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Abstract We explore the plain, non-hierarchical Vision Transformer
(ViT) as a backbone network for object detection. This design enables
the original ViT architecture to be fine-tuned for object detection with-
out needing to redesign a hierarchical backbone for pre-training. With
minimal adaptations for fine-tuning, our plain-backbone detector can
achieve competitive results. Surprisingly, we observe: (i) it is sufficient to
build a simple feature pyramid from a single-scale feature map (without
the common FPN design) and (ii) it is sufficient to use window attention
(without shifting) aided with very few cross-window propagation blocks.
With plain ViT backbones pre-trained as Masked Autoencoders (MAE),
our detector, named ViTDet, can compete with the previous leading
methods that were all based on hierarchical backbones, reaching up to
61.3 APbox on the COCO dataset using only ImageNet-1K pre-training.
We hope our study will draw attention to research on plain-backbone
detectors. Code for ViTDet is available.1

1 Introduction

Modern object detectors in general consist of a backbone feature extractor that
is agnostic to the detection task and a set of necks and heads that incorpo-
rate detection-specific prior knowledge. Common components in the necks/heads
may include Region-of-Interest (RoI) operations [26,20,25], Region Proposal Net-
works (RPN) or anchors [48], Feature Pyramid Networks (FPN) [37], etc. If
the design of the task-specific necks/heads is decoupled from the design of the
backbone, they may evolve in parallel. Empirically, object detection research has
benefited from the largely independent exploration of general-purpose backbones
[30,49,50,27] and detection-specific modules. For a long while, these backbones
have beenmulti-scale, hierarchical architectures due to the de facto design of con-
volutional networks (ConvNet) [32], which has heavily influenced the neck/head
design for detecting objects at multiple scales (e.g ., FPN).

Over the past year, Vision Transformers (ViT) [14] have been established as
a powerful backbone for visual recognition. Unlike typical ConvNets, the original
ViT is a plain, non-hierarchical architecture that maintains a single-scale feature
map throughout. Its “minimalist” pursuit is met by challenges when applied to
object detection—e.g ., How can we address multi-scale objects in a downstream
task with a plain backbone from upstream pre-training? Is a plain ViT too

1 https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet

https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet
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Figure 1: A typical hierarchical-backbone detector (left) vs. our plain-backbone
detector (right). Traditional hierarchical backbones can be naturally adapted
for multi-scale detection, e.g ., using FPN. Instead, we explore building a simple
pyramid from only the last, large-stride (16) feature map of a plain backbone.

inefficient to use with high-resolution detection images? One solution, which
abandons this pursuit, is to re-introduce hierarchical designs into the backbone.
This solution, e.g ., Swin Transformers [42] and related works [55,17,34,29], can
inherit the ConvNet-based detector design and has shown successful results.

In this work, we pursue a different direction: we explore object detectors
that use only plain, non-hierarchical backbones.2 If this direction is success-
ful, it will enable the use of original ViT backbones for object detection; this
will decouple the pre-training design from the fine-tuning demands, maintain-
ing the independence of upstream vs. downstream tasks, as has been the case
for ConvNet-based research. This direction also in part follows the ViT philos-
ophy of “fewer inductive biases” [14] in the pursuit of universal features. As the
non-local self-attention computation [54] can learn translation-equivariant fea-
tures [14], they may also learn scale-equivariant features from certain forms of
supervised or self-supervised pre-training.

In our study, we do not aim to develop new components; instead, we make
minimal adaptations that are sufficient to overcome the aforementioned chal-
lenges. In particular, our detector builds a simple feature pyramid from only
the last feature map of a plain ViT backbone (Figure 1). This abandons the
FPN design [37] and waives the requirement of a hierarchical backbone. To
efficiently extract features from high-resolution images, our detector uses sim-
ple non-overlapping window attention (without “shifting”, unlike [42]). A small
number of cross-window blocks (e.g ., 4), which could be global attention [54] or
convolutions, are used to propagate information. These adaptations are made
only during fine-tuning and do not alter pre-training.

Our simple design turns out to achieve surprising results. We find that the
FPN design is not necessary in the case of a plain ViT backbone and its benefit
can be effectively gained by a simple pyramid built from a large-stride (16),
single-scale map. We also find that window attention is sufficient as long as
information is well propagated across windows in a small number of layers.

More surprisingly, under some circumstances, our plain-backbone detector,
named ViTDet, can compete with the leading hierarchical-backbone detectors
(e.g ., Swin [42], MViT [17,34]). With Masked Autoencoder (MAE) [24] pre-

2 In this paper, “backbone” refers to architectural components that can be inherited
from pre-training and “plain” refers to the non-hierarchical, single-scale property.
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training, our plain-backbone detector can outperform the hierarchical counter-
parts that are pre-trained on ImageNet-1K/21K [12] with supervision (Figure 3).
The gains are more prominent for larger model sizes. The competitiveness of our
detector is observed under different object detector frameworks, including Mask
R-CNN [25], Cascade Mask R-CNN [4], and their enhancements. We report
61.3 APbox on the COCO dataset [39] with a plain ViT-Huge backbone, using
only ImageNet-1K pre-training with no labels. We also demonstrate competi-
tive results on the long-tailed LVIS detection dataset [23]. While these strong
results may be in part due to the effectiveness of MAE pre-training, our study
demonstrates that plain-backbone detectors can be promising, challenging the
entrenched position of hierarchical backbones for object detection.

Beyond these results, our methodology maintains the philosophy of decou-
pling the detector-specific designs from the task-agnostic backbone. This phi-
losophy is in contrast to the trend of redesigning Transformer backbones to
support multi-scale hierarchies [42,55,17,29]. In our case, the detection-specific
prior knowledge is introduced only during fine-tuning, without needing to tailor
the backbone design a priori in pre-training. This makes our detector compatible
with ViT developments along various directions that are not necessarily limited
by the hierarchical constraint, e.g ., block designs [52,53], self-supervised learn-
ing [2,24], and scaling [57]. We hope our study will inspire future research on
plain-backbone object detection.3

2 Related Work

Object detector backbones. Pioneered by the work of R-CNN [21], object de-
tection and many other vision tasks adopt a pre-training + fine-tuning paradigm:
a general-purpose, task-agnostic backbone is pre-trained with supervised or self-
supervised training, whose structure is later modified and adapted to the down-
stream tasks. The dominant backbones in computer vision have been ConvNets
[32] of various forms, e.g ., [30,49,50,27].

Earlier neural network detectors, e.g ., [26,20,48,47], were based on a single-
scale feature map when originally presented. While they use ConvNet backbones
that are by default hierarchical, in principle, they are applicable on any plain
backbone. SSD [40] is among the first works that leverage the hierarchical nature
of the ConvNet backbones (e.g ., the last two stages of a VGG net [49]). FPN [37]
pushes this direction further by using all stages of a hierarchical backbone, ap-
proached by lateral and top-down connections. The FPN design is widely used in
object detection methods. More recently, works including Trident Networks [33]
and YOLOF [7] have revisited single-scale feature maps, but unlike our work
they focus on a single-scale taken from a hierarchical backbone.

ViT [14] is a powerful alternative to standard ConvNets for image classifica-
tion. The original ViT is a plain, non-hierarchical architecture. Various hierarchi-
cal Transformers have been presented, e.g ., Swin [42], MViT [17,34], PVT [55],

3 This work is an extension of a preliminary version [35] that was unpublished and
not submitted for peer review.
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and PiT [29]. These methods inherit some designs from ConvNets, including the
hierarchical structure and the translation-equivariant priors (e.g ., convolutions,
pooling, sliding windows). As a result, it is relatively straightforward to replace
a ConvNet with these backbones for object detection.

Plain-backbone detectors. The success of ViT has inspired people to push
the frontier of plain backbones for object detection. Most recently, UViT [9]
is presented as a single-scale Transformer for object detection. UViT studies
the network width, depth, and input resolution of plain ViT backbones under
object detection metrics. A progressive window attention strategy is proposed to
address the high-resolution inputs. Unlike UViT that modifies the architecture
during pre-training, our study focuses on the original ViT architecture without a
priori specification for detection. By maintaining the task-agnostic nature of the
backbone, our approach supports a wide range of available ViT backbones as well
as their improvements in the future. Our method decouples the backbone design
from the detection task, which is a key motivation of pursuing plain backbones.

UViT uses single-scale feature maps for the detector heads, while our method
builds a simple pyramid on the single-scale backbone. In the context of our study,
it is an unnecessary constraint for the entire detector to be single-scale. Note
the full UViT detector has several forms of multi-scale priors too (e.g ., RPN
[48] and RoIAlign [25]) as it is based on Cascade Mask R-CNN [4]. In our study,
we focus on leveraging pre-trained plain backbones and we do not constrain the
detector neck/head design.

Object detection methodologies. Object detection is a flourishing research
area that has embraced methodologies of distinct properties—e.g ., two-stage
[21,26,20,48] vs. one-stage [47,40,38], anchor-based [48] vs. anchor-free [31,15,51],
and region-based [21,26,20,48] vs. query-based (DETR) [5]. Research on different
methodologies has been continuously advancing understandings of the object
detection problem. Our study suggests that the topic of “plain vs. hierarchical”
backbones is worth exploring and may bring in new insights.

3 Method

Our goal is to remove the hierarchical constraint on the backbone and to enable
explorations of plain-backbone object detection. To this end, we aim for minimal
modifications to adapt a plain backbone to the object detection task only during
fine-tuning time. After these adaptations, in principle one can apply any detector
heads, for which we opt to use Mask R-CNN [25] and its extensions. We do not
aim to develop new components; instead, we focus on what new insights can be
drawn in our exploration.

Simple feature pyramid. FPN [37] is a common solution of building an
in-network pyramid for object detection. If the backbone is hierarchical, the mo-
tivation of FPN is to combine the higher-resolution features from earlier stages
and the stronger features from later stages. This is realized in FPN by top-down
and lateral connections [37] (Figure 1 left).
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Figure 2: Building a feature pyramid on a plain backbone. (a) FPN-like: to
mimic a hierarchical backbone, the plain backbone is artificially divided into
multiple stages. (b) FPN-like, but using only the last feature map without stage
division. (c) Our simple feature pyramid without FPN. In all three cases, strided
convolutions/deconvolutions are used whenever the scale changes.

If the backbone is non-hierarchical, the foundation of the FPN motivation
is lost, as all the feature maps in the backbone are of the same resolution. In
our scenario, we simply use only the last feature map from the backbone, which
should have the strongest features. On this map, we apply a set of convolutions
or deconvolutions in parallel to produce multi-scale feature maps. Specifically,
with the default ViT feature map of a scale of 1

16 (stride = 16 [14]), we produce
feature maps of scales { 1

32 ,
1
16 ,

1
8 ,

1
4} using convolutions of strides {2, 1, 1

2 ,
1
4},

where a fractional stride indicates a deconvolution. We refer to this as a “simple
feature pyramid” (Figure 1 right).

The strategy of building multi-scale feature maps from a single map is related
to that of SSD [40]. However, our scenario involves upsampling from a deep, low-
resolution feature map, unlike [40], which taps into shallower feature maps. In
hierarchical backbones, upsampling is often aided by lateral connection [37]; in
plain ViT backbones, we empirically find this is not necessary (Sec. 4) and simple
deconvolutions are sufficient. We hypothesize that this is because ViT can rely
on positional embedding [54] for encoding locations and also because the high-
dimensional ViT patch embeddings do not necessarily discard information.4

We will compare with two FPN variants that are also built on a plain back-
bone (Figure 2). In the first variant, the backbone is artificially divided into
multiple stages to mimic the stages of a hierarchical backbone, with lateral and
top-down connections applied (Figure 2 (a)) [16]. The second variant is like the
first one, but uses only the last map instead of the divided stages (Figure 2 (b)).
We show that these FPN variants are not necessary (Sec. 4).5

Backbone adaptation. Object detectors benefit from high-resolution input
images, but computing global self-attention throughout the backbone is pro-
hibitive in memory and is slow. In this study, we focus on the scenario where
the pre-trained backbone performs global self-attention, which is then adapted
to higher-resolution inputs during fine-tuning. This is in contrast to the recent

4 With a patch size of 16×16 and 3 colors, a hidden dimension ≥768 (ViT-B and
larger) can preserve all information of a patch if necessary.

5 From a broader perspective, the spirit of FPN [37] is “to build a feature pyramid
inside a network”. Our simple feature pyramid follows this spirit. In the context of
this paper, the term of “FPN” refers to the specific architecture design in [37].
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methods that modify the attention computation directly with backbone pre-
training (e.g ., [42,17]). Our scenario enables us to use the original ViT backbone
for detection, without redesigning pre-training architectures.

We explore using window attention [54] with a few cross-window blocks.
During fine-tuning, given a high-resolution feature map, we divide it into regular
non-overlapping windows.6 Self-attention is computed within each window. This
is referred to as “restricted” self-attention in the original Transformer [54].

Unlike Swin, we do not “shift” [42] the windows across layers. To allow
information propagation, we use a very few (by default, 4) blocks that can go
across windows. We evenly split a pre-trained backbone into 4 subsets of blocks
(e.g ., 6 in each subset for the 24-block ViT-L). We apply a propagation strategy
in the last block of each subset. We study these two strategies:

(i) Global propagation. We perform global self-attention in the last block of
each subset. As the number of global blocks is small, the memory and computa-
tion cost is feasible. This is similar to the hybrid window attention in [34] that
was used jointly with FPN.

(ii) Convolutional propagation. As an alternative, we add an extra convolu-
tional block after each subset. A convolutional block is a residual block [27] that
consists of one or more convolutions and an identity shortcut. The last layer in
this block is initialized as zero, such that the initial status of the block is an
identity [22]. Initializing a block as identity allows us to insert it into any place
in a pre-trained backbone without breaking the initial status of the backbone.

Our backbone adaptation is simple and makes detection fine-tuning com-
patible with global self-attention pre-training. As stated, it is not necessary to
redesign the pre-training architectures.

Discussion. Object detectors contain components that can be task agnostic,
such as the backbone, and other components that are task-specific, such as RoI
heads. This model decomposition enables the task-agnostic components to be
pre-trained using non-detection data (e.g ., ImageNet), which may provide an
advantage since detection training data is relatively scarce.

Under this perspective, it becomes reasonable to pursue a backbone that
involves fewer inductive biases, since the backbone may be trained effectively
using large-scale data and/or self-supervision. In contrast, the detection task-
specific components have relatively little data available and may still benefit
from additional inductive biases. While pursuing detection heads with fewer
inductive biases is an active area of work, leading methods like DETR [5] are
challenging to train and still benefit from detection-specific prior knowledge [60].

Driven by these observations, our work follows the spirit of the original plain
ViT paper with respect to the detector’s backbone. While the ViT paper’s dis-
cussion [14] focused on reducing inductive biases on translation equivariance, in
our case, it is about having fewer or even no inductive bias on scale equivariance
in the backbone. We hypothesize that the way for a plain backbone to achieve

6 We set the window size as the pre-training feature map size by default (14×14 [14]).
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scale equivariance is to learn the prior knowledge from data, analogous to how
it learns translation equivariance and locality without convolutions [14].

Our goal is to demonstrate the feasibility of this approach. Thus we choose
to implement our method with standard detection specific components (i.e.,
Mask R-CNN and its extensions). Exploring even fewer inductive biases in the
detection heads is an open and interesting direction for future work. We hope it
can benefit from and build on our work here.

Implementation. We use the vanilla ViT-B, ViT-L, ViT-H [14] as the pre-
training backbones. We set the patch size as 16 and thus the feature map scale
is 1/16, i.e., stride = 16.7 Our detector heads follow Mask R-CNN [25] or Cascade
Mask R-CNN [4], with architectural details described in the appendix. The input
image is 1024×1024, augmented with large-scale jittering [19] during training.
Due to this heavy regularization, we fine-tune for up to 100 epochs in COCO. We
use the AdamW optimizer [43] and search for optimal hyper-parameters using a
baseline version. More details are in the appendix.

4 Experiments

4.1 Ablation Study and Analysis

We perform ablation experiments on the COCO dataset [39]. We train on the
train2017 split and evaluate on the val2017 split. We report results on bounding-
box object detection (APbox) and instance segmentation (APmask).

By default, we use the simple feature pyramid and global propagation de-
scribed in Sec. 3. We use 4 propagation blocks, evenly placed in the backbone.
We initialize the backbone with MAE [24] pre-trained on IN-1K without labels.
We ablate these defaults and discuss our main observations as follows.

A simple feature pyramid is sufficient. In Table 1 we compare the feature
pyramid building strategies illustrated in Figure 2.

We study a baseline with no feature pyramid : both the RPN and RoI heads
are applied on the backbone’s final, single-scale ( 1

16 ) feature map. This case is
similar to the original Faster R-CNN [48] before FPN was proposed. All feature
pyramid variants (Table 1 a-c) are substantially better than this baseline, in-
creasing AP by up to 3.4 points. We note that using a single-scale feature map
does not mean the detector is single-scale: the RPN head has multi-scale an-
chors and the RoI heads operate on regions of multiple scales. Even so, feature
pyramids are beneficial. This observation is consistent with the observation in
the FPN paper [37] on hierarchical backbones.

However, the FPN design is not needed and our simple feature pyramid is
sufficient for a plain ViT backbone to enjoy the benefit of a pyramid. To ab-
late this design, we mimic the FPN architecture (i.e., the top-down and lateral

7 Changing the stride affects the scale distribution and presents a different accuracy
shift for objects of different scales. This topic is beyond the scope of this study. For
simplicity, we use the same patch size of 16 for all of ViT-B, L, H (see the appendix).
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ViT-B ViT-L
pyramid design APbox APmask APbox APmask

no feature pyramid 47.8 42.5 51.2 45.4
(a) FPN, 4-stage 50.3 (+2.5) 44.9 (+2.4) 54.4 (+3.2) 48.4 (+3.0)
(b) FPN, last-map 50.9 (+3.1) 45.3 (+2.8) 54.6 (+3.4) 48.5 (+3.1)
(c) simple feature pyramid 51.2 (+3.4) 45.5 (+3.0) 54.6 (+3.4) 48.6 (+3.2)

Table 1: Ablation on feature pyramid design with plain ViT backbones, us-
ing Mask R-CNN evaluated on COCO. The backbone is ViT-B (left) and ViT-L
(right). The entries (a-c) correspond to Figure 2 (a-c), compared to a baseline
without any pyramid. Both FPN and our simple pyramid are substantially better
than the baseline, while our simple pyramid is sufficient.

connections) as in Figure 2 (a, b). Table 1 (a, b) shows that while both FPN vari-
ants achieve strong gains over the baseline with no pyramid (as has been widely
observed with the original FPN on hierarchical backbones), they are no better
than our simple feature pyramid. The original FPN [37] was motivated by com-
bining lower-resolution, stronger feature maps with higher-resolution, weaker
feature maps. This foundation is lost when the backbone is plain and has no
high-resolution maps, which can explain why our simple pyramid is sufficient.

Our ablation reveals that the set of pyramidal feature maps, rather than
the top-down/lateral connections, is the key to effective multi-scale detection.
To see this, we study an even more aggressive case of the simple pyramid: we
generate only the finest scale ( 14 ) feature map by deconvolution and then from
this finest map we subsample other scales in parallel by strided average pooling.
There are no unshared, per-scale parameters in this design. This aggressively-
simple pyramid is nearly as good: it has 54.5 AP (ViT-L), 3.3 higher than the
no pyramid baseline. This shows the importance of pyramidal feature maps. For
any variant of these feature pyramids, the anchors (in RPN) and regions (in RoI
heads) are mapped to the corresponding level in the pyramid based on their
scales, as in [37]. We hypothesize that this explicit scale-equivariant mapping,
rather than the top-down/lateral connection, is the main reason why a feature
pyramid can greatly benefit multi-scale object detection.

Window attention is sufficient when aided by a few propagation blocks.
Table 2 ablates our backbone adaptation approach. In short, on top of a base-
line that has purely window attention and none of the cross-window propagation
blocks (Table 2, “none”), various ways of propagation can show decent gains.8

In Table 2a, we compare our global and convolutional propagation strategies
vs. the no propagation baseline. They have a gain of 1.7 and 1.9 over the baseline.
We also compare with the “shifted window” (Swin [42]) strategy, in which the
window grid is shifted by a half-window size for every other block. The shifted

8 Even our baseline with no propagation in the backbone is reasonably good (52.9 AP).
This can be explained by the fact that the layers beyond the backbone (the simple
feature pyramid, RPN, and RoI heads) also induce cross-window communication.
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prop. strategy APbox APmask

none 52.9 47.2
4 global blocks 54.6 (+1.7) 48.6 (+1.4)
4 conv blocks 54.8 (+1.9) 48.8 (+1.6)
shifted win. 54.0 (+1.1) 47.9 (+0.7)

(a) Window attention with various cross-
window propagation strategies.

prop. conv APbox APmask

none 52.9 47.2
naı̈ve 54.3 (+1.4) 48.3 (+1.1)
basic 54.8 (+1.9) 48.8 (+1.6)
bottleneck 54.6 (+1.7) 48.6 (+1.4)

(b) Convolutional propagation with dif-
ferent residual block types (4 blocks).

prop. locations APbox APmask

none 52.9 47.2
first 4 blocks 52.9 (+0.0) 47.1 (–0.1)
last 4 blocks 54.3 (+1.4) 48.3 (+1.1)
evenly 4 blocks 54.6 (+1.7) 48.6 (+1.4)

(c) Locations of cross-window global
propagation blocks.

prop. blks APbox APmask

none 52.9 47.2
2 54.4 (+1.5) 48.5 (+1.3)
4 54.6 (+1.7) 48.6 (+1.4)
24† 55.1 (+2.2) 48.9 (+1.7)

(d) Number of global propagation blocks.
†: Memory optimization required.

Table 2: Ablation on backbone adaptation strategies using a plain ViT
backbone and Mask R-CNN evaluated on COCO. All blocks perform window
attention, unless modified by the propagation strategy. In sum, compared to the
baseline that uses only window attention (52.9 APbox) most configurations work
effectively as long as information can be well propagated across windows. Here
the backbone is ViT-L; the observations on ViT-B are similar (see the appendix).

prop. strategy APbox # params train mem test time
none 52.9 1.00× (331M) 1.00× (14.6G) 1.00× (88ms)

4 conv (bottleneck) 54.6 (+1.7) 1.04× 1.05× 1.04×
4 global 54.6 (+1.7) 1.00× 1.39× 1.16×
24 global 55.1 (+2.2) 1.00× 3.34×† 1.86×

Table 3: Practical performance of backbone adaptation strategies. The
backbone is ViT-L. The training memory (per GPU) is benchmarked with a
batch size of 1. The testing time (per image) is benchmarked on an A100 GPU.
†: This 3.34× memory (49G) is estimated as if the same training implementation
could be used, which is not practical and requires special memory optimization
that all together slows down training by 2.2× vs. the baseline.

window variant has a 1.1 gain over the baseline, but is worse than ours. Note that
here we focus only on the “shifted window” aspect of Swin [42]: the backbone is
still a plain ViT, adapted to shifted window attention only during fine-tuning;
it is not the Swin architecture, which we will compare to later.

Table 2b compares different types of residual blocks for convolutional prop-
agation. We study the basic (two 3×3) [27], bottleneck (1×1→3×3→1×1) [27],
and a näıve block that has one 3×3 convolution. They all improve over the
baseline, while the specific block design makes only marginal differences. Inter-
estingly, even though convolution is a local operation if its receptive field covers
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ViT-B ViT-L
pre-train APbox APmask APbox APmask

none (random init.) 48.1 42.6 50.0 44.2
IN-1K, supervised 47.6 (–0.5) 42.4 (–0.2) 49.6 (–0.4) 43.8 (–0.4)
IN-21K, supervised 47.8 (–0.3) 42.6 (+0.0) 50.6 (+0.6) 44.8 (+0.6)
IN-1K, MAE 51.2 (+3.1) 45.5 (+2.9) 54.6 (+4.6) 48.6 (+4.4)

Table 4:Ablation on pre-training strategies with plain ViT backbones using
Mask R-CNN evaluated on COCO.

two adjacent windows, it is sufficient in principle to connect all pixels of the two
windows. This connectivity is thanks to the self-attention in both windows in
the succeeding blocks. This may explain why it can perform as well as global
propagation.

In Table 2c we study where cross-window propagation should be located in
the backbone. By default 4 global propagation blocks are placed evenly. We
compare with placing them in the first or last 4 blocks instead. Interestingly,
performing propagation in the last 4 blocks is nearly as good as even placement.
This is in line with the observation in [14] that ViT has longer attention distance
in later blocks and is more localized in earlier ones. In contrast, performing
propagation only in the first 4 blocks shows no gain: in this case, there is no
propagation across windows in the backbone after these 4 blocks. This again
demonstrates that propagation across windows is helpful.

Table 2d compares the number of global propagation blocks to use. Even
using just 2 blocks achieves good accuracy and clearly outperforms the baseline.
For comprehensiveness, we also report a variant where all 24 blocks in ViT-L
use global attention. This has a marginal gain of 0.5 points over our 4-block
default, while its training requires special memory optimization (we use memory
checkpointing [8]). This requirement makes scaling to larger models (like ViT-H)
impractical. Our solution of window attention plus a few propagation blocks
offers a practical, high-performing tradeoff.

We benchmark this tradeoff in Table 3. Using 4 propagation blocks gives
a good trade-off. Convolutional propagation is the most practical, increasing
memory and time by merely ≤5%, at a small cost of 4% more parameters. Global
propagation with 4 blocks is also feasible and does not increase the model size.
Global self-attention in all 24 blocks is not practical.

In sum, Table 2 shows that various forms of propagation are helpful, while
we can keep using window attention in most or all blocks. Importantly, all these
architecture adaptations are performed only during fine-tuning time; they do
not require a redesign of the pre-training architecture.

Masked Autoencoders provide strong pre-trained backbones. Table 4
compares backbone pre-training strategies. Supervised pre-training on IN-1K is
slightly worse than no pre-training, similar to the observation in [19]. Supervised
pre-training on IN-21K is marginally better for ViT-L.

In contrast, MAE [24] pre-training on IN-1K (without labels) shows massive
gains, increasing APbox by 3.1 for ViT-B and 4.6 for ViT-L. We hypothesize that
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Mask R-CNN Cascade Mask R-CNN

backbone pre-train APbox APmask APbox APmask

hierarchical-backbone detectors:
Swin-B 21K, sup 51.4 45.4 54.0 46.5
Swin-L 21K, sup 52.4 46.2 54.8 47.3
MViTv2-B 21K, sup 53.1 47.4 55.6 48.1
MViTv2-L 21K, sup 53.6 47.5 55.7 48.3
MViTv2-H 21K, sup 54.1 47.7 55.8 48.3
our plain-backbone detectors:
ViT-B 1K, MAE 51.6 45.9 54.0 46.7
ViT-L 1K, MAE 55.6 49.2 57.6 49.8
ViT-H 1K, MAE 56.7 50.1 58.7 50.9

Table 5: Comparisons of plain vs. hierarchical backbones using Mask R-
CNN [25] and Cascade Mask R-CNN [4] on COCO. Tradeoffs are plotted in
Figure 3. All entries are implemented and run by us to align low-level details.

the vanilla ViT [14], with fewer inductive biases, may require higher-capacity to
learn translation and scale equivariant features, while higher-capacity models are
prone to heavier overfitting. MAE pre-training can help to relieve this problem.
We discuss more about MAE in context next.

4.2 Comparisons with Hierarchical Backbones

Modern detection systems involve many implementation details and subtleties.
To focus on comparing backbones under as fair conditions as possible, we incor-
porate the Swin [42] and MViTv2 [34] backbones into our implementation.

Settings. We use the same implementation of Mask R-CNN [25] and Cas-
cade Mask R-CNN [4] for all ViT, Swin, and MViTv2 backbones. We use FPN
for the hierarchical backbones of Swin/MViTv2. We search for optimal hyper-
parameters separately for each backbone (see the appendix). Our Swin results
are better than their counterparts in the original paper;9 our MViTv2 results
are better than or on par with those reported in [34].

Following the original papers [42,34], Swin and MViTv2 both use relative
position biases [46]. For a fairer comparison, here we also adopt relative position
biases in our ViT backbones as per [34], but only during fine-tuning, not affecting
pre-training. This addition improves AP by ∼1 point. Note that our ablations in
Sec. 4.1 are without relative position biases.

Results and analysis. Table 5 shows the comparisons. Figure 3 plots the trade-
offs. The comparisons here involve two factors: the backbone and the pre-training
strategy. Our plain-backbone detector, combined with MAE pre-training, presents
better scaling behavior. When the models are large, our method outperforms the

9 For example, Swin-B (IN-1K, Cascade Mask R-CNN) has 51.9 APbox reported in
the official repo. This result in our implementation is 52.7.
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Figure 3: Tradeoffs of accuracy vs. model sizes (left), FLOPs (middle), and wall-
clock testing time (right). All entries are implemented and run by us to align
low-level details. Swin [42] and MViTv2 [34] are pre-trained on IN-1K/21K with
supervision. The ViT models are pre-trained using MAE [24] on IN-1K. Here
the detector head is Mask R-CNN; similar trends are observed for Cascade Mask
R-CNN and one-stage detector RetinaNet (Figure 5 in the appendix). Detailed
numbers are in the appendix (Table 9).

hierarchical counterparts of Swin/MViTv2, including those using IN-21K super-
vised pre-training. Our result with ViT-H is 2.6 better than that with MViTv2-H.
Moreover, the plain ViT has a better wall-clock performance (Figure 3 right, see
ViT-H vs. MViTv2-H), as the simpler blocks are more hardware-friendly.

We are also curious about the influence of MAE on hierarchical backbones.
This is largely beyond the scope of this paper, as it involves finding good train-
ing recipes for hierarchical backbones with MAE. To provide some insight, we
implement a näıve extension of MAE with the MViTv2 backbone (see the ap-
pendix). We observe that MViTv2-L with this MAE pre-training on IN-1K is 1.3
better than that with IN-21K supervised pre-training (54.9 vs. 53.6 APbox). As a
comparison, this gap is 4 points for our plain-backbone detector (Table 4). This
shows that the plain ViT backbone may benefit more from MAE pre-training
than the hierarchical backbone, suggesting that the lack of inductive biases on
scales could be compensated by the self-supervised training of MAE. While it
is an interesting future topic on improving hierarchical backbones with MAE
pre-training, our plain-backbone detector enables us to use the readily available
ViT backbones from MAE to achieve strong results.

We also note that hierarchical backbones in general involve enhanced self-
attention block designs. Examples include the shifted window attention in Swin
[42] and pooling attention in MViT v1/v2 [17,34]. These block designs, if applied
to plain backbones, may also improve accuracy and parameter-efficiency. While
this may put our competitors at an advantage, our method is still competitive
without these enhancements.

4.3 Comparisons with Previous Systems

Next we provide system-level comparisons with the leading results reported in
previous papers. We refer to our system as ViTDet, i.e., ViT Detector, aim-
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single-scale test multi-scale test

method framework pre-train APbox APmask APbox APmask

hierarchical-backbone detectors:
Swin-L [42] HTC++ 21K, sup 57.1 49.5 58.0 50.4
MViTv2-L [34] Cascade 21K, sup 56.9 48.6 58.7 50.5
MViTv2-H [34] Cascade 21K, sup 57.1 48.8 58.4 50.1
CBNetV2 [36]† HTC 21K, sup 59.1 51.0 59.6 51.8
SwinV2-L [41] HTC++ 21K, sup 58.9 51.2 60.2 52.1

plain-backbone detectors:
UViT-S [9] Cascade 1K, sup 51.9 44.5 - -
UViT-B [9] Cascade 1K, sup 52.5 44.8 - -
ViTDet, ViT-B Cascade 1K, MAE 56.0 48.0 57.3 49.4
ViTDet, ViT-L Cascade 1K, MAE 59.6 51.1 60.4 52.2
ViTDet, ViT-H Cascade 1K, MAE 60.4 52.0 61.3 53.1

Table 6: System-level comparisons with the leading results on COCO
reported by the original papers. The detection framework is Cascade Mask R-
CNN [4] (denoted as “Cascade”), Hybrid Task Cascade (HTC) [6], or its exten-
sion (HTC++ [42]). Here we compare results that use ImageNet data (1K or
21K); better results are reported in [41,11] using extra data. †: [36] combines
two Swin-L backbones.

ing at the usage of a ViT backbone for detection. Since these comparisons are
system-level, the methods use a variety of different techniques. While we make
efforts to balance the comparisons (as noted below), making a perfectly con-
trolled comparison is infeasible in general; our goal, instead, is to situate our
method in the context of current leading methods.

Comparisons on COCO. Table 6 reports the system-level comparisons on
COCO. For a fairer comparison, here we make two changes following our com-
petitors: we adopt soft-nms [3] as is used by all competitors [42,34,36,41] in this
table and increase the input size (from 1024 to 1280) following [36,41]. We note
that we do not use these improvements in previous ablations. As in the previous
subsection (Sec. 4.3), we use relative position biases here.

The leading systems thus far are all based on hierarchical backbones (Ta-
ble 6). For the first time, we show that a plain-backbone detector can achieve
highly accurate results on COCO and can compete with the leading systems.

We also compare with UViT [9] which is a recent plain-backbone detection
method. As discussed in Sec. 2, UViT and our work have different focuses. UViT
aims at designing a new plain backbone that is good for detection, while our goal
here is to support general-purpose ViT backbones including the original ones in
[14]. Despite the different focuses, both UViT and our work suggest that plain-
backbone detection is a promising direction with strong potential.

Comparisons on LVIS. We further report system-level comparisons on the
LVIS dataset [23]. LVIS contains ∼2M high-quality instance segmentation an-
notations for 1203 classes that exhibit a natural, long-tailed object distribution.
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method pre-train APmask APmask
rare APbox

hierarchical-backbone detectors:
Copy-Paste [19], Eff-B7 FPN none (random init) 36.0 29.7 39.2
Detic [58], Swin-B 21K, sup; CLIP 41.7 41.7 -
competition winner 2021 [18] baseline, † 21K, sup 43.1 34.3 -
competition winner 2021 [18] full, † 21K, sup 49.2 45.4 -

plain-backbone detectors:
ViTDet, ViT-L 1K, MAE 46.0 34.3 51.2
ViTDet, ViT-H 1K, MAE 48.1 36.9 53.4

Table 7: System-level comparisons with the leading results on LVIS (v1
val) reported by the original papers. All results are without test-time augmenta-
tion. Detic [58] uses pre-trained CLIP [44] text embeddings. †: these entries use
CBNetV2 [36] that combines two Swin-L backbones.

Unlike COCO, the class distribution is heavily imbalanced and many classes
have very few (e.g ., <10) training examples.

We follow the same model and training details as used for the COCO system-
level comparison plus two common LVIS practices: we use the federated loss from
[59] and sample images with repeat factor sampling [23]. We fine-tune for 100
epochs on the v1 train split.

Table 7 shows the results on the v1 val split. Our plain-backbone detec-
tor achieves competitive performance vs. previous leading results that all use
hierarchical backbones. Ours is 5.0 points higher than the 2021 competition
winner’s “strong baseline” [18] (48.1 vs. 43.1 APmask), which uses HTC with
CBNetV2 [36] that combines two Swin-L backbones. A special issue in LVIS is
on the long-tailed distribution, which is beyond the scope of our study. Tech-
niques dedicated to this issue, e.g ., using CLIP [44] text embeddings or other
advancements from [18], can largely increase AP on the rare classes (APmask

rare )
and thus improve overall AP. These are orthogonal to our method and could
be complementary. Nevertheless, our results on LVIS again suggest that plain-
backbone detectors can compete with hierarchical ones.

5 Conclusion

Our exploration has demonstrated that plain-backbone detection is a promis-
ing research direction. This methodology largely maintains the independence of
the general-purpose backbones and the downstream task-specific designs—which
had been the case for ConvNet-based research but not for Transformer-based re-
search. We hope decoupling pre-training from fine-tuning is a methodology that
will generally benefit the community. For example, in natural language pro-
cessing (NLP), general-purpose pre-training (GPT [45], BERT [13]) has greatly
advanced the field and has been supporting various downstream tasks. In this
study, our plain-backbone detector has benefited from the readily available pre-
trained models from MAE [24]. We hope this methodology will also help bring
the fields of computer vision and NLP closer.
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A Appendix

A.1 Additional Ablation Results

Table 8 is the ViT-B counterpart of Table 2 on backbone adaptation. The
observations are similar to that of ViT-L: comparing with the baseline using no
propagation (“none”), various propagation strategies show good gains.

Table 9 presents Table 5 with additional details about FLOPs, parameters,
and inference time, plotted in Figure 3.

Table 10 is the ablation on pre-training strategies for LVIS. Similar to Table 4,
MAE pre-training has large gains over supervised pre-training.

Figure 4 is the LVIS counterpart of Figure 3. The trends are similar to those
in COCO, while the gain of IN-21K supervised pre-training is larger because it
significantly improves rare category detection in LVIS.

Figure 5 is the RetinaNet [38] counterpart of Figure 3, showing the trade-off
between accuracy and model size. Here, we evaluate ViTDet with a one-stage
RetinaNet [38] detector head and compare it to using Swin and MViTv2 as
hierarchical backbones, all without hyper-parameter tuning. Compared to using
Mask R-CNN and Cascade R-CNN (Table 5 and Figure 3), we observe similar
trends with RetinaNet. In particular, our plain-backbone detector presents better
scaling behavior (e.g . ViT-H gains +3.4 APbox over MViTv2-H). These results
suggest that the proposed training recipe transfers well to different detectors and
that our proposed plain backbone adaptations are general and can likely work
with even more detection architectures.

A.2 Implementation Details

Architectures. We build a simple feature pyramid of scales { 1
32 ,

1
16 ,

1
8 ,

1
4} (see

Sec. 3). The 1
32 scale is built by stride-2 2×2 max pooling (average pooling or

convolution works similarly). The 1
16 scale simply uses the ViT’s final feature

map. Scale 1
8 (or 1

4 ) is built by one (or two) 2×2 deconvolution layer(s) with
stride=2. In the 1

4 scale case, the first deconvolution is followed by LayerNorm
(LN) [1] and GeLU [28]. Then for each pyramid level, we apply a 1×1 convolution
with LN to reduce dimension to 256 and then a 3×3 convolution also with LN,
similar to the per-level processing of FPN [37].

We study three detection frameworks: Mask R-CNN [25], Cascade Mask R-
CNN [4] and RetinaNet [38]. For Mask R-CNN and Cascade Mask R-CNN,
we incorporate some common best practices developed since they [25,4] were
presented years ago. We use 2 hidden convolution layers for the RPN and 4
hidden convolution layers for the RoI heads as per [56]. These hidden convolution
layers are followed by LN. For all three detection frameworks, We use the same
detection implementation for both plain and hierarchical backbones.

We use a patch size of 16 for all ViT backbones. As ViT-H in [14] by default
has a patch size of 14, after pre-training we interpolate the patch embedding
filters from 14×14×3 to 16×16×3.
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prop. strategy APbox APmask

none 48.9 43.9
4 global blocks 51.2 (+2.3) 45.5 (+1.6)
4 conv blocks 51.0 (+2.1) 45.3 (+1.4)
shifted win. 50.1 (+1.2) 44.8 (+0.9)

(a) Window attention with various cross-
window propagation strategies.

prop. conv APbox APmask

none 48.9 43.9
naı̈ve 50.6 (+1.7) 45.2 (+1.3)
basic 50.7 (+1.8) 45.2 (+1.3)
bottleneck 51.0 (+2.1) 45.3 (+1.4)

(b) Convolutional propagation with dif-
ferent residual block types (4 blocks).

prop. locations APbox APmask

none 48.9 43.9
first 4 blocks 49.1 (+0.2) 44.1 (+0.2)
last 4 blocks 50.9 (+2.0) 45.4 (+1.5)
evenly 4 blocks 51.2 (+2.3) 45.5 (+1.6)

(c) Locations of cross-window global
propagation blocks.

prop. blks APbox APmask

none 48.9 43.9
2 50.7 (+1.8) 45.2 (+1.3)
4 51.2 (+2.3) 45.5 (+1.6)
12 50.4 (+1.5) 45.1 (+1.2)

(d) Number of global propagation blocks.

Table 8: The ViT-B counterpart of Table 2 (backbone adaptation).

Hyper-parameters for COCO. Our default training recipe is as follows (un-
less noted in context for ablation). The input size is 1024×1024, augmented
during training by large-scale jitter [19] with a scale range of [0.1, 2.0]. We use
AdamW [43] (β1, β2=0.9, 0.999) with step-wise learning rate decay. We use linear
learning rate warm-up [22] for 250 iterations. The batch size is 64, distributed
across 64 GPUs (1 image per GPU).

We search for the learning rate (lr), weight decay (wd), drop path rate (dp),
and epochs, for each model size (B, L, H) and for each model type (ViT, Swin,
MViTv2). The hyper-parameters used are in Table 11. We also use a layer-wise lr
decay [10][2] of 0.7/0.8/0.9 for ViT-B/L/H with MAE pre-training, which has a
small gain of up to 0.3 AP; we have not seen this gain for hierarchical backbones
or ViT with supervised pre-training.

Hyper-parameters for LVIS. Our LVIS experiments in Table 7 follow the
COCO settings in Table 5. For LVIS, we set lr = 2e−4/1e−4 (ViT-L/H), wd =
0.1, and dp = 0.4. We fine-tune for 100 epochs. We use a test score threshold of
0.02 (smaller values did not help) and repeat factor sampling (t = 0.001) [23].
We output ≤ 300 detections per image following [23] (vs. COCO’s default 100).

MAE for hierarchical backbones. We implement a näıve extension of MAE
pre-training [24] for the hierarchical backbone ablation (Sec. 4.2). MAE enjoys
the efficiency benefit from plain ViT by skipping the encoder mask token [24].
Extending this strategy to hierarchical backbones is beyond the scope of this
paper. Instead, we adopt a straightforward solution in which we do not skip
the encoder mask token (similar to [13]), at the cost of slower training. We use
normalized pixels as the MAE reconstruction target [24] and set the decoder
depth as 2.
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Mask R-CNN Cascade Mask R-CNN

backbone pre-train APbox APmask FLOPs params time APbox APmask FLOPs params time

hierarchical-backbone detectors:
Swin-B 1K, sup 50.1 44.5 0.7T 109M 60ms 52.7 45.5 0.9T 139M 76ms

Swin-B 21K, sup 51.4 45.4 0.7T 109M 60ms 54.0 46.5 0.9T 139M 76ms

Swin-L 21K, sup 52.4 46.2 1.1T 218M 81ms 54.8 47.3 1.4T 248M 96ms

MViTv2-B 1K, sup 52.4 46.7 0.6T 73M 82ms 54.7 47.5 0.8T 103M 97ms

MViTv2-L 1K, sup 53.2 47.1 1.3T 239M 173ms 55.2 47.7 1.6T 270M 189ms

MViTv2-B 21K, sup 53.1 47.4 0.6T 73M 82ms 55.6 48.1 0.8T 103M 97ms

MViTv2-L 21K, sup 53.6 47.5 1.3T 239M 173ms 55.7 48.3 1.6T 270M 189ms

MViTv2-H 21K, sup 54.1 47.7 2.9T 688M 338ms 55.8 48.3 3.2T 718M 353ms

our plain-backbone detectors:
ViT-B 1K, MAE 51.6 45.9 0.8T 111M 77ms 54.0 46.7 1.1T 141M 92ms

ViT-L 1K, MAE 55.6 49.2 1.9T 331M 132ms 57.6 49.8 2.1T 361M 149ms

ViT-H 1K, MAE 56.7 50.1 3.4T 662M 189ms 58.7 50.9 3.6T 692M 203ms

Table 9: Detailed measurements of Table 5 and Figure 3.

ViT-B ViT-L
pre-train APbox APmask APmask

rare APbox APmask APmask
rare

IN-1K, supervised 37.2 34.9 26.4 38.3 36.0 26.7
IN-21K, supervised 38.7 36.3 28.8 42.1 39.5 34.3
IN-1K, MAE 40.1 38.1 29.1 46.1 43.5 35.3

Table 10: The LVIS counterpart of Table 4 (COCO pre-training ablation). The
observations are similar to Table 4: MAE pre-training has large gains over su-
pervised pre-training. Here we also report rare category results. We observe
that both IN-21K supervised and IN-1K MAE pre-training significantly improve
APmask

rare , especially for ViT-L. (Mask R-CNN, 1024 resolution, no soft-nms.)
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Figure 4: The LVIS counterpart of Figure 3. All entries are implemented and run
by us to align low-level details. Here the detector head is Mask R-CNN (input
resolution 1024; no soft-nms). The trends are similar to those in Figure 3, while
IN-21K supervised pre-training has larger gains.
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backbone pre-train lr wd dp epochs
ViT-B/L none 1.6e−4 0.2 0.1/0.4 300/200
ViT-B/L supervised 8e−5 0.1 0.1/0.4 50
ViT-B/L/H MAE 1e−4 0.1 0.1/0.4/0.5 100/100/75
Swin-B/L supervised 1e−4/8e−5 0.05 0.3 50
MViTv2-B/L/H supervised 8e−5 0.1 0.4/0.5/0.6 100/50/36

Table 11: Hyper-parameters for COCO. Multiple values in a cell are for different
model sizes. The epochs are chosen such that training longer starts to overfit.
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Figure 5: The RetinaNet [38] counterpart of Figure 3, showing the trade-off be-
tween accuracy and model size. We use the same Mask R-CNN training recipe
(input resolution 1024; no soft-nms) and hyper-parameters for RetinaNet. The
trends are similar to those in Figure 3.
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