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Abstract
Ultra high-throughput sequencing (UHTS) technologies offer the potential to interrogate transcriptomes in detail
that has traditionally been restricted to single gene surveys. For instance, it is now possible to globally define tran-
scription start sites, polyadenylation signals, alternative splice sites and generate quantitative data on gene transcript
accumulation in single tissues or cell types.These technologies are thus paving the way for whole genome transcrip-
tomics and will undoubtedly lead to novel insights into plant development and biotic and abiotic stress responses.
However, several challenges exist to making this technology broadly accessible to the plant research community.
These include the current need for a computationally intensive analysis of data sets, a lack of standardized alignment
and formatting procedures and a relatively small number of analytical software packages to interpret UHTS outputs.
In this review we summarize recent findings from UHTS and discuss potential opportunities and challenges for
broad adoption of these technologies in the plant science community.
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THERAPIDLY EVOLVING
TRANSCRIPTOMICS
TECHNOLOGIES
The transcriptome encompasses the set of transcripts

from a cell or a population of cells, which include

protein-coding mRNAs and non-coding small

RNAs (e.g. ribosomal, tRNA, miRNA). Tradition-

ally, transcriptome profiling, or transcriptomics, has

focused on quantifying gene expression [1, 2]. With

the advent of Ultra high-throughput sequencing

(UHTS) technologies, it is now possible to obtain

highly resolved structural information of RNA

populations on a high-throughput platform. This

includes mapping transcript initiation and termina-

tion sites, splice junctions and post-transcriptional

modifications [3]. Such information will lead to a

better understanding of the functional elements

within the genome and the discovery of novel devel-

opmental or environmental regulatory networks.

Transcriptomic studies are often limited by the

number of genes that can be surveyed simulta-

neously. From the 1990s to early 2000s, many ana-

lytical methods were developed for high-throughput

profiling of the gene space including differential dis-

play [4], serial analysis of gene expression (SAGE) [5],

microarray [6], cDNA- amplified fragment length

polymorphism (AFLP) [7] and massively parallel sig-

nature sequencing (MPSS) [8]. Among these tools,

hybridization-based microarrays became the domi-

nate platform and has been routinely used to analyze

transcriptional changes in many species [6, 9].

Notably for plant biologists, the ATH1 Genome

Array developed by Affymetrix� has been exten-

sively used for transcriptional studies in Arabidopsis

[10]. Microarray platforms were also used to charac-

terize transcriptomes for other plant species, includ-

ing maize [11, 12], rice [13, 14], barley [15, 16],

soybean [17, 18] and tomato [19, 20].
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While microarray-based transcriptomic studies are

fruitful, the hybridization-based technology has a

few intrinsic limitations. First, the dynamic range of

microarrays is restricted by factors such as the probe

density/availability, the intensities of fluorescent dyes

and the sensitivity of scanning instruments. As a

result, typical microarray platforms have a limited

dynamic range of two to three orders of magnitude

[3, 6]. However, quantitative RT-PCR analysis has

shown that the expression of some genes can vary up

to several thousand-fold, particularly those of small

RNAs [21]. Second, the sensitivity of microarrays is

reduced by non-specific cross-hybridization, which

can mask isoform expression and inflate the expres-

sion of rare transcripts. Moreover, developing new

microarray platforms is usually labor and time-

intensive, and commonly requires knowledge of

the target genome. Thus, the microarray technology

is generally limited to species with a sequenced

genome or well-characterized transcriptome (e.g.

extensive cDNA sequence) and is therefore consid-

ered a closed-architecture environment. That is, the

arrays are built on the knowledge of the genome at

the time. For example, the ATH1 array is likely

missing up to 3000 protein-coding genes and all

miRNAs that are present in the Arabidopsis

genome (based on Affymetrix ATH1 summary and

TAIR9 annotation from http://www.affymetrix.-

com and http://www.arabidopsis.org, respectively).

This is in contrast to an open-architecture environ-

ment where surveys of transcript accumulation are

not limited by genome annotation.

As an alternative to the microarray-based

approaches, direct measures of gene expression can

be obtained through sequencing. Several of these

open-architecture methods have been used including

random expressed sequence tags (ESTs) sequencing,

SAGE and MPSS [22]. One significant advantage of

sequence-based transcriptomics is the potential to

precisely quantify the abundance of any transcript,

drastically increasing the dynamic range of the exper-

iment [23]. Another advantage is that they are not

limited by the availability of a sequenced genome.

ESTs can be synthesized, sequenced and annotated

from any genome, providing a platform for gene

discovery. However, these early iterations of

sequencing-based approaches have not been widely

adapted due to the relatively low throughput and

high cost associated with Sanger sequencing

platforms.

In recent years, the development of UHTS tech-

nologies have dramatically increased the throughput

of sequence generation and decreased the overall

cost. Currently, UHTS is offered by several com-

panies; these include Roche/454 Life Science that

utilizes a pyrosequencing platform; Illumina and

bridge-PCR-based Solexa sequencing; Applied

Biosystems Inc and Sequencing by Oligo Ligation

and Detection (SOLiD); and most recently Helicos

and their single-molecule sequencing (for more

detailed reviews of next-generation sequencing tech-

nologies, see [24–26]). The significantly increased

throughput of UHTS relies on the generation of

short sequence reads (30–400 bps) of thousands to

millions of DNA molecules in parallel [27]. These

newly developed ‘ultrahigh-throughput’ sequencing

technologies promise to provide a much more

detailed view of plant transcriptomes and to revolu-

tionize the way eukaryotic transcriptomes are ana-

lyzed [3]. In this review, we focus on the Illumina

platform as the example of UHTS technology.

TRANSCRIPTOME SEQUENCING
UHTS (also referred to as NextGen, RNA-seq)

refers to the deep-sequencing of RNA pools.

While UHTS often refers to deep sequencing of

mRNAs, any RNA population can be analyzed.

Two methods are typically used to capture and

sequence RNA pools (Figure 1). In both methods

mRNA pools are enriched by capturing the mole-

cules through the polyadenylated tails, and a riboso-

mal RNA removal step is often added before or after

the mRNA purification. In one method, mRNA-

enriched pools are then fragmented into roughly

equal lengths and then reverse-transcribed using

random hexamers to generate a cDNA library.

Alternatively, RNA is reverse transcribed using an

oligo-dT adapter and the resulting cDNA is fractio-

nated. The former method has the advantage of

more uniform representation across the coding

region of the transcript, but may result in the

under-representation 50 and 30 sequences. The later

method provides good coverage of 30 sequences but

biases against the body of the transcript [3]. The

cDNAs are then fitted with adaptors at one or

both ends through a ligation step(s). It is desirable

to add these adaptors during the single-strand stage

(RNA or cDNA) synthesis step in order to retain

strand specificity in the final sequence reads [27].

The tagged cDNA library is subsequently amplified
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through PCR before being sequenced. For the more

recently developed single-molecule approach, the

PCR-amplification step is entirely eliminated to

further reduce the amplification-based biases and

to increase the throughput [28, 29]. Procedures

of smRNA sequencing are very similar to those

of mRNA-seq, substituting a size-selection step for

small RNA molecules for the RNA fragmentation

step [27]. ‘Digital gene expression (DGE)’ or ‘Digital

tag profiling’ is another method of transcript profil-

ing that is qualitatively similar to SAGE analysis, in

that single transcripts are identified through a 30 end

tag (http://www.illumina.com). In theory, this

method could allow for a vast increase in throughput

as each molecule would be represented by a single

read rather than hundreds of reads for cDNA-based

methods. However, in practice, we have found that

the technique suffers a number of shortcomings

Figure 1: Overview of RNA-seq experimental procedures. For a typical RNA-seq experiment, mRNA is isolated
and reverse-transcribed (RT) into cDNA libraries with homogeneous lengths. This is achieved by either RNA or
cDNA fragmentation. Recently, single-molecule capture methods have been developed (left) that obviate the need
for a RT step. In the case of smRNA studies, total RNA is fractionated on acrylamide gels and smRNAs excised.
Adaptors at one or both ends of the RNA are added prior to cDNA amplification and library construction. For
the Solexa platform, cDNAmolecules are anchored onto a polony array (flow cell) surface, which are then subjected
to PCR amplification. Images are taken after each cycle for base calling and sequence generation. Currently for
the Illumina platform, �120 million single or paired-end reads of 32^80nt are generated on a single flow cell
(8 lanes/flow cell) which is then processed further depending on the research goals.
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including a dependence on a relatively small tag

(21 and 20 bps when using NlaIII and DpnII,
respectively) resulting in a large number of redun-

dant placements in complex genomes, large differ-

ences in library populations if multiple restriction

enzymes are used to generate the 30 tags, and

low correlations between cDNA-based methods,

where gene transcripts are represented by multiple

alignments.

All RNA-seq projects to date have utilized a ref-

erence genome and a number of algorithms have

been developed to perform alignments including

BWA [30], ELAND [31], SOAP [32], MAQ [33],

BOWTIE [34], PASS [35] and RMAP [36]. A

generic alignment format, SAM, for storing read

alignments generated by these programs has also

been proposed that captures much of the metadata

associated with a given RNA-seq project [37].

Subsequently, quantification of transcripts is achieved

by counting the density of the reads that are mapped

to the exon regions of a specific gene, often correct-

ing for transcript length. For smRNAs, the reads may

not need to be directly mapped to the genome if the

sequence is highly conserved and has been previously

characterized. A common output for mRNA expres-

sion values using the Illumina platform is reads per

kilobase of exon per million mapped reads (RPKM)

and for small RNA’s, reads per million reads (RPM)

[31, 38]. After normalization, this information is then

used to calculate the expression level of a transcript

or the abundance of a smRNA species. Moreover,

additional information such as alternative splicing,

or multiple initiation and termination sites can be

captured when sequences are mapped to the

genome. Programs such as TopHat [39] and Super-

splat (http://supersplat.cgrb.oregonstate.edu) have

been developed for such tasks. However, to date, a

standard method for quantitative analysis of transcript

isoforms does not exist as RPKM values are calcu-

lated for gene models. However, efforts are being

made in our lab and others to build a pipeline for

such tasks. When strandedness is captured in library

construction, it is also possible to identify sense and

antisense transcripts. For species in which a genome

sequence is not yet available, it should be possible to

use EST or GSS databases as templates for scaffold

assembly. However, to date, there are limited reports

demonstrating the feasibility of this approach. Given

the rapid progress in genome sequencing technology

and the projected lower costs, it is likely that most

researchers will be able to utilize partial or complete

genome sequences to perform their assemblies in the

near future.

Because of the improved throughput and lower

cost, RNA-seq is increasingly being regarded as the

new standard for transcriptomics. Studies to detect

rare miRNAs/mRNAs and splicing events that

have been proven difficult by using traditional meth-

ods have been revisited with the help of UHTS

technologies [31, 40–42]. Several RNA-seq studies

have been performed in Arabidopsis, maize, barley,

Medicago and tomato [43–48]. Below, we discuss

two areas in plant biology that have benefited exten-

sively from UHTS—small RNA studies and tran-

scriptome profiling.

ANALYSING SMALLRNA
Small RNA typically refers to those non-coding

RNA (ncRNA) that modulate gene expression and

have been implicated in many aspects of the life cycle

such as development/differentiation [49, 50], phyto-

hormone signaling [51], genome maintenance [51,

52] and adaptation to environmental challenges

[53–55]. UHTS technologies have provided an

ideal platform for high-throughput smRNA studies

in plants. One of the first smRNA studies using

UHTS was conducted in Arabidopsis [44]. Using

Illumina/Solexa sequencing, Lister and colleagues

surveyed the ‘smRNAome’ from DNA methyla-

tion- and demethylation-deficient mutants to inves-

tigate RNA-directed DNA methylation. From the

15–30 bps fraction of total RNA, over 2.6 million

smRNAs were identified, consisting of a majority

of 24 and 21 nt smRNAs. Roughly half of the

smRNAs have multiple targeting sites while the

other half align uniquely to the Arabidopsis

genome. This study identified the presence of ‘mul-

ti-targeting’ smRNAs that play a major role in

RNA-mediated DNA methylation. This study also

revealed a role of ta-siRNAs in denovo DNA methy-

lation and the self-reinforcing nature between

DNA-methylation and smRNA biogenesis [44]. A

similar survey of maize smRNA was also performed

using the Illumina/Solexa platform [45]. Small RNA

samples were isolated and sequenced from wild

type maize and mop1-1, a mutant allele of RNA-

dependent RNA polymerase 2 (RDR2). This

study identified a similar smRNA pattern to that

observed in the Arabidopsis rdr2 mutant, for which

the 24 nt heterochromatin siRNAs were significantly

reduced resulting in an elevated miRNA and

Transcriptomics with UHTS 121
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/9/2/118/216069 by guest on 20 August 2022

http://supersplat.cgrb.oregonstate.edu


ta-siRNA content. Interestingly, 22 nt heterochro-

matin siRNAs, that are depleted in Arabidopsis rdr2
plants, remain relatively constant in the maize mop1-1
mutant, suggesting the existence of an alternative

heterochromatic siRNA biogenesis pathway in

maize [45]. Other UHTS-based studies were carried

out in Solanum lycopersicum [48], Medicago truncatula
[43, 56] and Brachypodium distachyon [57]. From

these studies, several new classes of species-specific

miRNAs were identified, including tomato

miRNA that are correlated to fruit ripening,

Medicago miRNA involved in nodulation and

Brachypodium miRNA associated with stress response.

Another example of an UHTS-based smRNA study

is the survey of cis- and trans-natural antisense

siRNAs in Oryza sativa [58]. Combined with com-

putational prediction, Zhou and colleagues sampled

smRNA populations in control and

salt/drought stressed rice seedlings used 454-

pyrosequencing. The majority of the identified

cis-natural antisense siRNAs are stress-specific, sug-

gesting they may be involved in regulating the stress

responses [58]. Taken together, these studies have

convincely demonstrated the robustness and effec-

tiveness of UHTS-based technologies in smRNA

research. As the cost of UHTS decreases and

sequencing capacities increase, it is likely that the

‘smRNAome’ will be surveyed from an increasingly

larger number of plants. These datasets will help elu-

cidate the evolutionary relationships among smRNA

populations across the plant kingdom.

PROFILINGTHE
TRANSCRIPTOME
To date, several groups have used UHTS for

discovery-based studies of the mRNA populations

in plants. Early analyses in Medicago [59], maize [60]

and Arabidopsis [61] used the 454-pyrosequencing

platform. The pioneering studies of Emrich [60]

and Cheung [59] were the first to demonstrate the

power of UHTS to elucidate a plant transcriptome.

Cheung and colleagues sequenced a normalized

adaptor-tagged cDNA library from M. truncatula
[59]. From their work, close to two million unique

sequences were generated from pyrosequencing and

over one third of these sequences were mapped to

Medicago BACs (Bacterial Artificial Chromosomes)

and over ten thousand novel transcripts were identi-

fied [59]. In a similar study by Weber and colleagues,

over 5 million ESTs were generated from

Arabidopsis seedlings [61]. These ESTs were

mapped to over 15 000 genes, which accounted for

over 90% of transcripts that were predicted to be

expressed. Over 60 previously unannotated tran-

scripts were also discovered, providing the primary

experimental support for these novel genes. Emrich

and colleagues combined UHTS with laser-capture

microdissection to examine the transcriptome of the

maize shoot apical meristem [60]. They found close

to 400 maize-specific transcripts in the meristem,

providing a glimpse into the divergent and complex

nature of plant transcriptomes.

Work from our group has exploited the Illumina

platform to define the maize leaf transcriptome along

a developmental gradient that captures photosyn-

thetic sink and source tissues. In total we have

generated �30 million reads from each of four

developmental zones and mapped reads to the

maize genome. We have also performed a deep

sequencing of leaf tip and base RNA pools (�94

million reads total) and were able to provide evi-

dence for over 1700 gene models that lacked EST

support [62]. It is also notable that through deep

sequencing of leaf RNA pools, expression was

detectable for 28 560 of the predicted 32 540 maize

genes (87%) demonstrating the robustness of the

UHTS approach.

Another important aspect of UHTS technologies

that distinguishes it from microarray studies is the

ability to define alternative splicing and initiation/

termination sites. So far, UHTS-based studies of

transcript isoforms have been carried out in a few

non-plant species such as yeast [63], human

[64–66], mouse [67, 68] and zebrafish [69]. In

these studies, thousands of previously unidentified

transcript isoforms were discovered. It was shown

that over 90% of human ‘multi-exon’ genes undergo

alternative splicing, with exon-skipping being the

most prevalent [65]. Moreover, individual transcript

isoforms preferentially accumulate under different

conditions or in different tissue types, suggesting

that alternative splicing is an intrinsic mechanism

that contributes to the increased cellular and func-

tional complexity in higher eukaryotes [64].

Alternative splicing is also prevalent in many plant

species. A few studies have been conducted to sur-

vey the alternative splicing in plants including

Arabidopsis [70, 71], rice [72], maize [73, 74] and

moss [75]. One interesting finding is that

exon-skipping is far less common in plants than in

animals, averaging <10% of total splicing events [73].
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In contrast, up to 80% of transcript isoforms in plants

arise from alternative 30-splicing sites and intron

retention events. With the unprecedented sequen-

cing depth provided by UHTS technology, it is evi-

dent that rare transcript isoform can be captured

providing the most detailed view of the plant tran-

scriptome to date.

Quantification of gene expression, or expression

profiling, is another important aspect of transcrip-

tomic studies. While UHTS-based studies that focus

solely on expression profiling in plants are still lim-

ited, several analyses have been carried out in

animal systems. For example, Han and colleagues

analyzed the transcriptome from mouse embryonic

and neonatal cortex cells [67]. From over 27 mil-

lion sequence reads that were generated by

Illumina/Solexa sequencing, over 16 000 genes

were assayed in two developmental stages and a

total of 3758 genes were identified as differentially

expressed, including many novel

neurogenesis-related genes. This study provides

the blueprint of gene expression profiles during

the early stages of mouse brain development. A

similar expression profiling study was performed in

zebrafish by Hegedus and colleagues to analyze the

transcriptomic response to mycobacterium infection

[69]. Using Illumina’s DGE system, a total of 5049

significantly changed tag entities were detected cor-

responding to over 1500 UniGene transcripts

(http://www.ncbi.nlm.nih.gov/unigene). A major-

ity of these transcripts originated from the

sense-strand of the zebrafish DNA, suggesting that

the antisense regulation may not be a major factor

in regulating the defense response [69]. Consistent

with their experimental design, the majority of the

genes that preferentially accumulated were those of

immunity-related functions. Interestingly, genes

encoding proteolytic enzymes and some ATPases

were also more abundant, suggesting the impor-

tance of protein turnover and energy consumption

in zebrafish immunity [69].

One of the main goals of our maize leaf transcrip-

tomic study is to understand the profiles of gene

expression along the developmental gradient and

their relationship to differentiation of C4 photosyn-

thesis. For this, we have used UHTS to quantify gene

expression in four developmental zones and in bundle

sheath and mesophyll cells. From over 27 000

expressed genes, we have identified several groups

of differentially expressed genes, that cluster by func-

tional annotation such as photosynthesis system, sugar

metabolism, hormone signaling, redox responses, cell

wall biosynthesis and many classes of transcription

factors. Figure 2 lists some examples of functional

enrichment from the differentially expressed genes

along the leaf gradient. These findings suggest that

the differentiation of mesophyll/bundle sheath cells

and development of C4 apparatus is an extremely

dynamic process resulting in the partitioning of

many biochemical functions between two morpho-

logically distinct cell types.

CHALLENGESAND
OPPORTUNITIES
As a newly developed technology, UHTS transcrip-

tomics faces many unique challenges. The most

apparent obstacle arises from the complexity of

the sequence data that is generated by the UHTS

platforms. To process, interpret and visualize these

large datasets, it is necessary to develop efficient

and sophisticated algorithms and pipelines. As out-

lined in Figure 3, processing the data often involves

several steps—sequence acquisition and base calling,

filtering raw reads, aligning reads to a reference

genome, determining statistical significance, calculat-

ing gene coverage, normalization and estimating

gene expression. Methods are currently being devel-

oped to streamline these procedures, which may

create standards for future UHTS-based studies.

The first customizable step in the processing

pipeline is mapping the short reads to the reference

genome or assembling them into contigs. In the

absence of a sequenced genome, assembling short

reads into contigs is extremely challenging. Thus, it

is likely that most UHTS transcriptome profiling will

be restricted to organisms with sequenced genomes,

at least in the short term. For species where a com-

plete genome sequence is not available, one alterna-

tive is to first assemble a pseudo-transcriptome using

454 technology to generate contigs that capture a

majority of the gene space. These contigs can then

be used as a scaffold for gene quantification using a

high throughput sequencing platform such as

Illumina/Solexa or ABI SOLiD.

Determining transcript structure also presents a

number of challenges. To examine RNA isoforms

generated through alternative splicing requires that

reads be mapped to exon–exon junctions. This can

be challenging when read lengths are small (e.g.

32 nt). One solution is to create a database with all

well-established transcript isoforms to facilitate the
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mapping the transcript crossing multiple exons [40].

Junction fragments can then be defined as those reads

that map uniquely to an exon–exon junction. Often

these junction fragments are excluded from RPKM

analysis [31], but could contribute significantly to the

expression value for a given gene. Thus, RPKM

values should be refined to incorporate junction frag-

ments. This is particularly important for genes with

multiple exons as their expression values could be

underestimated if junction fragments are excluded.

Aligning short reads to the genome can be further

complicated by the existence of highly conserved

gene families in eukaryotic genomes. A sequence

read that matches to a conserved region shared by

several gene family members may cause ambiguity of

its placement. While such uncertainly can be partially

negated by generating longer reads or pair-end reads,

it is nevertheless difficult to process transcript iso-

forms that originate from the same gene. One pos-

sibility is to exclude these reads from the analysis, but

with large and complex genomes, this could result in

discarding the vast majority of reads. Another solu-

tion is to assign such reads proportionally based on

the number of adjacent unique reads [31, 76].

However, this approach is deemed less useful when

reads are generated from repetitive regions with high

copy numbers [3]. A few statistical methods have

also been designed to specifically address the

Figure 2: Summary of maize leaf transcriptome. Genes that are detected along the leaf developmental gradient
were categorized based on their expression trends. The two major trends are detected: one cluster of genes accu-
mulates gradually from leaf base to tip; the other cluster decreases in abundance from base to tip. The functional
classes are derived from Mapman categories [86] and are represented as a percentage of the total number of
genes. The functional categories are ordered so that the most significant differences between trends are shown
at the top and the bottom.
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‘multi-matching’ problem [77, 78]. Sequencing error

is another important factor that affects the ability to

align reads to the genome. It has been estimated that

current Illumina Genome Analyzer, yields up to 1%

erroneous reads, while the single-molecule sequen-

cing platforms misread at even higher frequencies

[29, 79]. Such inaccuracy may also adversely affect

the discovery of SNPs (single nucleotide polymorph-

isms), which is a focus of some recent genomic

studies [80–82].

Normalization procedures to estimate gene

expression is another area of active debate. One of

the proposed methods assumes sequence placement

follows a Poisson distribution over the genome. This

enables the normalization of transcript reads over

gene length and total number of mapped reads as

the RPKM to represent gene expression values

[31]. Another underlying assumption of this

approach is that there is no systematic variance

among samples which may cause the total read

counts to vary. While this may be a safe assumption

for experiments that use similar RNA templates and

amplification procedures, it is not applicable when

the biological templates or library construction

procedures differ substantially. An alternative nor-

malization model has been proposed by Balwierz

and colleagues for the analysis of cap analysis of

gene expression (CAGE) and RNA-seq data when

sequence tags were found to follow the power-law

distribution [83, 84]. A more objective normalization

method using synthetic RNA spiking controls, orig-

inally developed for microarray analysis [38], may

also prove effective for UHTS.

Another challenge of using UHTS is to overcome

the artificial biases that are introduced during the

experimental procedures. Nagalakshmi and col-

leagues first demonstrated that such biases exist for

different fragmentation methods, showing that

RNA fragmentation enriches the reads in the tran-

script body while cDNA fragmentation enriches reads

at the transcript ends [63]. While most of mRNA-seq

protocols now employ RNA-fragmentation to max-

imize the representation of exons, important infor-

mation at the 30 and 50-ends of the transcript may be

missed. Biases can also be introduced through

PCR-amplification steps, where factors such as

primer quality and template GC content may affect

the efficiency of PCR leading to artificial enrichment

of certain groups of transcripts. Recently developed

‘single-molecule’ sequencing technologies may make

such amplification steps obsolete, potentially provid-

ing a more accurate estimate of transcript abundance

[79]. Biases also exist in the statistical power of deter-

mining whether a gene is differentially expressed.

Oshlack and colleagues [85] have reevaluated some

published data, which demonstrated that the differ-

ences in statistical power rely on the chances of a read

to hit a certain gene. Longer genes intrinsically accu-

mulate more reads over shorter ones, which create

the differences of statistical power in calculating sig-

nificance. It is notable that such a discrepancy cannot

be completely eliminated even when reads are nor-

malized by the gene length, because a difference in

variance still exists. Interestingly, such variances in

statistical power do not exist in microarray-based

analyses, suggesting it may be complementary to

UHTS-based transcriptomics studies [85].

The transcriptome coverage is also an important

issue for mRNA-seq. While in principle close to

Figure 3: Overview of RNA-seq data analysis. Image
capture and base pair calls are commonly performed
by proprietary software that is developed by individual
UHTS companies. The raw output files of this software
contain the sequences of short reads, usually also
accompanied by quality scores. Publically available soft-
ware/algorithms such as BWA [30], Bowtie [34] and
ELAND [31] are able to align these reads to the refer-
ence genome (blue lines represent read that are
mapped to exons, red as mapped to introns, green as
mapped to antisense strand). Alternative splicing event
can be analyzed with software such asTopHat [39] and
Supersplat (http://supersplat .cgrb.oregonstate.edu).
Results generated from the pipeline can be used to
discover novel transcripts, monitor transcriptome
dynamics and explore transcript structures.
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100% of transcripts can be captured by adequate

sequencing depth, the associated cost of an exhaus-

tive approach can be inhibitory. An early study in

yeast demonstrated that 30 million 35-base pairs

reads can capture up to 90% of all genes from cul-

tures that were grown under one condition [63]. In a

much more complex maize genome, we have shown

that transcripts for over 87% of annotated genes are

detectable from 94 million reads derived from leaf

RNA samples. With the UHTS technology being

steadily improved and the sequencing costs drop-

ping, the issue of transcriptomic coverage may soon

be less of a concern.

Despite these challenges, UHTS-based trans-

criptomics approaches promise ‘never-before’ oppor-

tunities to explore plant transcriptomes. As

improvements to the sequencing chemistry, sequenc-

ing hardware and software and statistical methods of

analysis continue to progress, the expectations for

transcriptomics studies will continue to increase.

It has been speculated that the cost of sequencing

a complete genome or transcriptome will not be

a limiting factor in the foreseeable future. This may

allow experiments that were deemed as economically

unfeasible in the past to be routinely performed. For

instance, an EMS mutagenesis that generates a point

mutation with an interesting phenotype may be

quickly mapped and characterized through a dual

whole genome DNA/RNA-seq profiling approach.

In summary, UHTS-based approaches have clearly

demonstrated their advantages over previously devel-

oped methods and are becoming the new standard for

transcriptomics studies.
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