non-zero probability of epidemics). Rigorous mathematical percolation studies
involve combinatorics and go beyond the scope of this thesis [136].

5.2.1 Topological methods

There is a great interest in exploring local and global network connectivity to de-
velop better immunization strategies. Efficient immunization strategies (and disease
spreading research) have been regarded as promising applications of network sci-
ence to epidemiology. The fundamental idea is to identify central vertices that are
more important to maintain the network connected, or to intermediate transmission
processes, and simply remove them. The resulting fragmented network is expected
to disrupt the propagation of infections between the several emerging connected
components.

Random

A first attempt of a vaccination protocol is to uniformly select a fraction of vertices
and remove them. There is evidence that this protocol is very ineffective, especially
in networks where the number of contacts is broadly distributed [137, 135]. This
protocol does not consider the information about the degree of the vertices, but in
networks with broad degree distribution, most vertices have low-degree; the removal
of them affects little the connectivity of the network.

Hubs

A natural extension of the random method is to include information about the local
connectivity of the vertex. Vertices with larger degrees (hubs) have a diversity of
neighbors and are expected to be more central because they connect different parts
of the network. To illustrate the importance of the vertex-degree, in a simple model
of infection spread, the importance of a vertex is proportional to its degree squared
(k2), since k neighbors can infect the vertex, which in turn, can propagate the in-
fection to k other vertices. It has been shown in empirical and theoretical networks
that the removal of vertices in order of highest degree is a quite effective method

fRisk behavior can be also modeled by varying the per-contact probability of transmitting an
infection but to focus on structural effects and study the worst case scenario in terms of transmis-
sibility, this probability is generally assumed to be at maximum, i.e. equal to one.
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[137, 135]; after removal of few hubs, the network gets quite fragmented such that
an emergent infection unlikely propagates between the connected components. The
major criticism of this protocol is the hardness to identify hubs in real life, particu-
larly in case of human contacts. On the other hand, they can be straightforwardly
detected in electronic or artificial systems where, in principle, the entire network
structure is known in advance.

Betweenness

Other centrality measures can be used in the same way as the degree to identify
vertices to remove. As discussed in §4.1, the betweenness measures how important
a vertex is to connect different clusters of a network. Therefore, targeting them
turns to be quite effective in case of highly clustered networks. A typical case is
related to vertices corresponding to travelers, these vertices make contacts in several
locations and act as bridges between those places [138]. Another interesting example
is the case of doctors, nurses and patients in hospitals. According to some results,
doctors tend to have higher betweenness due to high mobility within a hospital,
which implies in contacts with a diversity of other individuals [118].

Acquaintance immunization

In case of complete ignorance of the network structure, Cohen and collaborators
devised a protocol that indirectly explore the connectivity of the network by making
random choices [139]. In this protocol, a vertex is selected at random, and then,
a random neighbor (or acquaintance) of this vertex is picked and vaccinated. This
method explores the fact that randomly selected acquaintances possess more edges
than the randomly selected vertices [140]. Especially in disassortative networks,
the first random step are more likely to select a low-degree vertex that, in turn, is
probably connected to a high-degree vertex (the random neighbor). This method
and the previous ones can be improved by iteratively vaccinate the neighbors of the
previously vaccinated individual [141].

k-cores

Sometimes, due to the community structure, high degree vertices are not as central as
they would be in the same network with random edges, e.g. a randomized network
version with same degree distribution as the original. In that case, the k-cores
measure can capture which hubs are in the core and which are in the periphery of
the network. Kitsak and collaborators showed that if an infection starts at vertices
with high k-core, it gets more pervasive, on empirical networks, than if it starts in
hubs or vertices with high betweenness [142]. Surprisingly, in their analysis, hubs are
still more critical than high k-core vertices in case of multiple sources of infection.
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5.2.2 Temporal methods

Since most of previous efforts have been based on static network studies, there
is a great potential to explore temporal information to control epidemics. Contact
patterns are not regular and indeed individuals are generally more active during short
periods followed by absence of interactions. Furthermore, under some circumstances
people tend to repeat their behavior [25, 79, 143], which means that one can learn
from the past to forecast an individual activity. This information can be used to
select temporally strategic persons to vaccinate.

Seasonal

At some scales, temporal patterns are characterized by regular variations due to
seasonal or circadian rhythms. A simple vaccination protocol is thus to target all
vertices active during these periods of higher activity, preferably at the beginning
of the cycle to avoid future outbreaks of the infection. This method is regularly
adopted, for instance, on annual Influenza vaccination campaigns or on educational
campaings before major festivities where people are expected to have more sexual
contacts. Although this method uses temporal information, it relies on targeting
random individuals (within a specific cohort) of the static network.

Weight

An extension of the seasonal method is based on recording the historical activity of
a certain individual and then to assume that the behavior repeats afterwards. This
means that vaccinating and individual’s strong acquaintances (i.e. pairs that occur
more often) is equivalent to remove potential frequent future contacts (i.e. pairs that
are likely to connect). It turns out that selecting the most frequent contact is more
effective for weighted networks than simply choosing a neighbor at random [144].

Recent

When looking at a higher resolution in time, human contact behavior appears non-
regular and actually, exhibit bursts of activity. Bursts mean that, during a certain
period, a person is more active than at other periods, and the inter-event time
between two contacts has no characteristic scale. Since communication and sexual
activity seem to follow skewed distribution of inter-event times [145, 25], it is likely
that a contact will happen again soon after a previous contact event. One way to
explore this temporal structure is to simply select vertices at random and target the
vertex’s most recent contact to remove [144].
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Summary of paper V

Since in paper IV, we observed that temporal correlations affect the
dynamics of infection propagation, we decided to investigate vaccination
methods using this extra (temporal) information. After some preliminary
tests on the sexual network, the team, now led by Sungmin, ended up
proposing, in the paper entitled “Exploiting temporal network structures
of human interaction to effectively immunize populations”, two methods
of vaccination that, for diverse networks, appear to have higher control
efficiency in comparison to known methods. The idea is to capture temporal
patterns of activity, by learning an individual’s behavior, and use that
information to vaccinate acquaintances of randomly chosen individuals
within the population. Therefore, in this paper, the network is split into
two parts, one to learn the contact patterns of each person, and the other to
actually simulate the propagation of infections. A number of individuals is
vaccinated, at the first time after the learning period, by choosing a random
vertex and removing one of its contacts according to the weight or the recent
protocols discussed in the thesis. The weight protocol appears to be adequate
when the contacts are more regularly spread in time, as for instance, in
the email network where people are continuously contacting each other.
On the other hand, when activity lasts only during short intervals, as
the case of contact networks, the recent protocol seems more appropriate.
This protocol takes advantage of the fact that, on average, people that
have met recently are more likely to be socially active and thus meet again
in the near future. The main contribution of this paper is the idea of
using temporal information to efficiently immunize the population by know-
ing only local structural information, rather than the entire contact network.

5.3 Other dynamical processes

There are several other dynamic processes that are modeled by using networks as
underlying structures that would be too extensive to include in this short section
[16, 146, 147]. Differential equation models (disease-like) can be formulated to rep-
resent spreading of ideas, rumors [146], emotions, social behavior [148], acceptance
of products in the marketing, or population dynamics [149]. There is also interest
in opinion dynamics, i.e. how does one person changes its own opinion according
to its contact’s opinion, using spin-glass models [150, 151]. Methods based on the
random walker process have been extensively proposed to study different properties
of networks, for example, centrality measures [152], community detection [90], and
cascading failures [153].

Most previous research has been focused on static networks, but studies con-
sidering dynamic and temporal networks have appeared recently. These papers
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are mostly motivated by the temporal correlation due to the power-law distribu-
tion of inter-event times. Disease-like dynamics on email network [76, 154, 155]
and mobile phone communication [55] suggest that temporal and cluster structures
slowdown the spread of information. In a voter model, consensus takes longer to
be achieved if power-law inter-event time is used rather than the usual exponential
distribution[156].





Chapter 6

Conclusions and perspectives

Networks have gathered considerable attention since the late 1990s. The simplicity
and generality of network theory are pervasive enough to be applied in different fields
of science, from biology to archaeology, passing through arts, sports and military.
Not unexpected, physicists like me jumped in and have continuously contributed
to the different research fronts of fundamental aspects of networks, applications of
networks, and in empirical studies to detect patterns or validate network models.

The main goal of this thesis is to explore empirical networks; both by detecting
and studying non-trivial topological patterns, and by using these empirical net-
works as underlying structures where dynamical processes occur. The innovative
aspects include collecting original networks and modeling them using further levels
of complexity than typically adopted, as for instance, multiple-layers, bipartivity,
edge-weigths and temporal information. Paper II is such an example, based on
multivariate analysis, we propose a method to group similar vertices according to
the bipartivity structure and edge-weight information. We apply the method to a
network of consumer complaints about companies. In all other papers, temporal
information is nevertheless the central actor. It is safe to say that this thesis is
well placed in the history of network science. Research on dynamical networks is
currently receiving much attention and the thesis adds important contributions to
the field. Papers I and III are related to the analysis of temporal structures of
networks, in the first case, I use simple static network measures to study how the
network of flights and airports evolves annually, and in the second paper, we apply
recent developed methods, specifically designed to characterize the network tempo-
ral profile, to understand the dynamics of a web-community, and as a consequence
of the nature of the web-community, we obtain a large dynamic connected sexual
network. Papers IV and V take a different direction, by using the knowledge from
our previous results, the research moves to the study of epidemics co-evolving with
network structure.

Theoretical models are undoubtedly elegant. By setting some simple rules or
parameters, one can study the system evolution considering idealistic scenarios, or



54 Conclusions and perspectives

perhaps, its response to perturbations. For a specific system, increasing model
complexity is needed. However, this is not the usual approach in our field, where
the goal is to understand general aspects of the system by using simple models.
Empirical research, nevertheless, has its own beauty as well. Measuring signals
and structures, finding relations, reveal how our universe actually behaves. This
thesis takes the second path. By empirical analysis, we conclude that network
structure does change. This might sound obvious at a first glance, but the non-trivial
aspect is that structure changes in such irregular way that the static network misses
important structures in some cases. A classic example is the order the contacts
are made. We show in paper IV, for example, that a particular order of contacts
increases the incidence of simulated infectious diseases. The bursty activity, i.e.
the fact that individuals are highly active during short periods of time and idle
otherwise, can be explored in simple efficient protocols to control epidemics. We
show that potential against other methods in paper V. In papers I and III, we
have observed that some networks are affected and consequently shaped by external
factors through a feedback mechanism. The flights network, for example, showed
a decreasing number of routes and flights, but an increasing number of carried
passengers and cargo along the years; this suggests an optimization process where
previously central airports transfer their importance to new ones. More remarkable
is the interplay between online and offline activity studied in paper III. The quality
of services offered by sex workers, rated in a web-forum, directly interferes in their
future sexual network. While this observation might sound trivial, it is a direct
measure of the pervasiveness of Internet in our social and economic life in the 2000s.

Empirical research leads us to experiments. As a physicist, I am fascinated by
experiments, although, usually I do not appreciate the smell of some labs. Some
fundamentalists claim that the “real physics” is in the experiments, the analytical
analysis is essentially mathematics, but let us avoid these taxonomies and go fur-
ther. Many researchers argue that experiments are too difficult in complex system
research. It involves a plethora of ethical and logistic issues, sometimes high cost,
that simply turn observational research a better and easier choice. I agree that can
be difficult, but being difficult does not mean they are not doable. We have been
identifying structural changes in the network due to external factors, but usually,
in a passive observational way. The challenge for the near future is to have more
control of these external factors by performing controlled experiments. Electronic
gadgets, smart phones, and virtual environments, like online games and social net-
works, already cover a significant sample of the population and permit us to create
original experiments, but of course, with some effort.

Overall, I am optimistic about network science and I believe that although much
has been done, there is a lot yet to be explored, for example, in terms of applications,
temporal network analysis, and feedback mechanism between structure and dynam-
ics. Finally, to be a little speculative, I have hopes that large scale experimental
network science might be one exciting new direction.
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[39] P Erdős and A Rényi. On random graphs I. Publicationes Mathematicae,
6:290–297, 1959.

[40] G U Yule. A mathematical theory of evolution, based on the conclusions of
Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of
London. Series B, 213:21–87, 1925.



58 BIBLIOGRAPHY

[41] H A Simon. On a class of skew distribution functions. Biometrika, 42(3/4):425–
440, 1955.

[42] S Bornholdt and H Ebel. World wide web scaling exponent from Simon’s 1955
model. Physical Review E, 64:035104(R), 2001.

[43] E Volz and Lauren A Meyers. Susceptible-infected-recovered epidemics in
dynamic contact networks. Proceedings of the Royal Society of London B,
274:2925–2933, 2007.

[44] T Gross and B Blasius. Adaptive coevolutionary networks: A review. Journal
of the Royal Society Interface, 5:259–271, 2008.

[45] S van Segbroeck, F C Santos, and J M Pacheco. Adaptive contact networks
change effective disease infectiousness and dynamics. PLoS Computational
Biology, 6(8):e1000895, 2010.

[46] W Schaper and D Scholz. Factors regulating arteriogenesis. Arteriosclerosis,
Thrombosis, and Vascular Biology, 23:114, 2003.

[47] T Gross, C J D D’Lima, and B Blasius. Epidemic dynamics on an adaptive
network. Physical Review Letters, 96:208701, 2006.
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J Saramäki. Small but slow world: How network topology and burstiness
slow down spreading. Physical Review E, 83:025102(R), 2011.

[56] N W Ashcroft and N D Mermin. Solid State Physics. Brooks Cole, 1976.

[57] S K Baek, P Minnhagen, and B J Kim. Percolation on hyperbolic lattices.
Physical Review E, 79:011124, 2009.

[58] R M Anderson and R M May. Infectious Diseases of Humans: Dynamics and
Control. Oxford University Press, Oxford, 1992.

[59] M Porta, editor. A Dictionary of Epidemiology. Oxford University Press, fifth
edition, 2008.

[60] E Vynnycky and R G White. An Introduction to Infectious Disease Modelling.
Oxford University Press, Oxford, 2010.

[61] P Pagel, S Kovac, M Oesterheld, B Brauner, I Dunger-Kaltenbach, G Frish-
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