
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014 1869

Exploring Permission-Induced Risk in Android

Applications for Malicious Application Detection
Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and Xiangliang Zhang, Member, IEEE

Abstract— Android has been a major target of malicious
applications (malapps). How to detect and keep the malapps out
of the app markets is an ongoing challenge. One of the central
design points of Android security mechanism is permission
control that restricts the access of apps to core facilities of
devices. However, it imparts a significant responsibility to the
app developers with regard to accurately specifying the requested
permissions and to the users with regard to fully understanding
the risk of granting certain combinations of permissions. Android
permissions requested by an app depict the app’s behavioral
patterns. In order to help understanding Android permissions,
in this paper, we explore the permission-induced risk in Android
apps on three levels in a systematic manner. First, we thoroughly
analyze the risk of an individual permission and the risk of
a group of collaborative permissions. We employ three fea-
ture ranking methods, namely, mutual information, correlation
coefficient, and T-test to rank Android individual permissions
with respect to their risk. We then use sequential forward
selection as well as principal component analysis to identify
risky permission subsets. Second, we evaluate the usefulness
of risky permissions for malapp detection with support vector
machine, decision trees, as well as random forest. Third, we in
depth analyze the detection results and discuss the feasibility as
well as the limitations of malapp detection based on permission
requests. We evaluate our methods on a very large official app set
consisting of 310 926 benign apps and 4868 real-world malapps
and on a third-party app sets. The empirical results show that
our malapp detectors built on risky permissions give satisfied
performance (a detection rate as 94.62% with a false positive
rate as 0.6%), catch the malapps’ essential patterns on violating
permission access regulations, and are universally applicable to
unknown malapps (detection rate as 74.03%).

Manuscript received February 28, 2014; revised June 16, 2014; accepted
August 21, 2014. Date of publication September 4, 2014; date of current
version October 3, 2014. This work was supported in part by the
Ph.D. Programs Foundation, Ministry of Education of China, under Grant
20120009120010, in part by the Fundamental Research Funds through the
Central Universities of China under Grant 2012RC031, Grant 2012JBZ010,
and Grant 2013JBM025, in part by the Scientific Research Foundation through
the Returned Overseas Chinese Scholars, Ministry of Education of China,
under Grant K14C300020, in part by the Program for New Century Excellent
Talents in University under Grant NCET-11-0565, in part by the Program
for Changjiang Scholars and Innovative Research Team in University under
Grant IRT 201206, and in part by the 111 Project under Grant B14005. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Jiangtao Li.

W. Wang, X. Wang, J. Liu, and Z. Han are with the School of Computer and
Information Technology, Beijing Jiaotong University, Beijing 100044, China
(e-mail: wangwei1@bjtu.edu.cn; 10112071@bjtu.edu.cn; jqliu@bjtu.edu.cn;
zhan@bjtu.edu.cn).

D. Feng is with the National University of Defense Technology, Changsha
410073, China (e-mail: davyfeng.c@gmail.com).

X. Zhang is with the Division of Computer, Electrical and Mathematical Sci-
ences and Engineering, King Abdullah University of Science and Technology,
Thuwal 23955-6900, Saudi Arabia (e-mail: xiangliang.zhang@kaust.edu.sa).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2014.2353996

Index Terms— Android system, Android security, permission
usage analysis, malware detection, intrusion detection.

I. INTRODUCTION

S
MARTPHONES and mobile devices have become

explosively popular for personal or business use in recent

years. As reported by Digitimes research [1], global smart-

phone shipments are expected to reach around 1.24 billion

in 2014. This number has increased 30% over the last year.

Meantime, smartphone platforms have seen a massive surge

in malwares. With Android accounting for 81 percent of

all smartphone shipments globally in the third quarter of

2013 [2], it has unsurprisingly become the major target for

mobile malware. The volume of Android malware families and

samples has been growing explosively. Symantec [3] indicated

that the number of known malware samples increased almost

four times between June 2012 and June 2013 and was up to

about 273,000.

As the official application (or app) market, Google’s Play

store provides a platform of delivering apps for Android

smartphones and mobile devices. There are many third-party

app markets providing similar platforms. App developers

publish their apps on the Google’s play or on the third-party

app markets, where end users download and install their

interested apps on their Android smartphones. Obviously,

how to detect and keep the large number of malware out of

the application (or app) markets is an emerging, crucial, but

challenging issue. Previous work on the detection of malapps

mainly focused on permissions [4]–[6], static [7]–[13] and

dynamic analysis [14]–[17].

Permission control is one of the major Android security

mechanisms. Android permissions provide fine-grained

security features by enforcing restrictions on the specific

operations that a particular process can perform [18].

However, it imparts a significant responsibility to the app

developers with regard to declaring the least-privileged set of

permissions needed by designed apps, and to the app users

with regard to fully understanding the risk of granting certain

combinations of permissions. Android provides developers

documentation, but its permission information is limited.

On the one hand, the lack of reliable permission information

may let developers request unnecessary permissions, resulting

in overprivileged applications [19] that users may cancel the

installation. In addition, the unnecessarily risky permissions

may be leaked to other malapps [20], leading to the permission

re-delegation attacks [21]. On the other hand, the lack of risk

information of permissions confuses the users with regard to

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1870 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

determining whether to install the app or not. Current Android

permission warnings do not help most users make correct

security decisions [22]. It is feasible to identify malapps

through analyzing the permission usage patterns, as intuitively

an app’s behavior is characterized by the permissions it

requests. We thus see that exploring the permission-induced

risk is beneficial to three parties, the Android app developers,

the users, as well as the malapp detectors. Curiosities are

aroused on understanding the following questions: (1) what is

the ranking of the permissions with respect to (w.r.t.) the risk

to the Android system; (2) what is the subset of permissions

that collaboratively cause security issues in malapps; (3) to

what degree the Android malapps can be detected based on

the permissions they requests; and (4) whether there exist

fine-grained permission rules that can be used to identify

unknown malapps (zero-day malapps), like the 9 detection

rules with permissions called Kirin [23].

We are motivated to answer the above questions about

the permission system of Android, in the vision of risk

evaluation of Android permissions based on systematically

quantitative analysis of Android apps on a very large scale

(we consider 310,926 free apps from Google’s play and 4,868

real-world malapps). To fulfill the goal of exploration, our

study is performed on the following three levels. First, we

systematically analyze the risk of each individual permission

and the risk of a group of collaborative permissions by

employing machine learning techniques, such as feature

ranking with mutual information, Correlation Coefficient

(CorrCoef) and T-test, subset selection and transformation

with Sequential Forward Selection (SFS) as well as Principal

Component Analysis (PCA). Second, we evaluate the

usefulness of risky permissions for malapp detection using

classification algorithms, suck as Support Vector Machine

(SVM), decision tree as well as Random Forest. Last but not

least, we discuss and analyze in depth the feasibility as well

as the limitations of malapp detection based on permissions

requests.

The main contributions of this work are summarized level

by level as follows:

• We systematically rank the permissions w.r.t. their risk

to the Android system. Individual Android permissions

are ranked regarding their risk-relevance measured by

mutual information, CorrCoef and T-test. We also iden-

tify the subset of risky permissions that collaboratively

cause security issues with SFS and PCA. This helps

to monitor the misuse of risky permissions in prac-

tice, not only for the app users, but also for the app

developers.

• We evaluate the feasibility of using permission requests

for malapp detection with different subsets of risky per-

missions and classification algorithms like SVM, decision

tree and random forest. We report top-40 risky permis-

sions that can achieve a malapp detection rate as 94.62%

with a false positive rate as 0.6%. We also construct a

set of detection rules that catch the malapps’ essential

aspects on violating permission access regulations. They

are able to detect unknown malapps with a detection rate

of 74.03%.

• Based the empirical results on a very large scale, we

comprehensively discuss and analyze the effectiveness

as well as the limitations of malapp detection based on

permission requests. The analysis provides a perspective

regarding the use of permission requests for the analysis

of Android applications.

• Our analysis is based on a very large data set that con-

sists of 310,926 benign apps and 4,868 malapps for the

evaluation. We publish the permission vectors extracted

from the data set on our website as a potential benchmark

data for the research community.

As complementary parts to this introduction, Section II

gives the background knowledge of Android permissions,

while Section VII discusses related work on permission

analysis and malapp detection techniques with permissions.

Section III describes the data. Section IV describes the

methodology of risk exploration. The extensive experiments

are given in Section V. Section VI presents in-depth discus-

sion and analysis of our findings and conclusion follows in

Section VIII.

II. BACKGROUND

In this section we first briefly describe the Android’s

security mechanisms and then elaborate the design of

Android’s permission control in the mechanism.

Android platform includes a multi-user operating system

based on a Linux kernel, middleware, and a set of applications

(apps). Users install apps acquired from app markets, e.g.,

official Google’s play or alterative app markets. Android

implements a number of security mechanisms of which the

most prominent includes app sandbox and a permission frame-

work that enforces access control to core functionalities. App

sandbox is set up in a kernel lever [24]. It enforces security

between apps and the system through identifying and isolating

app resources. Each Android app is assigned a unique User

ID (UID) and run as the user in a separate process. Under

the app sandbox mechanism, apps cannot interact with each

other and an app has limited access to the operating systems.

While Android apps are mainly programmed in Java, native

codes can also be integrated with Java apps. All types of apps,

including Java, native or the hybrid are sandboxed in the same

way and thus have the same degree of security [24].

One of the central design points of the Android security

mechanism is permission control. As Android sandboxes apps

from each other, apps must explicitly declare the permissions

they need for additional capacities. Without a permission,

an application by default is not able to do anything that

could adversely impact the user experience, the network, or

data on the device. The Android app developer statically

declares the permissions the app requests in a manifest file

(AndroidManifest.xml). When a user installs an app, a dialog

will be displayed to indicate a permission list the app requests

and asks the user whether to continue the installation. This is

an all-or-nothing decision. If the user decides to install the app,

all the requested permissions will be granted. The user is not

able to grant or deny individual permission. The permissions

are applied once the app is installed. The user will no longer

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1871

TABLE I

THE NUMBER OF BENIGN APPS AS WELL AS MALAPP SAMPLES IN OUR STUDY

be notified of the permissions granted in the running the app.

While there exist some third-party apps (or rooting the device)

that can help to manage the permissions on a per-app basis,

normally if the user wants to block the permissions granted at

the install time, the user needs to remove the app.

Android permissions provide a mechanism of access con-

trol to core facilities of the system. However, it imparts

a significant responsibility to both the app developers and

the app users. The developers need to accurately specify

the requested permissions and the users need to understand

the risk involved and thus make a rational decision regarding

whether install the app or not. Ideally, the developer should

follow the least-privileged set of permission requests and the

user should understand the risk of granting certain combi-

nations of permissions. Android itself provides an attribute

called “protectionLevel” that characterizes the potential risk

implied in the permissions [25]. The permission attributes

can be categorized as “normal”, “dangerous”, “signature” and

“signatureOrSystem”. The last two attributes are system-

granted only. The permission with the normal attributes is

lower-risk (e.g., SET_WALLPAPER) and will be automati-

cally granted, without asking for the user’s explicit approval.

The permission tagged as dangerous is higher-risk (e.g.,

READ_SMS) that would access to private user data or control

over the device. However, the two permission categorizations

provided by Android are very coarse for both the developers

and the users. In this work, our goal is to systematically

rank the permissions w.r.t. their risk for the users to have a

better understanding of permissions, and to identify a subset

of risky permissions that are most relevant to malapps for

the developers to accordingly decide how to declare the

permission requests. In addition, we are motivated to analyze

and detect malapps with permission matrix and construct

a decision rule set to universally detect unknown malapps.

Our work would provide a whole picture of the relationships

between the permission usage and their risk in Android apps,

and a vision regarding the use of only permissions for the

analysis and detection of malapps.

III. DATA SETS

In order to conduct extensive analysis on permission usage,

we need to establish a large well-labeled app set. For benign

apps, we consider a total number of 310,926 free apps from

Google’s play in June 2013. Although a great number of

malicious app samples have been reported, the collection of

malapps is still a challenging task for research. Fortunately,

we have been provided with two malicious app sets (named

Mal_Com1 and Mal_Com2) from two different antivirus

companies. We got the malicious apps discovered by

Zhou et al. [10] and named them as Mal_Zhou. In addition,

we downloaded a total number of 3,417 malicious apps

(named Mal_VS) from the website of VirusShare [27] that is a

repository of malware samples. All the malapps in the Mal_VS

were approved by VirusTotal [26]. After going through the

Mal_VS, we found that there are duplicate samples that have

been included in Mal_com1, Mal_com2 and Mal_Zhou. After

removing the duplicate samples, we have a total number of

3,207 malapps in Mal_VS.

In this work, we only consider the permissions provided

by Android system, although an app can also define its own

permissions. To analyze the permission usage of apps, we

mainly extract the Android permission list from the Manifest

file of each app. The total number of distinct permissions

requested by all the apps (including benign and malicious)

in our data sets is 135. However, the permissions requested

by an app may be over-privileged, since 47 out of the

135 permission (e.g., permission INSTALL_PACKAGES) are

not for use by third-party applications [28]. We then remove

these 47 permissions and the total number of distinct permis-

sions is thus 88. Therefore, each app can be represented by a

88-dimensional Boolean vector, where 1 denotes that the app

requests the permission and 0 otherwise. The vectors are then

sent as the data input to the methods described in next Section

for analysis.

It is not rare that different apps request the same set

of permissions. The number of distinct permission vectors

accounts for 9.25% of the total number of apps. However,

duplications imply the popularity of permission sets, which is

a part of permissions’ nature. Our exploration of permissions

is thus based on the full vector sets and we leave the discussion

of its impact in Section VI. The statistics of data1 used in our

work are given in Table I.

IV. METHODS

In this section, we introduce our methodology for exploring

permission-induced risk in Android apps. First, we employ

three feature ranking techniques to evaluate the risk of granting

each permission, based on which the permissions are ranked

from most to least risky. Second, permission sets, instead of

individual permission, are evaluated by feature subset selection

methods for investigating the risk introduced by the collabo-

ration of several permissions. Third, the detection of malapps

based on risky permissions is formulated as a classification

problem and executed by building classifiers. Last, in order to

explicitly characterize the risk caused by permission requests

and use it to report malapps, detection rules are extracted

from malapps detectors. We then employ the detection rules

1The permission vector sets used in this work are available to download
at http://infosec.bjtu.edu.cn/wangwei/?page_id=85. The malapps are available
upon request to the first author.

1872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

Fig. 1. The methods and process for exploring permission-reduced risks and the detection of malicious applications in three levels.

to detect unknown malapps. The process of our methods is

illustrated in Figure 1.

A. Ranking Permissions w.r.t. Risk

Permissions can be considered as features that describe the

functionalities of apps, or the app’s behavior indicating its

attempt to interact with the system, the data or other apps,

as described in Section II. The malapps are basically different

from benign apps on requesting different permissions, i.e., hav-

ing different values of permission/feature variables. Defining

a class variable that indicates the label of an app, benign or

malicious, the risk of granting a permission can be evaluated

by measuring the relevance between this permission/feature

variable and the class variable. A strong correlation of them

indicates the high risk of granting this permission.

Measuring the relevance of a feature and class variables

is known as feature ranking in machine learning, which

has a goal of selecting the most informative features and

improving the performance of learned models [29]. In this

paper, we employ three ranking methods, namely, mutual

information, Pearson correlation coefficient (CorrCoef), and

T-test. We introduce the three ranking methods respectively

after giving the formal notation.

1) Mutual Information: Let X denote a permission variable

and C be the class variable. The relevance of X and C can

be measured by mutual information of them as

I(X, C) =
∑

xi

∑

cj

P (X = xi, C = cj)

× log
P (X = xi, C = cj)

P (X = xi)P (C = cj)
(1)

where P (C = cj) is the frequency count of class C with value

cj , P (X = xi) is the frequency count of permission X with

value xi, and P (X = xi, C = cj) is the frequency count of

X with value xi in class cj . In this paper, the class C has

binary values, c0 for benign apps and c1 for malicious apps.

Each permission X is a boolean variable with value 1 or 0.

I(X, C) is nonnegative in [0, 1]. I(X, C) = 0 indicates no

correlation, while I(X, C) = 1 means that C is completely

inferable by knowing X .

2) Pearson CorrCoef: Pearson CorrCoef measures the

relevance of X and C by

R(X, C) =
cov(X, C)

√

var(X)var(C)
(2)

which in our case of binary class and boolean variable

becomes

R(X, C) =

∑N

n=1
(Xn − X̄)(Cn − C̄)

√

∑N

n=1
(Xn − X̄)2

∑N

n=1
(Cn − C̄)2

(3)

where X̄ (resp. C̄) is the average of all sample values of X

(resp. C), Xn (resp. Cn), n = 1...N . R(X, C) has a value

in [−1, 1], where R(X, C) = 0 indicates the independency

of X and C, R(X, C) = 1 indicates the strongest positive

correlation of them and R(X, C) = −1 indicates the strongest

negative correlation. In this paper, R(X, C) = 1 means that

permission request of X makes apps highest risky, while

R(X, C) = −1 means that permission request of X makes

apps lowest risky.

3) T-Test: T-test is similar to CorrCoef. Given a variable,

it measures the statistical significance of its value difference

between two classes. Let N0, µ0 and σ0 be the number, the

mean and the standard deviation of X in benign samples (with

class C = c0), respectively, and N1, µ1 and σ1 be the number,

the mean and the standard deviation of X in malicious samples

(with class C = c1), respectively. The null hypothesis is that

X and C are independent, i.e., µ0 = µ1. T-test is performed

by

t =
µ0 − µ1

σ01

√

1

N0

+ 1

N1

with

σ01 =

√

(N0 − 1)σ0
2 + (N1 − 1)σ1

2

N0 + N1 − 2
(4)

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1873

The absolute statistic value t can be used to indicate the cor-

relation of X and C. A large value shows a strong correlation.

The p-value of t can be somehow considered as the false

positive rate on reporting the correlation. A threshold, e.g.,

0.05, is usually set to reject the null hypothesis. The correlation

with a p-value lower than the given threshold is considered

statistically significant.

For each permissions Xi, its relevance to class C can be

evaluated by the above-mentioned methods. We are especially

interested in the permissions that are strongly correlated

with C. Thus, under each criteria, permissions are ranked

according to the value of I(Xi, C), |R(Xi, C)| or |ti| in

decreasing order. The top permissions are the most sensible

ones that malapps often manipulate.

B. Identifying Risky Permission Sets

The ranking from individual evaluation in the previous

subsection helps on selecting the most relevant permissions for

distinguishing malapps from benign apps. In this subsection,

we identify the risky permission subsets that are risky either

because of their combinations or their cooperations with each

other.

An interesting permission set is supposed to be useful for

reporting malapps. We thus employ feature subset selection

methods to identify such risky permission sets. Feature subset

selection searches for the best combination of feature subsets

that can achieve the optimal prediction performance by using

the least number of features. However, it is not practical to

search the whole space of 2M − 1 possible feature subsets

given M features (
∑M

k=1

(

M

k

)

), which in our case is M = 88.

The search strategies usually used in feature selection include

exhaustive enumeration (when M is small), forward selection

(bottom-up), backward elimination (top-down), and best first

(forward/backward with a stopping criterion) [30]. In this

paper, we employ sequential forward selection (SFS) as well

as Principal Component Analysis (PCA) to for feature subset

selection.

1) Sequential Forward Selection (SFS): SFS sequentially

adds features to an empty candidate set until the addition of

further features cannot improve the prediction performance.

In this greedy algorithm, the feature added at each step is the

one from all unselected ones, which can best improve the pre-

dictive power. Thus, the selected subset contains features that

are highly correlated with the class variable but uncorrelated

with each other.

2) Principal Component Analysis (PCA): Both above fea-

ture ranking and subset selection algorithms are concerned

with analyzing original features. Feature extraction algorithms

construct a set of new features by applying either linear or

non-linear functions on the original features. New features

can reveal latent variables that better clarify relationships

among studying objects. Principal Component Analysis (PCA)

is a method for representing original data by new-defined

variables. It aims at finding a set of orthogonal (uncorre-

lated) Principal Components (PCs) from the original variable

space. PCs are linear combinations of the original variables.

Constructing a N by M data matrix X whose columns are

permissions Xi, i = 1 . . .M , PCs are actually eigenvectors of

the gamma matrix of data X, defined as

Σ =
1

N
(X − X̄)T(X − X̄) (5)

where X̄ is the vector containing the mean of each permission.

For each PC, its importance is measured by its

corresponding eigenvalue, which indicates the variance

it captures. The most important PC captures the largest

variance in the data, the second most important PC captures

the second largest variance in the data, and so on. PCs with

low importance can be eliminated. The remaining PCs then

represent X in a lower dimensional space than the original

one, but capture the underlying pattern with little loss. In this

paper, we employ PCA to select the top k-PCs (k<88) that

can represent the original permission set.

C. Building Detectors of Malapps Using Risky Permissions

From the above two subsections, we obtain 1) top-k

permissions that are most relevant to class label of apps;

2) k-permission sets that include k permissions cooperating

to make apps risky; and 3) k PCs representing apps in a

new space. In order to distinguish malapps from benign apps,

classifiers are built on the basis of these identified risky per-

missions. We employ three classification algorithms, Support

Vector Machine (SVM), Decision Tree (DTree) and Random

Forest (RF), due to their good performance in prediction

accuracy.

1) Support Vector Machine (SVM): SVM seeks the best

hyperplane that separates data objects from one class on one

side, while others on the other side. The optimal separating

hyperplane is defined as the one resulting in the maximal

margin. Finding the maximal margin separating hyperplane

is formulated as a quadratic programming problem with the

help of Lagrange multipliers and duality [31].

2) Decision Tree (DTree): DTree [32] learns a classifi-

cation model with a tree structure, where nodes are fea-

tures/permissions, leaves are determined class labels and

branches from nodes to nodes or nodes to leaves are associated

with specified conditions, e.g., feature at parent node has

a specified value. Training objects are all at the root in

the beginning, and then are partitioned recursively based on

selected features. The selection of features is on the basis of

a heuristic or statistical measure. The selected best feature

at each recursive step maximally reduce the uncertainty for

classification. Therefore, DTree algorithm inherently possesses

the function of feature selection.

3) Random Forest: Random Forest [33] is an ensemble

of a set of decision trees independently learned on reduced

training sets. A reduced training set is formed by randomly

sampling with replacement from both features and objects.

The final decision of classification is made by voting among

all learned trees. Like other ensemble methods, Random Forest

often outperforms a single tree on classification accuracy.

D. Extracting Rules for Explicitly Outlining MalApps

Rules represent the knowledge in the form of IF-THEN,

which is easy for users to interpret. A rule IF (Condition) -

THEN (c) makes reasoning explicit, where Condition is a

1874 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

TABLE II

TOP 40 RISKY PERMISSIONS RANKED BY CORRCOEF, MUTUAL INFORMATION AND T-TEST

conjunctions of feature-value pairs and c is the class label. For

example, IF (BloodType=Warm & LayEggs=Yes) - THEN

(AnimalClass=Birds).

In this paper, we are especially interested in rules because

rules with permissions as condition and malicious as

class label explicitly define the profile of malapps. Nine

permission rules are used in [23] for the detection of

malapps. Unlike these 9 rules formed mainly based on the

security requirement engineering, our extracted rules are from

empirically quantitative analysis of permissions requested

by a very large app sets, and are thus more comprehensive

and larger on scale. Due to its easiness of interpretation,

these rules can be further used for reporting malapps in

a straightforward manner, with no requirement on users’s

classification expertise. Among the three learned classifiers,

DTree is more interpretable than others. Rules are therefore

extracted from well-founded decision tree classifiers.

Given a decision tree, one rule is created for each path

from the root to a leaf. Each feature-value pair along a path

forms a conjunction, while the leaf holds the class prediction.

A set of rules extracted in such a way contains as much

information as the tree. These rules are mutually exclusive

(rules are independent and each data object is covered by at

most one rule) and exhaustive (each object is covered by

at least one rule).

V. EXPERIMENTAL RESULTS

This section reports the results of permission ranking,

permission subsets identified, malapps detector performance

evaluation, and the extracted explicit decision rules.

A. Permissions Ranking

We use Mutual Information (MuInfo), CorrCoef as well

as T-test methods for ranking the permissions w.r.t. their

capability of discriminating malapps from benign apps.

As the permission ranking needs benign apps as well as

malapps, in the experiments, we use all the app data for

permission ranking. The ranking results for the top 40 risky

permissions are presented in Table II. It is observed that

CorrCoef and T-test produce the same top risky set, although

the ranking order for the first 10 permissions is different.

The number of intersection of the top 40 risky permissions

generated by MuInfo and by CorrCoef is 39, indicating that

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1875

Fig. 2. Occurrence percentage of top 40 ranked risky permissions (with CorrCoef) in benign apps and malapps. The permissions are ranked from the left
to the right in the figure.

the ranking results are consistent. The only one different

permission in the ranking results is shown in bold.

Figure 2 shows the occurrence rate of each top ranked

permission with CorrCoef in the benign apps as well as

in the malapps. It is clear that the top risky permissions

well discriminate malapps from benign ones by the fre-

quency of their appearance. The SMS related permissions

are consistently ranked very top by the three ranking meth-

ods. The difference of occurrence rate between benign apps

and malapps is above 50% for permissions READ_SMS,

RECEIVE_SMS, and SEND_SMS, and is more than 15% for

permission WRITE_SMS. We thus see that the usage pattern

of SMS related permissions is quite different between the

benign apps and the malapps and many malapps attempt to

request SMS related permissions. This is consistent with the

recent report [34] indicating that the total number of premium

service abuser and data stealer accounts for 68% mobile

threats. SMS-related activities mainly contribute to these two

types of dominant threats. INSTALL_PACKAGES is also a

risky permission that is more likely requested by malapps.

The permission INTERNET is a sensitive permission. How-

ever, it is not ranked on the top, as it is a common permission

often requested by both benign apps and malapps.

Android provides “protectionLevel” that categories

permissions as “normal”, “dangerous”, “signature” and

“signatureOrSystem” [25]. The permissions attributed as

“signature” and “signatureOrSystem” are system-granted only

and are not considered in our study. Our ranking results for

“normal” and “dangerous” thus provide fine-grained risks for

permission requests. While our ranking results are roughly

consistent with the risk signals that Android “protectionLevel”

identifies (accounts for 31/40), there exist differences between

the two risk indicators. First, a number of “normal”

permissions appear in our top-40 risky permission lists,

as underlined in Table II. As Android permissions evolve

with the new versions of Andriod, we use GingerBread

(Android version 2.3.7) as an example to illustrate the main

differences. There are 9 “normal” permissions appearing in

our top-40 risky permission list. For example, permission

SET_ALARM is attributed as “normal” by Android. However,

it is ranked 9th in top-40 risky permissions in our analysis.

With in-depth analysis, we find that there are only 238 benign

apps requesting permission SET_ALARM (account for

0.077%) that is requested by 221 malapps (account for

4.54%). Most of these 221 malapps induce users to send SMS

that is triggered by an alarm (clock), in order to get profit

with the unawareness of users. Another example is permission

RECEIVE_BOOT_COMPLETED. While it is attributed as

“normal”, it is requested by 35.6% of malapps in order to

re-boot the system to trigger the malicious behaviors. Our

study indicates that even “normal” permissions can be

exploited by malapps. Second, a number of “dangerous”

permissions do not appear in the top-40 risky list. For example,

in GingerBread, 19 out of the total 46 “dangerous” permissions

are not ranked as top-40 by our study. For example, permission

SET_TIME_ZONE is attributed as “dangerous”. However, it

does not indicate risk and thus ranked as 80/88 in our study,

since it is never exploited by any malapp in our study.

Android intuitively attributes a permission by considering

whether it can access directly the resources of the system.

However, “normal” permissions can be exploited by sophisti-

cated malapps, as discovered by our work that ranks the risk

of permissions based on the quantitative analysis of benign

apps as well as malapps on a very large-scale with machine

learning techniques. Our study thus provides empirical view

on the risks of Android permissions.

B. Risky Permission Sets

As introduced in Section IV, we can obtain risky permission

subsets in three different ways, 1) taking top-k permissions

1876 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

from the ranking results; 2) selecting k-permission sets

by SFS; and 3) extracting k PCs by PCA method. Varying

k, we have risky permission sets in different sizes. In order

to evaluate the capability of different risky permission sets

for malapps detection, we apply SVM with RBF kernel on

three ranking sets, one SFS subset and one PCs set. The clas-

sification results on these five different permission sets are

compared on Accuracy (ACC) and F-score.

Accuracy is the proportion of correctly classified data object

(both True Positives (TP) and True Negatives (TN)) in the

population (that is, the sum of TP, TN, as well as False

Positive (FP) and False Negative (FN)):

ACC =
TP + TN

TP + TN + FP + FN
. (6)

F-score is a compromised measure between Precision and

Recall, where Precision can be referred as Positive predictive

value (defined as Precision = TP
TP+FP

), and Recall is also

referred to as the TPR (calculated by Recall = TP
TP+FN

). It

is defined as

F -score = 2 ·
Precision · Recall

Precision + Recall
. (7)

F-score is usually used to evaluate the performance of unbal-

anced binary classification problem, like our malapps detec-

tion problem involving a relatively small number of malapps

comparing to that of benign apps. It can be interpreted as

a weighted average of the precision and recall. A F-score

close to 1 indicates the good performance on correctly

classifying the minority class, which in our case is the

malapp.

Decision Tree (DTree) and Random Forest (RF) inherently

possesses the function of feature selection. In other words, they

perform feature selection and classification simultaneously. We

therefore compare their results with that of five SVM outputs.

In order to have a reliable performance measure and fair

comparison, all results reported in this paper are from the

implementation with a 5-fold cross-validation. In detail, we

randomly partition the malapp set as well as the benign app

set into 5 equal size of subsets. 4 subsets from malapps and

another 4 subsets from benign apps are retained for training the

models. The remaining single subset from malapps and single

subset from benign apps are used for the testing. The cross-

validation process is then repeated 5 times, with each of the

5 subsets used exactly once as the test data. The performance

measures from the 5 folds are then averaged to produce a

single estimation. Varying the number k of permissions used

for detecting malapps, we show the ACC and F-score obtained

with 7 methods in Figure 3–4.

From Figure 3, we observe that the detection accuracy

for most methods almost reaches the best when around

40 permissions are used for building the models, except

Random Forest and DTree. DTree maintains a stable rate

when over 40 permissions are used. Random Forest has the

best performance when 10 permissions are used for sampling

and tree construction. This is explainable because Random

Forest is an ensemble method and prefer to have a set

of trees as diverse as possible. The results of F-score are

consistent with those of accuracy. The top 40 permissions

Fig. 3. The detection accuracy of 7 different methods when increasing the
number of permissions.

Fig. 4. The F-score of 7 different methods when increasing the number of
permissions.

listed in Table II and the 40-permission sets by SFS can

be considered as the most useful risky subset, as they have

better performance than permissions sets with other k values,

considering that we normally tend to select the smallest

subset of permissions. Adding more permissions does not

help on improving but may introduce redundant, noisy and

irrelevant information. In the next Section, we thus evaluate

to what degree the detection rates can be achieved with

only the 40 risky permissions selected by each corresponding

method.

Different methods may result in different subsets of relevant

permissions. While CorrCoef and T-test select exactly the

same subsets of risky permissions, MuInfo selects only one

different risky permissions, as shown in Table II. We examine

the subset of permissions selected by SFS method and find that

there are 25 permissions overlapped with the top-40 ranking

results. PCA is not considered for overlap checking, because

it does not directly select the 40 original permissions, but

produces 40 PCs instead to represent the permissions. It’s

worth noting that permissions may be co-related: one of a pair

co-related permissions can be represented by the other. This

explains why the ACC and F-score curves almost remain after

using more than 40 permissions, even the permission subsets

may be different.

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1877

Fig. 5. The ROC of 7 methods when using only 40 relevant risky permissions.

TABLE III

COMPARISON OF TPR AND FPR WITH OUR 7 METHODS AND WITH

KIRIN’S RULES [23] AS WELL AS WITH RCP METHOD [5]

C. Comparative Detection Results With 7 Methods, With

Kirin’s Rules [23] as Well as With RCP [5]

We employed the 7 methods to detect malapps based on

the risky permission subsets (PCA is an exception, as it is

based on linear combinations of permissions). The compara-

tive results are shown in Figure 5 by ROC (Receiver Operating

Characteristic) Curves that are the plot of TPR against FPR.

From Figure 5, we observe that all the 7 methods achieve

high detection rates with low false positive rates based on only

40 relevant risky permissions. With Random Forest, the TPR

rate reaches as high as 0.9462 with a FPR as low as 0.006.

To make further comparison, we also use Kirin [23] as well as

RCP [5] to detect malapps in our data. The TPR and FPR with

7 methods as well as results of Kirin and RCP are described

in Table III. It is clear that all the 7 methods are superior to

Kirin and to RCP in terms of both TPR and FPR.

D. Extracted Rules and Their Performance

Malapps in different sets may have different charac-

teristics, e.g., different distribution of permission requests.

The detection of malapps with different characteristics is a

big challenge. We are motivated to detect malapps with varied

characteristics with a set of detection rules extracted from the

permission sets with DTree. In the experiments, 95% of apps

randomly selected from all the benign samples as well as three

sets of malapps are used as data input to construct the rules,

in order to detect the other single set of malapps. We used

the remaining 5% of benign apps to evaluate the FPR. Note

that only DTree can produce explicit rules. Randomly Forest

Fig. 6. The TPR for the detection of unknown malapps using the decision
rules.

ensembles a set of independently learned decision trees and

it cannot construct explicit rules. To facilitate the comparison,

we also include Random Forest in evaluation because it gives

the best performance in our previous results.

107 decision rules are constructed with the 40 relevant

permissions using all the 95% benign apps as well as sets of

Mal_Zhou and MAL_VS with DTree. Each of such IF-THEN

rules has condition as a conjunction of permission values and

consequence as a class label, which is −1 (benign) and 1
(malicious) in our case. Note that in a rule the conjunction of

permission values forms a sufficient condition for detecting

malapps, but not a necessary condition. As an example,

detection rule 281 and 19 are depicted as

Rule 281:
READ_SMS = 1
INTERNET = 1
READ_EXTERNAL_STORAGE = 0
WRITE_EXTERNAL_STORAGE = 1)
class = 1 [99.7%]

Rule 19:
IF (READ_CALL_LOG = 1)
THEN class = -1 [100.0%]

While rule 19 indicates a benign app, rule 281 describes a

kind of malicious behavior. The rule 281 can be interpreted

as follows. An app requests to write but not to read external

storage. In addition, it requests to connect the Internet and

read SMS. This implies that the app may transfer the privacy

information from the device to the external storage and then

may find some means to send out the information by Internet

stealingly. Apps that match (sufficient condition of) rule 281

are malicious with a probability of 99.7% in the training data.

With in-depth analysis, we find that there are 415 malapps

that matches rule 281. These malapps belong to the families of

ADRD, AnserverBot, BaseBridge, etc. in the set of Mal_Zhou.

In contrast, there are only 4 benign app samples matching the

rule. This indicates that the rules well discriminate malapps

from benign apps, and thus are effective for the detection of

malapps.

The TPRs of our rules are visually compared with those

of Random Forest and Kirin in Fig. 6, and the FPRs are

1878 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

TABLE IV

THE FPRS USING THE DECISION RULES

Fig. 7. The ROC of 7 methods on a set of Appchina.

given in Table IV. It is observed that our detection rules

outperform Kirin’s in terms of TPRs as well as FPRs. With

the rules constructed from the set of Mal_Zhou, Mal_COM2

and Mal_VS as well as 95% of all the benign apps, we detect

74.03% malapps in the Mal_Com2 at FPR of only 0.12%.

E. Evaluation on a Third-Party App Store

We also implement our methods on a set of apps collected

from AppChina that is a widely used third-party app store

in China. We collected 10,737 apps, in which 652 malapps

are identified by at least two of ten anti-virus softwares (e.g.,

AntiVir, F-Secure, McAfee and Panda). The malapps thus

account for approximately 5.56% of all the apps in the app

store.

We used our 7 methods to detect malapps based on the

permission requests, and the ROC curves are shown in Fig. 7.

It is observed that our methods are effective as well to identify

malapps in AppChina. As an example, Random Forest yields

TPR of 0.9209 at a FPR of 0.0135.

VI. DISCUSSION AND ANALYSIS

In this Section, we discuss two major questions for the

analysis and detection of malapps with permission requests:

(1) is it feasible for the detection of malapp detection with

only permissions requested by apps? and (2) what are the

main limitations behind the empirical results? what are the

False Positives and False Negatives, and why?

A. Feasibility

Most malapps need to request sensitive permissions that

allow them to access sensitive API, code or data in the device,

while most benign apps do not. Intuitively, malapps can be

distinguished from benign ones with permission requests. This

is approved by comparing the permission usage between the

Fig. 8. The number of permissions requested by malapps and by benign
apps (percentage).

Fig. 9. The number of permissions requested by apps in (a) Mal_Com1,
(b) Mal_Com2, (c) Mal_VS and (d) Mal_Zhou.

malapps and benign apps shown in Fig. 2, where certain sets

of permissions are very frequently requested by malapps but

requested by benign apps with less probability. READ_SMS,

for example, is requested by 53.62% of malapps but only

requested by 1.36% of benign apps.

As shown in Fig. 8, malapps and benign apps request

different number of permissions, showing different patterns of

permission usage. In details, as shown in Fig. 9, different sets

of malapps depict different patterns of permission usage, too.

The different number of permissions requested by different

kinds of apps gives another evidence that permissions can be

used as effective features to discriminate malapps from benign

apps.

We employ three methods, i.e., Mutual Information,

CorrCoef and T-test to rank individual permission w.r.t. their

risk to the system. We conduct extensive experiments on a

very large app set and find that with only the 40 permissions,

the detection accuracy almost reaches the best or maintains

stable based on our 7 methods. We thus identify the 40 risky

permissions that can be used for detecting malapps. With the

40 risky permission requests, our methods including SVM,

DTree and Random Forest detect more than 92% malapps at

a false positive rate of less than 0.59%. The decision rules

constructed by DTree detect as high as 74.03% of malapps

collected from different organizations.

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1879

Different apps may have the same permission requests. As

shown in Table I, the number of distinct permission vectors

only account for 9.25% of all the permission vectors. We

thus examine the results to check whether a single malicious

permission vector that we correctly detected represents a large

number of malapps, leading to undesired biased detection

results. Through the careful examination, we have two obser-

vations supporting our unbiased results. First, most families

of malapps request different combinations of permissions,

i.e., have different distinct permission vectors. For example,

Mal_Zhou consists of 1,260 malapp samples that are catego-

rized into 49 malapp families. There are in total 332 distinct

permission vectors in Mal_Zhou, in which 324 distinct per-

mission vectors are distributed in different malapp families

with almost the same probability proportional to the number of

malapps in their associated families. This also indicates that to

a certain extent permission requests characterize the behaviors

of Android apps. Second, the malicious permission vectors that

have been correctly detected do not represent a large number

of malapps. We describe the detailed information on what apps

in the set of Mal_Zhou are correctly detected with Random

Forest in Table V. It is observed that the malapps correctly

detected by Random Forest are almost uniformly distributed

in the malicious families of Mal_Zhou. The empirical results

as well as the analysis further approve that permission requests

can be effective to detect Android malapps.

B. Limitations

As Random Forest shows best performance for the detection

of malapps, we carefully investigate in detail the FNs and FPs

it produces. When Random Forest successfully detects 92.79%

malapps (351 malapps undetected), simultaneously it produces

0.19% False Positives (605 benign apps falsely reported).

By thorough investigation, we are aware that only consid-

ering permission requests as features may have difficulties

to improve the current detection accuracy. Most apps only

request a small number of permissions. As shown in Fig. 8,

92.8% benign apps and 97.3% malapps request no more than

12 and 18 permissions, respectively. The averaged number of

permissions requested by all the apps used in our experiments

is 5.7. As a result, the permission vectors are very sparse,

which brings difficulties for the detection, not to mention that

the permission vectors are Boolean type. We summarize the

following kinds of difficulties.

First, a number of malapps request the exactly same permis-

sions that are requested by benign apps. This gives negative

impact on the detection accuracy. As shown in Table VI,

841 malapps request the same permission lists that are also

requested by 67,836 benign apps. Among the undetected

351 malapps and 605 false positives, we find that 263 malapps

share the same permission vectors with benign apps, while

392 false positives share the same permission vectors with

malapps. In this case the detector cannot produce stable results

that are basically determined by the ratio between the number

of benign apps and of malapps. This may explain why the

TPR increases slowly after it is over 0.97 for Random Forest

or over 0.92 for SFS with the increase of TPR (see Fig. 5).

TABLE V

DETAILED DETECTION RESULTS ON Mal_Zhou WITH RANDOM FOREST

Second, some root-exploit type malapps do not need to

request any permissions. In this case, relying on only per-

missions is not feasible for the detection of malapps (a large

number of benign apps request no permission too). In addition,

there is a number of malapps (14 samples in our data)

that embed their malicious apks inside the up-level benign

apk without requesting a permission. Normally it returns no

permission if we directly extract the permissions from the

benign up-level apk. This leads to false negatives. As men-

tioned, the Android app developers may request overprivileged

permission requests that are never actually used in the app.

This leads to false positives if only using the permission

information for the detection.

1880 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

TABLE VI

THE NUMBER OF SHARED PERMISSION REQUESTS

BETWEEN THE BENIGN APPS AND MALAPPS

Third, the 88-dimensional sparse vectors are not informative

enough to comprehensively describe behaviors of an app. In

our experiments, among the 605 false positives, 565 benign

apps request risky permissions like SMS-related permissions

or “READ_PHONE_STATE”, and are thus falsely reported as

malapps. Indeed, the functionality of these apps is truly rele-

vant to the requested risky permissions. However, additional

information is required to justify their permission requests.

Going beyond our work on malapp classification, when

conducting anomaly detection, a set of benign apps with

informative features is required to build normal detection

models that are effective to discover novel malapps. A sample

is reported as an anomaly if its behavior significantly deviates

the normal models. However, it would be a barrier for anomaly

detection because of the sparseness of the permission vectors.

As malicious apps have become sophisticated and polymor-

phic, more features need to be explored in order to improve

the capacity of detectors for the detection of novel malapps.

Our in-depth analysis and extensive results indicate that the

use of permissions can be used to detect malapps for the first

step, since it can be effective and can process a very large set

of samples efficiently.

VII. RELATED WORK

The analysis and detection of Android malicious appli-

cations is an emerging issue. The related work of this

paper mainly falls into two aspects: permission analysis and

permission-based malapp detection.

A. Permission Analysis

Felt et al. [22] performed two usability studies to examine

whether the Android permission system is effective at warning

users. In detail, they evaluated whether Android users pay

attention to, understand, and act on permission information

during installation. Their work indicates that current Android

permission warnings do not help most users make correct

security decisions. Pandita et al. [6] proposed WHYPER,

in an attempt to help the users to understand what permis-

sions an app requests before its installation, by identifying

the sentences that describe the need for a permission with

Natural Language Processing (NLP) techniques. Barrera et al.

[35] examined 1,100 Android apps’ permission requests and

used Self-Organizing Maps (SOM) to perform 2-dimensional

visualization that depicts which permissions are used in apps

with similar patterns.

Felt et al. [19] developed Stowaway to detect overprivileged

permissions in Android apps. Au et al. [36] extended Stow-

away and developed PScout, a tool that extracts the permission

specification from Android with static analysis. With PScout

they analyzed 4 versions of Android spanning from version

2.2 up to the Android 4.0. Their work indicates that while

there is little redundancy in the permission specification, 22%

permission are unnecessary if apps can be constrained to

only use documented API. AppProfiler presented by Rosen

et al. [37] produced apps’ behavioral profiles by creating a

knowledge base of API calls with privacy-related behavior.

The profiles were then used for detecting privacy-related app

behaviors. Zhang et al. [38] proposed VetDroid that is a

dynamic analysis framework, in an attempt to capture app-

system interactions and sensitive behaviors inside an app, by

using the permission usage behavior. While our methods also

provide a better understanding of permission use, our work

is mainly based on the comprehensive analysis of permission

requests for the detection of malapps on a very large scale.

B. Permission-Based Malapp Detection

There exists related work that mainly relies on Android

permissions to detect or analyze malicious apps. Chen et al.

proposed [39] Pegasus, in an attempt to detect malapps that are

characterized by the temporal order in which an app uses APIs

and permissions. They constructed Permission Event Graph

(PEG) with static analysis and implemented models of the

Android event-handling mechanism and APIs. Over 200 apps

were used in their experiments to evaluate Pegasus. Peiravian

and Zhu [40] used permissions and API calls of Android

applications to detect malapps. Chakradeo et al. [13] used

Multiple Correspondence Analysis (MCA) method to detect

malapps with attributes like permission requests, intent filters,

native code and presence information of zipped files that were

extracted from manifest files of apks. Their methods detect

90% of malapps while suffering a false positive rate of 6.5%.

Arp et al. [12] used permission requests as well as other

static features (e.g., API calls, intent filters) to detect malapps.

When using SVM as classifier, they produce a TPR of 94% at a

FPR of 1%. Our work mainly focuses on Android permission.

We used 7 methods for the classification and the results given

by Random Forest shows slight superior results (i.e., TPR

of 94.62% at a FPR of 0.6%). Zhou et al. [41] proposed

Droidranger in order to detection malapps on popular Android

markets. They used several schemes to aid the detection.

Permission request information is mainly used as a criteria

to filter out unrelated apps. Our work focuses on the analysis

of malapps with permission usage. We systematically evaluate

and discuss the malapp detection results with permission

ranking and different effective claudication algorithms on a

very large data.

The closest research to our work was reported by

Sarma et al. [5], Peng et al. [4] and Enck et al. [23].

Sarma et al. [5] used permission information as data source to

evaluate the risk of an app by examining how rare permissions

it requests comparing with the permissions requested by other

apps in the same categories. 158,062 benign apps as well as

WANG et al.: EXPLORING PERMISSION-INDUCED RISK IN ANDROID APPLICATIONS 1881

121 malapps were used for the evaluation. Our work provides

systematic analysis on permissions. We classify the malapps

based on several algorithms with permission usage without

considering their categories. In addition, while we use a much

larger app set for the evaluation, our method shows superior

results in Table III. Peng et al. [4] used three probabilistic

generative models, i.e., Naive Bayesian models, mixture of

Naive Bayes models and novel hierarchical Bayesian models

for risks scoring and risk ranking for apps. Our work is

different with their research in that we rank the risk of

permissions (while they ranked the apps with a score) and

identify a subset of risky permissions for the detection of

malapps. In addition, we systematically discuss the feasibility

as well as the limitations by using the permissions for the

analysis of malapps.

Enck et al. [23] constructed 9 permission rules called Kirin

that classifies an app as potentially malicious if the app

requests certain combinations of permissions that match the

rules. The rules are defined by security requirement engi-

neering. In contrast, we generated over 200 detection rules

based on empirical analysis of a very large app sets with

decision tree. Our rule set outperforms Kirin in the detection

of malapps.

Our work provides in-depth analysis and discussion on the

effectiveness as well as the limitations of malapp detection

with only permission requests based on empirically extensive

experiments on a very large scale. Permission usage is intuitive

and important feature for Android apps. Our analysis thus

provides a vision regarding the use of permission requests for

the detection of malapps.

VIII. CONCLUSION

In this work, we provide a systematic study on the

exploration of permission-induced risk in Android apps on a

large-scale in three levels. First, we rank all the individual

permissions w.r.t. their potential risk with three methods.

Second, we identify subsets of risk permissions with sequential

forward selection as well as with PCA. We then employ

several algorithms, namely, SVM, Decision Tree and Random

Forest, to detect malapps based on the identified subsets of

risky permissions. We also construct rule sets with Decision

Tree to detect malapps with different characteristics. A large

official app data set consisting of 310,926 benign apps and

4,868 malapps, as well as a third-party app set are used

for the evaluation. The empirical results show that with the

40 risky permissions, the best detection rate with Random

Forest reaches 0.9462 at a false positive rate of 0.006. We share

our data on the public for the research community. Our study

indicates that risky permissions can be effective for the

detection of malapps at least for the first scan of a large

amount of Android apps. Our study also provides insightful

understanding regarding the risk of individual permissions and

of their combinations for Android users as well as for the

developers.

We discuss and analyze in depth the effectiveness as well

as the limitations on the detection of malapps with only per-

mission requests. While the permission requests characterize

the behaviors of apps to certain extent and the detection

can be effective, only considering the permissions would

have difficulties to improve the current detection accuracy,

as the permission vectors are very sparse and Boolean type.

In the future work, we are exploring more relevant features

that inherit in apps in order to improve the detection accuracy

of Android malapps.

REFERENCES

[1] D. Research. (2013). Global Smartphone Shipments to Reach

1.24 Billion in 2014. [Online]. Available: http://www.digitimes.
com/news/a20131125PD218.html

[2] I. D. Corporation. (2013). Android Pushes Past 80% Market Share

While Windows Phone Shipments Leap 156.0% Year Over Year

in the Third Quarter, According to IDC. [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS24442013

[3] B. Uscilowski. (2013). Symantac White Paper: Mobile Adware

and Malware Analysis. [Online]. Available: http://www.symantec.com/
content/en/us/enterprise/media/security_response/whitepapers/madware_
and_malware_analysis.pdf

[4] H. Peng et al., “Using probabilistic generative models for ranking risks
of Android apps,” in Proc. ACM Conf. CCS, 2012, pp. 241–252.

[5] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: A perspective combining risks and benefits,” in
Proc. 17th ACM SACMAT, 2012, pp. 13–22.

[6] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
Towards automating risk assessment of mobile applications,” in Proc.
22nd USENIX Secur. Symp., 2013, pp. 527–542.

[7] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
Android application security,” in Proc. 20th USENIX Secur. Symp., 2011,
p. 21.

[8] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker:
Scalable and accurate zero-day Android malware detection,” in Proc.
10th Int. Conf. MobiSys, 2012, pp. 281–294.

[9] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proc. ACM

Conf. CCS, 2012, pp. 229–240.
[10] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-

tion and evolution,” in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 95–109.

[11] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in Proc. 9th Int. Conf.

SecureComm, 2013, pp. 86–103.
[12] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieckand,

“Drebin: Effective and explainable detection of Android malware in your
pocket,” in Proc. NDSS Symp., 2014, pp. 1–12.

[13] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “MAST: Triage for
market-scale mobile malware analysis,” in Proc. 6th ACM Conf. WISEC,
2013, pp. 13–24.

[14] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. USENIX Symp.

OSDI, 2010, pp. 393–407.
[15] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These

aren’t the droids you’re looking for: Retrofitting Android to protect data
from imperious applications,” in Proc. 18th ACM Conf. CCS, 2011,
pp. 639–652.

[16] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic security
analysis of smartphone applications,” in Proc. 3rd ACM CODASPY,
2013, pp. 209–220.

[17] L. K. Yan and H. Yin, “DroiDscope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware analysis,” in
Proc. 21st USENIX Conf. Secur. Symp., 2012, p. 29.

[18] Android. (Jun. 2014). Andriod Developers Guides. [Online]. Available:
http://developer.Android.com/guide/topics/security/permissions.html

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. 18th ACM Conf. CCS, 2011,
pp. 627–638.

[20] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock Android smartphones,” in Proc. NDSS Symp.,
2012, pp. 1–15.

[21] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proc. 20th USENIX Conf. Secur.

Symp., 2011, p. 22.

1882 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 11, NOVEMBER 2014

[22] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proc. 8th SOUPS, 2012, Art. ID 3.

[23] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proc. 16th ACM Conf. CCS, 2009,
pp. 235–245.

[24] Android. (Jun. 2014). Android Security Overview. [Online]. Available:
http://source.Android.com/devices/tech/security/index.html

[25] Android. (Jun. 2014). Android Manifest. [Online]. Available:
http://developer.Android.com/guide/topics/manifest/permission-element.
html

[26] Website of VirusTotal. (Jun. 2014). VirusTotal. [Online]. Available:
http://www.virustotal.com

[27] Website of VirusShare. (Jun. 2014). VirusShare. [Online]. Available:
http://virusshare.com/

[28] Android Developers. (Jun. 2014). Manifest Permission. [Online].
Available: http://developer.Android.com/reference/Android/Manifest.
permission.html

[29] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[30] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif.
Intell., vol. 97, nos. 1–2, pp. 273–324, 1997.

[31] C. J. C. Burges, “A tutorial on support vector machines for pat-
tern recognition,” Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[32] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[33] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[34] Trend. (2013). TrendLabs 2Q 2013 Security Roundup. [Online].
Available: http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/reports/rpt-2q-2013-trendlabs-security-roundup.pdf

[35] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to Android,” in Proc. 17th ACM Conf. CCS,
2010, pp. 73–84.

[36] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android permission specification,” in Proc. ACM Conf. CCS, 2012,
pp. 217–228.

[37] S. Rosen, Z. Qian, and Z. M. Mao, “AppProfiler: A flexible method of
exposing privacy-related behavior in Android applications to end users,”
in Proc. 3rd CODASPY, 2013, pp. 221–232.

[38] Y. Zhang et al., “Vetting undesirable behaviors in Android apps with
permission use analysis,” in Proc. ACM Conf. CCS, 2013, pp. 611–622.

[39] K. Z. Chen et al., “Contextual policy enforcement in Android appli-
cations with permission event graphs,” in Proc. NDSS Symp., 2013,
pp. 1–19.

[40] N. Peiravian and X. Zhu, “Machine learning for Android malware
detection using permission and API calls,” in Proc. IEEE 25th ICTAI,
Nov. 2013, pp. 300–305.

[41] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets,” in Proc. NDSS Symp., 2012, pp. 1–13.

Wei Wang is currently an Associate Professor with
the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing, China.
He received the Ph.D. degree in control science and
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2006. He was a Post-Doctoral Researcher
with the University of Trento, Trento, Italy, from
2005 to 2006. He was a Post-Doctoral Researcher
with TELECOM Bretagne, Rennes, France, and the
Institut National de Recherche en Informatique et
en Automatique (INRIA), France, from 2007 to

2008. He was a European ERCIM Fellow with the Norwegian University
of Science and Technology (NTNU), Trondheim, Norway, and the Interdisci-
plinary Centre for Security, Reliability and Trust, University of Luxembourg,
Luxembourg, from 2009 to 2011. He visited INRIA, ETH Zurich, Zürich,
Switzerland, NTNU, CNR, and New York University Polytechnic, New York,
NY, USA. He has authored or coauthored over 35 peer-reviewed papers in
various journals and international conferences. His main research interests
include mobile, computer, and network security.

Xing Wang is currently pursuing the Ph.D. degree
with the School of Computer and Information Tech-
nology, Beijing Jiaotong University, Beijing, China.
He received the B.S. degree from Beijing Jiaotong
University in 2009. He visited the King Abudul-
lah University of Science and Technology, Thuwal,
Saudi Arabia, in 2014. His main research interests
lie in mobile security.

Dawei Feng received the B.S. and M.S. degrees
from the National University of Defense Technol-
ogy (NUDT), Changsha, China, in 2007 and 2010,
respectively, and the Ph.D. degree from the Uni-
versité Paris-Sud, Orsay, France, in 2014. He is
currently an Assistant Professor with NUDT. He
visited the King Abudullah University of Science
and Technology, Thuwal, Saudi Arabia, in 2013. His
main research interests include machine learning,
data mining, and cloud computing.

Jiqiang Liu received the B.S. and Ph.D. degrees
from Beijing Normal University, Beijing, China, in
1994 and 1999, respectively. He is currently a Pro-
fessor with the School of Computer and Information
Technology, Beijing Jiaotong University, Beijing. He
has authored over 60 scientific papers in various
journals and international conferences. His main
research interests are trusted computing, crypto-
graphic protocols, privacy preserving, and network
security.

Zhen Han received the Ph.D. degree from the China
Academy of Engineering Physics, Beijing, China, in
1991. He is currently a Professor with the School
of Computer and Information Technology, Beijing
Jiaotong University, Beijing, China. He has authored
or coauthored over 100 papers in various journals
and international conferences. His main research
interests are information security architecture and
trusted computing.

Xiangliang Zhang is currently an Assistant
Professor and directs the Machine Intelligence and
Knowledge Engineering Laboratory with the Divi-
sion of Computer, Electrical, and Mathematical Sci-
ences and Engineering, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia. She
was a European ERCIM Research Fellow with the
Department of Computer and Information Science,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, in 2010. She received
the Ph.D. (Hons.) degree in computer science from

the Institut National de Recherche en Informatique et en Automatique, Uni-
versity Paris-Sud 11, Orsay, France, in 2010. She visited the IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA, Texas A&M University,
College Station, TX, USA, University Paris-Sud 11, Concordia University,
Montreal, QC, Canada, Microsoft Research Asia, Beijing, and the University
of Luxembourg, Luxembourg. She serves as a Program Committee Member
of premier conferences, such as the Conference on Knowledge Discovery and
Data Mining, the IEEE International Conference on Data Engineering, and
the IEEE International Conference on Data Mining series. She has authored
or coauthored over 50 refereed papers in various journals and conferences.
Her main research interests and experiences are in diverse areas of machine
intelligence and knowledge engineering, such as complex system modeling,
computer security, and big data processing.

