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We propose novel machine learning methods for exploring the domain of music perfor-
mance praxis. Based on simple measurements of timing and intensity in 12 recordings
of a Schubert piano piece, short performance sequences are fed into a SOM algorithm in
order to calculate ‘performance archetypes’. The archetypes are labeled with letters and
approximate string matching done by an evolutionary algorithm is applied to find simi-
larities in the performances represented by these letters. We present a way of measuring
each pianist’s habit of playing similar phrases in similar ways and propose a ranking
of the performers based on that. Finally, an experiment revealing common expression
patterns is briefly described.
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1. Introduction

Expressive music performance as the artistic act of ‘shaping’ a given piece of written

music has become a topic of central interest in the fields of musicology and music

psychology1. In classical music, in particular, the performing artist is an indispens-

able part of the system, shaping the music in creative ways by continually varying

parameters like tempo, timing, dynamics (loudness), or articulation, in order to ex-

press his/her personal understanding of the music. Musicologists and psychologists

alike would like to understand the principles of this behavior – how much of it is

determined by the music, whether there are unwritten rules governing expressive

performance, etc. Recently, also AI researchers have started to look into this phe-

nomenon and to apply their techniques (e.g., machine learning) to get new insights

into patterns and regularities in expressive performances2,3.

1
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In this paper, we present an evolutionary algorithm for finding approximately

matching substrings in character sequences, and use it to search for structure in

expressive performances (by famous pianists) encoded as strings. The goal is to

study both the artists’ intra-piece consistency and potential similarities between

their playing styles.

It is known (and has been shown in laboratory experiments) that performing

expressively in a stable manner is a way of emphazising the structure of the music4.

In particular, similarities in timing patterns across repeats have been noted in vir-

tually every study in the field5. While the above studies were mainly based on

measurements of time alone, we also expect this type of behavior (similar types

of phrases being played with distinctive recognizable performance patterns) when

doing a joint examination of timing and dynamics in music performance. One goal

of our experiments is to compare 12 famous pianists according to the extent of

stability in their performance – their intra consistency. This can be understood as

the extent to which it is possible to distinguish musically similar phrases based on

their interpretation alone. We propose a measure of this phenomenon and rank the

pianists accordingly. A second goal is to compare pianists’ performances directly,

revealing examples of commonalities in the performance praxis.

One approach to attack these problems is to perform a close examination of

the performances of designated repeated patterns (the approach taken, e.g., by

Repp5 or Goebl et. al.6). We do our investigation in the reverse order – finding

the sequences of greatest similarities in the performances and comparing the music

behind. This approach takes its starting point in the performance rather than the

music. In this way, we expect the investigation to be less biased by a predetermined

way of perceiving the music.

2. Performance Data Acquisition and Representation

The data used in this experiment comprises recordings of Franz Schubert’s Im-

promptu, D.899 no. 3 in G[ by 12 different pianists (see Table 1). The performers’

different choices of tempo are immediately apparent from the difference in duration

of the tracks. The slowest interpretation by Kempff lasts 6:47 min., and the fastest

by Lipatti 4:51 min.

We want to characterize the performances in terms of measurements of two

parameters: tempo and loudness. We do this by extracting these features as discrete

measurements for each beat in the score. The 12 recordings were semi-automatically

‘beat-tracked’ with the aid of appropriate software7,8. The onset time of each beat

was registered and for each beat a local tempo in beats per minute was computed.

Furthermore the dynamic level at each beat tracked was also computed from the

audio signal9.

For each beat in the score, we now have measurements of tempo and loudness,

forming a bivariate time series. The performances can be described as consecu-

tive points in the two dimensional tempo-loudness space as suggested by Langner
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Table 1. The recordings used in the experiment.

Index Pianist Recording Year

0 Barenboim DGG 415 849-2 1977

1 Brendel Philips Classics, 456 061 2 1972

2 Gulda Paradise Productions 9/99 1999

3 Horowitz Columbia MS 6411 1962

4 Kempff DGG 459 412-2 1965

5 Leonskaja Teldec 4509-98438-2 1995/96

6 Lipatti Emi Classics CDH 5 65166 2 1950

7 Maisenberg Wiener Konzerthaus KHG/01/01 1995

8 Pires DGG 457 551-2 1996

9 Rubinstein BMG 09026 63054-2 1991

10 Uchida Philips 456 245-2 1996

11 Zimerman DGG 423 612-2 1990

& Goebl10. A graphical animation tool called The Performance Worm11 displays

such performance trajectories in synchrony with the music. A part of a performance

as visualized by the Worm is shown in Figure 1. A movement to the right signifies

an increase in tempo, a crescendo causes the trajectory to move upward, and so

on. Note the display is interpolated and smoothed. For our experiments only the

actual measured points were used. The discrete version of the performance cap-

tures only the fundamental motions in the tempo-loudness space but hopefully also

the fundamental content of the performances. Accentuations between the points of

Fig. 1. Snapshot of the Performance Worm at work: First four bars of Daniel Barenboim’s
performance of Mozart’s F major sonata K.332, 2nd movement. Horizontal axis: tempo in beats per
minute (bpm); vertical axis: loudness in sone. Movement to the upper right indicates a speeding up
(accelerando) and loudness increase (crescendo) etc. etc. The darkest point represents the current
instant, while instants further in the past appear fainter.
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measurements are not present in the data. Neither are refinements of the expression

such as articulation and pedaling.

2.1. Performance letters

The idea is now that performance styles can be compared by comparing sequences

in the points measured. This task has already been attacked with machine learning

methods working on features extracted from subsequences.12

Instead of analyzing the raw tempo-loudness trajectories directly, we chose to

transform the data representation and thus the entire discovery problem into a

form that is accessible to common inductive machine learning and data mining

algorithms: string analysis. To that end, the performance trajectories are cut into

short segments of fixed length. The resulting segments are then grouped into classes

of similar patterns using clustering. The clustering is generated by a self-organizing

map (SOM) algorithm. A SOM generates a geometric layout of the clusters on

a two-dimensional grid or map, attempting to place similar clusters close to each

other. For each of the resulting clusters, a prototype is computed. These prototypes

represent a set of typical elementary tempo-loudness patterns that can be used

to approximately reconstruct a ‘full’ trajectory (a complete performance). In this

sense, they can be seen as a simple alphabet of performance, restricted to tempo

and dynamics.

Figure 2 displays a set of prototypical patterns computed from the 12 perfor-

mances of the piano piece. Based on some experiments the map layout was set to

be a 5×5 grid, and the size of the input segments set to represent a duration of two

beats. Each performance was thus divided into segments of three points each – the

end point of a sequence being the beginning of the next. The duration between the

first and the last of three measured points is equal to two inter-beat intervals, which

is normally referred to as two ‘beats’. The figure displays the resulting 25 prototypes

after clustering all segments from all performances with the SOM algorithm. The

prototypes are labeled with letters – the performance letters. Each performance can

now be represented as a string of 170 letters. One such performance is shown in

Figure 3.

Deciding the number of clusters as well as the length of the input segments is

decision we made based on a few experiments. Changing these values may increase

or decrease the descriptive power of the letters. A more thorough investigation of

these dependencies remains to be done, in order to examine the possibilities of

improving the results we describe here.

Another choice we had to make is what type of normalization we should apply to

the raw measured data prior to clustering. Due to the differences in recording quality

or producers’ ideals, the dynamic average and range of the performances may differ

quite a lot. To prevent this recording artifact from having influence on our data, we

decided to divide every dynamics value by the global mean of all dynamics values

measured. Likewise the pianists’ choice of tempo may be quite different, so in order
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A      (28) B      (82) C      (61) D      (53) E      (31)

F      (63) G     (126) H      (91) I      (156) J      (108)

K      (69) L     (133) M      (92) N     (177) O      (72)

P      (81) Q     (93) R      (90) S      (44) T      (116)

U      (61) V      (72) W     (29) X      (70) Y      (42)

Fig. 2. The clustered performance segments. Each cluster is labeled with a performance letter ;
the number of occurrences of each letter is written in parenthesis. The shaded regions indicate the
variance within a cluster

GTINIMPTLNHNQNLTINQJHNUQLOINMNHSHFQQLEVPROLNMNLECCPPSEKCPQNYNTLTTINRL

ODPRODPIECCHUJPOECCIUJVRTGXTGOQITIDQDRYFTGNGJPTLOINNNLIHOIILJUQLINTMT

JNVGLOXTIDIEUURGIDIDUVRGNHMOINLW

Fig. 3. Daniel Barenboim playing the Impromptu.

to obtain globally comparable conditions some normalization should be applied to

the tempo values as well. With no normalization one could expect the clustering

algorithm to cluster e.g. the sequences from the fastest performance into a cluster

on its own. However we want to be able to characterize all performances with the

same set of descriptors, so likewise all measured tempo values were divided by the

global mean.

The prototypes are a rough approximation of the group of subsegments that they

represent. Note the letter N in the alphabet in Figure 2. It is the most frequent letter

overall. Since all three points are very close together, it describes many situations

where almost no changes in dynamics nor tempo occur, and hence probably has

the least descriptive power. However as we shall see the letters all together do

contain valuable information. It has even been shown that it is possible to recognize

performers on the basis of these letters.13

Finding similarities in the performances can now be expressed as a string match-

ing problem or an approximate string matching problem, which is the main subject
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of this paper. The approximate string matching is done with an evolutionary algo-

rithm described below.

In other words we want to discover patterns in the performance string. A pattern

is a substring that occurs at least twice (identically or with some variation). We

want to discover these patterns as well as find all occurrences of them. We will

refer to the task of finding all similar non-overlapping strings in a performance (up

to a similarity threshold) as segmenting the string, yielding a segmentation of the

performance.

3. Measuring Consistency

Before introducing the search algorithms, we need to explain how we evaluate a

segmentation. Much music is intended to be heard phrase by phrase. Since music

unfolds in time, we are generally not capable of keeping focus on all we have heard

since the beginning of the piece. Rather the music is composed in such a way that

we listen to the music one phrase at a time. A phrase unfolds in a shorter time

period and is structured by the illusion of boundaries created by logical musical

entities in the musical content. The Schubert Impromptu is like this. Furthermore a

music piece typically contains a high degree of repeated material. In fact structure

of a piece can be derived when decomposing the composition into smaller sections

and subsections or phrases.

Given a segmentation of a performance we are interested in examining to what

extent pianists have played similar sounding phrases in the piece with similar ex-

pressions. We will call this phenomenon consistency. The word is not meant to imply

an assessment of value. We would like to use it simply as a measure of the degree to

which similar phrases are played with similar interpretations, and dissimilar phrases

given different interpretations. It does not tell anything about the pleasantness or

quality of the performance per se, although some listeners might find these related

(related to consistency or inconsistency).

Measuring consistency is done in two steps: First the performance string is ex-

amined for recurring patterns (similar or approximately similar). This is done by

string matching algorithms described below. A number of different patterns may be

found – each pattern having two or more instances (occurrences). Next we evaluate

how well the discovered similarities in the expression correspond to similar sound-

ing phrases in the music. A performance will result in a ‘perfect’ segmentation and

therefore a perfect evaluation, when a performer distinguishes every type of phrase

with it’s own expression.

Given two similar sequences of letters we would like to be able to count how

many letter positions (each representing half a bar of music) the sequences have in

common that refer to similar music. For that a structural analysis of the piece was

performed (by the authors, see Table 2, dividing the piece into similar sections and

subsections (phrases) based on the musical content alone.

The Impromptu can be considered to consist of 15 different phrases of varying
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Table 2. The structural analysis of the Impromptu

Position number 0 4 8 12 16 20 24 29 32 36 40 45 48 52 54 58 60 62 68 72 778594100104
Measure number 1 3 5 7 9 11 13 15 17 19 21 23 25 27 28 30 31 32 35 37 394348 51 53

Form section A B B C D E D’
Subsection a b a c d d e f d d e f g h g h h i j j k k i j l

Duration (positions) 4 4 4 4 4 4 5 3 4 4 5 3 4 2 4 2 2 6 4 5 8 9 6 4 4

Position number 108112116120124128132137140145146150152154158160162164166168
Measure number 55 57 59 61 63 65 67 69 71 73 74 76 77 78 80 81 82 83 84 85

Form section A B’ C
Subsection a b a c d d e f e f j m n j m n n n o o

Duration (positions) 4 4 4 4 4 4 5 3 5 1 4 2 2 4 2 2 2 2 2 4

length (1 to 4 1/2 measures), some of which occur up to six times (with some

variation). The phrases are labeled with letters a to l in Figure 2b). For most types

of phrases, all instances have the same length – e.g. all 4 occurrences of phrase a

have length 4. But occurrences of phrases j, k and f have differing lengths. In these

cases the analysis is made in such a way that all phrases begin in the same way –

the longer being continuations of the shorter.

Using the table we can ask if two letter positions refer to similar music. They do

if they are positioned in the same type of subsection and with the same offset from

the beginning in that subsection. Consequently we can count how many letters two

performance substrings have in common that refer to similar music. We are going

to use this for measuring the overall consistency of a segmentation.

The fact that one section (l) is never repeated together with the fact that similar

phrases can have different lengths means that a ‘perfect’ segmentation can maxi-

mally have 163 of the total 170 positions matched correctly.

A segmented performance string is a sequence of letters and patterns (sub-

strings). Here is an example of a segmented string – the repeated pattern labeled

‘1’ has been identified:

1 1
A B C D E F G C D E F H I J

In general, let a segmentation return m different patterns with nj occurrences of

each pattern: s1
1 . . . s1

n1
, s2

1 . . . s2
n2

, . . . , sm
1 . . . sm

nm
. Every string si

j sits somewhere

in the performance string. The search algorithms we have used allows the patterns

to be nested (an instance of pattern i may be contained in an instance of pattern

j, i < j). This is because the string matching algorithms we use actually discovers

hierarchies in the input strings. A segmentation of a string is a nested structure,

constructed bottom-up.

The evaluation scans through the segmentation from left to right. Every letter

which is not matched to any other is counted as unmatched. When a pattern is met,

it is compared for consistency with the other instances of the same pattern one at

a time. We calculate the maximal match among these:

maxMatch(si
nj

) = max
si

nk 6=nj

countMatch(si
nj

, si
nk

) (1)
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where the countMatch method is scanning through the string positions pairwise,

counting how many positions correspond to similar music according to the analysis.

If a string si
j of length p was found to correspond in q positions with another string

si
k (from the same class i) (q ≤ p) it results in a score of q true positives (TP) and

q − p false positives (FP).

When scanning through the top level of the segmentation we get exactly one

evaluation of each position so that invariably TP + FP + unmatched = 170.

Given different segmentations, we can now measure how well they correspond to

the structure of the music. We express this in terms of recall and precision values14.

Recall is the number of correctly found letters (TP) divided by the total number of

letters there is to be found in an ‘optimal’ segmentation (in this case 163). Precision

is TP divided by the total number of matching letters found (TP + FP). The F-

measure combines recall and precision into one value (an α of 0.5 used throughout

this paper giving equal weight to precision and recall):

F (R, P ) = 1 −
1

α 1
P

+ (1 − α) 1
R

, 0 ≤ α ≤ 1 (2)

The F-measure weights the number of correct corresponding letters found against

their ‘correctness’. As precision and recall improve, the F-measure reflecting the

inconsistency drops (the consistency increases).

4. String Matching

To inspect the performances for distinguishable patterns, we now are interested in

finding recurring substrings in the performances.

4.1. Exact string matching

A natural way to start this task was to apply an exact string matching algorithm.

The Sequitur algorithm15 that identifies hierarchical structure in sequences was

applied to each string.

Distinctive similarities in the performances do not show right away. The algo-

rithm found mainly very short sequences and many letters were not included in

any sequence. Even though the longest repeated patterns found in all of the perfor-

mances spanned 5 letters (2 1/2 measures of music), in some of the performances

only repeated strings of 2 and 3 letters were found. Figure 4 shows 2 occurrences of

a 5 letter pattern found, plotted in the tempo-loudness space as well as tempo and

loudness separately. The performances appear less similar in the tempo-loudness

space due to the accumulated inaccuracies from the two dimensions.

These two sequences do refer to similar phrases in the music. Most of the strings

found similar were however not referring to the same music. With no exception,

in every segmentation the number of true positives was smaller than the number

of false positives (precision below 0.5). The segmentations of the performances by

Lipatti and Rubinstein were found most precise (45.5 % and 43.5 % respectively).
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Fig. 4. Two instances of the letter sequence ‘LHPTB’ from Rubinstein’s performance plotted in
the tempo-loudness space (left) and each dimension separately (right).

Also the greatest recall rates were found in these performances, which therefore

score the best (lowest) F-measures (0.652 and 0.686).

From this first attempt it looks as if the pianists are playing rather inconsis-

tently, only occasionally repeating a short performance pattern. Segmenting the

performances based on exact matching might be expecting too much consistency

of the performer and indeed expecting too much of the discrete approximate rep-

resentation of the performance. On the other hand, longer strings do occur so the

performance letters seem to be able to represent some characteristics in the perfor-

mances. We will now explore the possibilities of finding similar patterns based on

inexact string matching.

4.2. Approximate string matching via evolutionary search

We have developed an evolutionary search algorithm able to find approximately

matching strings. The algorithm operates on the input string represented as a dou-

ble linked list of objects. There are two types of objects in the list: objects containing

single letters (unmatched letters) and compound objects each representing an in-

stance of an already found pattern (substring). Before segmenting, all objects are

single letters.

An individual of the population of the EA is a ‘guess’ that two subsequences in

the list of equal length are similar. A subsequence is simply a subpart of the input

list. A subsequence represents a string which can be constructed by concatenating

the letters and strings represented in the list of objects in such a subsequence. An

individual thus points at two subsequences representing two substrings – we will use

both terms in the following.

Each individual points at any time at two such subsequences, and the sequences

are required to have the same size (number of objects). However two different indi-
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viduals need not point at equal sized subsequences.

The fitness function decides which individuals are the most successful guesses

based on string similarity and size of the subsequences. The best guesses are selected

for the next generation and by doing crossover and mutation in terms of altering

the guesses (dynamically changing the size and position of the subsequences) the

algorithm can enhance the fitness of the population. After some generations the

algorithm hopefully settles on the globally fittest pair of subsequences in the search

space.

The EA selects 50% of the new generation by tournament selection from the old

generation (tournament size of 2). In addition the overall fittest individual always

survives (elitism). 10% are made by crossover of the selected individuals, and the last

40% are found by mutating the selected and crossbred individuals. Finally random

mutation is also applied to 40% of the new population.

The crossover of two individuals selects at random one sequence from each parent

and makes a new individual with these sequences. Since the sequences may have

different sizes (coming from different individuals), the longest is shortened until the

strings have equal size.

Mutation of one individual consists of applying one of four different operators.

All operators preserve the invariant that both subsequences in each individual have

the same length.

• Substitute: Substitute one sequence in the individual with a randomly cho-

sen new sequence of same size. Probability p = 0.05.

• Extension: extend both sequences one object either at the front or at the

end, chosen at random and independently for each sequence. Probability

(1 − p)/3.

• Shrink: remove an object at the beginning or end, chosen at random and

independently for each sequence. Probability (1 − p)/3.

• Slide: move the start pointer of the sequence one position to the left or

right. Probability (1 − p)/3.

The fitness function has a dual goal: to optimize the string similarity and to prefer

longer strings to shorter ones. This is expressed as a minimization problem. The

fitness calculation performs a pairwise letter to letter comparison of the letters

in the strings and sums up the distances based on the distance matrix output in

the clustering process. This is the basic string similarity measure. The string size

contributes to the fitness in such a way that longer strings are valued higher than

shorter ones. This is to bias the algorithm towards considering longer less similar

strings to short exact ones. The preference for size is implicitly implemented as

an average dissimilarity allowed (ADA) per letter in the strings. Actually a third

goal of the fitness calculation is to prohibit overlap between subsequences in an

individual – completely overlapping subsequences are maximally similar, but not

interesting, so overlapping result in an unfeasible evaluation.

Segmenting a performance now consists in iteratively pattern discovery in the
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performance string. In each iteration we run the EA and obtain a fittest pair of

strings and their fitness value. A threshold determines if the fitness value is low

enough for the strings to be claimed similar and be part of the segmentation. In

that case, a search for more occurrences of each of the strings is executed. When no

more occurrences can be found, every subsequence representing a discovered string

is substituted in the data structure with compound object now representing the

pattern. The compound objects are given a number (the iteration number) iden-

tifying this class of performance pattern. Further searches in the data can include

and expand these already found entities – nesting can occur. Compounds with the

same identifier are regarded as having zero distance to each other. The discovering

of new patterns continues until the most fit pair of strings found are not within the

threshold.

We can now express the fitness calculation: Let a and b be the subsequences

to compare, and ai and bi represent the i’th object (letter or compound) in the

subsequence:

sim(a, b) =

|a|
∑

i=1

dist(ai, bi) , |a| = |b| (3)

dist(x, y) =























matrix(x, y)−ADA if x and y are both letters,

0 if x and y are compounds of same type,

P if x and y are compounds of diff. type,

P if x or y is a compound and the other not.

The value P is a penalty value, which should be set high (resulting in an eval-

uation above the threshold) in order to keep the algorithm from allowing different

patterns to be similar and letters to be equal to substrings.

How much difference we want to accept between the strings is controlled by

the ADA value and the threshold. Setting the parameters too conservatively (e.g.

setting ADA and threshold to zero), leaving no room for near matches, would make

the algorithm behave as an exact matching algorithm. On the other hand, allowing

too much difference would make the algorithm accept anything as similar.

In the experiments described here, we have fixed the threshold to zero, so strings

a and b are considered similar if sim(a, b) ≤ 0. The dissimilarity allowed then

depends solely on the ADA value. The normalized letter distance matrix output

in the clustering process contains values in the interval [0;1]. Generally there is a

distance of 0.17–0.39 between letters next to each other on the normalized 5×5

SOM. The ADA value should also be given a value in [0;1]. We do systematic

experiments with different ADA values in the next chapter.

We saw above that segmenting according to exact matches was apt to point out

numerous small sequences, which tended not to reflect very consistent performing.

When searching for near matches, strings of short length (2-3 letters) are still likely
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to be similar to too many passages in the performance and hence not show what

we are searching for. The problem with short sequences is that many of them are

not distinctive enough to characterize a single musical idea or phrase, and therefore

can be found in more than one context.

We are not interested in finding sequences of only two letters. As a consequence,

we terminate the segmentation when the fittest subsequence we are able to find

represents a string of only two characters. However, increasing the ADA value en-

courages the EA to select longer strings – the ADA value can be regarded as a

fitness bonus per letter in the strings under consideration.

But finding longer matches is of course not a goal on it’s own. We want to select

the ADA value and the threshold in such a way that sufficiently similar strings are

accepted and too different ones rejected. We would like to draw this line where the

strings found similar are as consistent as possible, i.e., located where the music is

similar. Selecting the parameters which result in the lowest F-measure gives us a

best possible segmentation where the similar strings found have the highest degree

of consistency. This approach is described next.

5. Experiments

Using the F-measure as a consistency measure, we can run the EA with different

parameter settings and evaluate the segmentations. Since the search algorithm is

nondeterministic, it is necessary to run every experiment more than once in order

to be certain that a segmentation was not just an occurrence of bad or good luck.

5.1. Finding an F-measure optimal segmentation

To find the ADA value that results in the lowest F-measure we used the brute force

approach. For 35 different values of ADA every performance was segmented with

the EA, and every experiment was repeated 10 times. The population of the EA

was set to 100 individuals, and the EA was given 600 iterations for discovering

new patterns. The ADA value was gradually increased from 0.01 to 0.35 in steps of

0.01. Figure 5 shows for each value of ADA the average F-measure, precision, and

recall value calculated over the 10 segmentations with the EA of the performance

by Leonskaja.

Allowing only little dissimilarity makes the algorithm behave in a conservative

way – in a run with ADA = 0.1 only four strings were found with a total of 32

letters, but 26 of them being consistent. When ADA is above 0.3, the segmentation

is dominated by a few, but very long strings covering almost every letter in the

string, not discriminating very well the sections in the music. The best average

F-measure was obtained with ADA = 0.21. A segmentation in this setting found

five categories of repeated strings of length 4 to 18 (see Table 3). Even though the

strings may seem very different, the number of true positive matches of the letters

in Table 3 was 80 and the number of false positives 32, giving a recall of 0.491,

precision of 0.714 and F-measure of 0.418.
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Fig. 5. Finding optimal parameters for segmenting the performance by Leonskaja. The points
plotted represent the average value over 10 runs with each ADA value.

Table 3. A segmentation of the performance by Leonskaja.

Iteration Start Strings found Iteration Start Strings found
(Length) pos. similar (Length) pos. similar

1 3 DVJRIKRLJPJVDBCUCC 4 142 CPRTGHHJ

(18) 111 DQJROBTQJPJVJIDQCC (8) 150 CPVOHHQJ

2 22 VNTJCPNJ 5 57 RNFX

(8) 38 UTJJQSNJ (4) 62 MOJP

134 VNRDCPQJ 66 MTGN

3 78 CBCUIR 94 NSGS

(6) 86 CBCUIR 159 VQGT

164 RTGR
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Fig. 6. The patterns starting at positions 22 (VNTJCPNJ) and 38 (UTJJQSNJ) refer to similar music;
the music at pos. 134 (VNRDCPQJ) is somewhat different.
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The strings from iteration 2 were found in three occurrences, plotted in Figure 6.

Two of them refer to similar phrases, and the last (starting at pos. 134) to another

phrase (although some resemblance can be argued). These three strings thus con-

tribute 16 TPs and 8 FPs. It looks as if Leonskaja is more consistent in the loudness

domain than in the tempo domain when playing this repeated phrase. The patterns

found in iterations 1 and 3 are also applied to similar phrases.

5.2. Ranking the performances

It turns out that the performances have different F-measure optimal parameter

settings – reflecting the degree of variance in the performance. We would like to

compare the consistency in the performances by finding the individually optimal

ADA value for each pianist and then compare the respective lowest F-measure

values. This is a fair comparison since every performance is characterized in the

most consistent way possible.

By performing the experiment described in section 5.1 for every performance,

we can now rank the performances according to the average best F-measure found

when trying the 35 different ADA values. The ranking is shown in Table 4.

Table 4. Ranking the pianists according to consistency. The ranking is done based on the
lowest average F-measure over 10 runs for every of the 35 values of ADA

Rank ADA Recall Precision F-measure St. dev F-m Pianist

1 0.21 0.613 0.725 0.336 0.000 Barenboim

2 0.21 0.538 0.765 0.368 0.091 Horowitz

3 0.19 0.497 0.816 0.383 0.029 Lipatti

4 0.26 0.529 0.698 0.399 0.033 Maisenberg

5 0.28 0.589 0.578 0.416 0.000 Zimerman

6 0.21 0.440 0.666 0.472 0.023 Leonskaja

7 0.27 0.488 0.570 0.475 0.080 Uchida

8 0.19 0.388 0.805 0.478 0.057 Rubinstein

9 0.21 0.459 0.606 0.478 0.084 Kempff

10 0.22 0.452 0.583 0.491 0.048 Brendel

11 0.26 0.424 0.475 0.553 0.086 Pires

12 0.24 0.266 0.403 0.681 0.058 Gulda

This suggests that Barenboim and Horowitz are the most consistent performers

of this piece. A Horowitz performance was segmented with the overall single best F-

measure of 0.309. The segmentation of the performance by Lipatti gave the highest

precision, but a mediocre recall results in a lower ranking. The ranking is not to be

taken too literally – the standard deviation values shown indicate uncertainties in

the ranking.

Gulda stands out by receiving the lowest ranking. Often three patterns are found

in his performance – one of which is the largest source of confusion. It is a four letter

pattern and occurs 10 times, where only 2 refer to similar phrases. Figure 7a) shows
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the 10 sequences found similar, plotted in the loudness space. It looks as if Gulda is

not phrasing the music in longer sections. Certainly he does not play distinctively

enough for the phrases to be recognized. Figure 7b) on the other hand shows a

beautiful example of consistent music performance: Horowitz playing the beginning

of the piece compared to when he plays the repeat of the beginning.
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Fig. 7. a) Gulda playing a short pattern in 10 different variants (loudness plotted only). The two
‘consistent’ performances are intensified. b) Horowitz playing a long pattern in 2 very similar ways
(tempo and loudness plotted separately): FNLLIJPTGRGIRONOH at pos. 0 and FNMLGJROGRGHRLGOH at
pos. 108.

When listening to Gulda and Horowitz the authors find that concerning tempo,

Horowitz sounds like having a large ‘momentum’ behind the accelerandos and ritar-

dandos – no sudden changes. Gulda on the other hand is much more vivid, taking

fast decisions in tempo changes. This might account for some of the difference in

consistency measured.

The question is what musical relevance there is in a consistency measure. It

is measurable, and to some extent audible, but what does it mean? Some would

argue that consistency is boring and predictable, but others that the predictability

aids a better understanding of the music. Some would say that inconsistency has a

flavor of uncertainty and randomness, but others that this makes the music varied,

surprising and interesting.

5.3. Finding similarities between the performers

Our second application of the search algorithm is to find similar strings across all

performances. This will reveal similarities in the playing style of different pianists.

For this experiment, we have incorporated in the fitness function a lookup table

over phrase boundaries as represented in the analysis of the piece. Strings that agree

with boundaries (starts and/or ends at subsection) are given a better fitness than

strings not agreeing. This was done in a restrictive way: the fitness of an individual

whose subsequences do not correspond with these boundaries is punished with the



May 6, 2005 1:48 WSPC/INSTRUCTION FILE paper

16 Søren Tjagvad Madsen and Gerhard Widmer

value 0.1 per non-agreeing subsequence ‘end’ (a total of 0.4 possible). The threshold

was again set to zero, and the ADA value fixed to 0.19. This value was the smallest

ADA value overall able to produce a F-measure optimal segmentation (see Table 4).

The segmentation is therefore expected to be conservative. The task for the EA is

now to find as many similar strings across all the 12 performance input strings that

are within the threshold. By imposing this extra constraint we can force the EA to

select equally bounded patterns across the performances. This eases the readability

of the result. The result may however not be telling the whole truth.

Running the EA with a population of 300 individuals we obtain 12 segmentations

shown in Figure 8. Similar substrings found (patterns) are indicated with boxes,

with a number identifying the type. Above and below the strings, the letter position

numbers are printed.

Similarities in performances can now be viewed as vertically aligned ‘boxes’ hav-

ing the same identifier. For example the pattern labeled ‘1’ is found 6 times at two

different positions. This indicates that Barenboim, Horowitz, Uchida and Zimerman

(pianists 0, 3, 10 and 11 in the figure) play the beginning of the piece in similar

ways, and Barenboim and Uchida (pianist 0 and 11) also play the recapitulation

(pos. 108) in this way.

The patterns ‘18’, ‘13’ and ‘9’ are also found at these positions. These pat-

terns were each played by different pianists suggesting individual interpretations by

Brendel, Lipatti and Pires.

The pattern ‘17’ represent similar ways of playing the characteristic four bars

starting at pos. 77. The music is repeated at pos. 85. Barenboim, Brendel and

Leonskaja seem to agree on interpreting this bit.

This segmentation display a handful of similarities across the performances, but

maybe to a higher degree within each performance. By loosening the similarity

criteria, we are likely to find more patterns and more occurrences of the patterns,

but are also introducing more errors.

6. Conclusion

We saw that a rather crude representation of the complex phenomenon of mu-

sic performance, combined with an evolutionary search algorithm, can be used to

recognize patterns in performances of piano music. On the one hand, this exempli-

fies once more how music can be a valuable source of challenging problems for AI.

On the other, this is another instance of AI making new and relevant contributions

to the field of music performance research (other instances are e.g. 6,16). We plan

to continue this work with a larger corpus of more diverse musical material (though

deriving precise measurements of expression in audio recordings is a very tedious

task), in order to provide a deeper analysis of the musical meaning and significance

of the results.
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Fig. 8. All performances segmented in parallel
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