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Abstract

Inferring demographic history is an important task in population genetics. Many existing inference 

methods are based on pre-defined simplified population models, which are more suitable for 

hypothesis testing than for exploratory analysis. We developed a novel model-flexible method 

called stairway plot, which infers population size changes over time using SNP frequency spectra. 

This method is applicable for whole-genome sequences of hundreds of individuals. Using 

extensive simulation we demonstrated the usefulness of the method for inferring demographic 

history, especially recent population size changes. The method was applied to the whole genome 

sequence data of nine populations from the 1000 Genomes Project, and showed a pattern of 

human population fluctuations from 10 to 200 thousand years ago.

Inferring human demographic history using genetic information can shed light on important 

prehistoric evolutionary events such as population bottleneck, expansion, migration, and 

admixture, among others. It is also the foundation of many population genetics analyses, as 

demographic history is one of the most important forces shaping the polymorphic pattern of 

our genome1. Many of the methods available for inferring demographic history with 

genome-scale data are model-constrained2–5, that is, researchers need to pre-define a 

demographic model (for example, a constant-size phase followed by an exponential growth 

phase beginning at a certain time point) and the number of the parameters to be estimated 

before estimating the demographic history. Parameters of the models are then estimated by 

fitting the expected polymorphic pattern (e.g. a SNP frequency spectrum) given a set of 

parameters to that of the observed data, either through extensive simulation2 or diffusion 

approximation3. On the other hand, model-flexible methods (sometime also called “model-
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free” methods), such as the skyline plot6 and its derivatives7–13, are not restricted to a 

specific demographic model and typically explore larger model space than model-

constrained methods. Therefore, model-flexible methods can infer significantly more 

detailed demographic history and may be more suitable for exploratory or hypothesis 

generating analysis. However, the skyline plot and its derivatives are based on the full-

likelihood of DNA sequences, and at the current stage can only be applied to recombination-

free loci such as mitochondrial DNA14,15. Recently, Li and Durbin16 proposed a model-

flexible method based on the pairwise sequentially Markovian coalescent (PSMC) 

framework, which specifically models the recombination between two sequences and 

therefore can analyze autosomes. However, the PSMC method also has its limitations: i) it 

still requires the users to have a rough idea of the population history in order to determine 

the number of parameters to estimate; ii) it requires high-quality sequence data for its 

application; and iii) it tends to produce biased estimation for recent population histories17.

We developed a new method called stairway plot. It uses a flexible multi-epoch model (Fig. 
1) as used in the skyline plot methods7,8, which has worked well in previous demographic 

inference applications8,13. However, instead of calculating the likelihood of the whole 

sequence, our method calculates the expected composite likelihood of a given SNP 

frequency spectrum (SFS)18–20. Composite likelihood calculation treats each SNP as an 

independent locus, which significantly reduces the computational burden. This simplified 

likelihood is a good approximation when the number of SNPs is large and it has worked 

well in a population parameter estimation application18. Therefore, the stairway plot has 

both the model flexibility of the skyline plot methods and the computational efficiency 

making it applicable to hundreds of individuals. The number of parameters to be estimated is 

systematically determined by the standard likelihood ratio test, and can range from 1 to n-1, 

where n is the number of sequences in the sample. As the method is based on SFS, it has the 

potential to be applied to pooled sequence data22 and even species whose reference genome 

are not yet available23. Details of the stairway plot method can be found in Online Methods.

We evaluated the stairway plot using extensive simulation and demonstrated the usage of the 

method for exploratory demographic inference. Compared to the PSMC method, the 

stairway plot produced more accurate estimations for recent population size changes. 

Although it has limited inference accuracy and resolution for more ancient histories, at its 

applicable range the performances were still comparable to those of the PSMC method. We 

applied our method to the genomes of nine populations (CEU, GBR, TSI, FIN, CHB, CHS, 

JPT, YRI, LWK) from the 1000 Genomes Project24 that are not recently admixed, inferred 

demographic histories of the populations, and provided interesting hypotheses for future 

studies, such as ancestors of the FIN population (Finnish in Finland) potentially experienced 

a recent bottleneck between 10-20 thousand years ago (kya)25.

RESULTS

Simulation Studies

We validated the stairway plot using extensive coalescent simulations and compared its 

demographic estimations to those of the PSMC method (see Online Methods). More 

specifically, for each pre-defined demographic model, we simulated 200 independent 
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samples with ms26 or MaCS27 software. For each simulated sample, we used the stairway 

plot and the PSMC method to infer the demographic history. For the PSMC method, we 

used the pre-tuned parameters for estimating human population history as suggested by its 

authors. Along the estimated time span, we calculated the medians and the 2.5 and 97.5 

percentiles of the 200 inferred population sizes with the stairway plot and the PSMC 

method, respectively, and used those percentiles to measure the overall accuracy (by 

medians) and dispersion (by 2.5 and 97.5 percentiles) of the two methods.

Fig. 2 compared the performances of the stairway plot and the PSMC methods using six 

different models inspired by previously estimated human population histories. Without loss 

of generality, one could use the expected number of mutation(s) per base pair (bp) to 

measure time, and θ per bp to measure population size, where θ=4Neμ, Ne is the effective 

population size and μ is the mutation rate per generation. Dividing by μ and 4μ, one can 

easily convert the above time measure and population size measure to the number of 

generations and the number of individuals, respectively. Throughout this paper, we assumed 

a mutation rate of 1.2 × 10–8 per bp per generation28–30 and a generation time of 24 years31. 

Model 1 (Fig. 2a) assumes a constant effective population size of 10,000 individuals. For 

this model, the medians of inferred histories of both methods fitted well with the true model. 

Compared to the stairway plot, the PSMC method can infer more ancient history. As to 

dispersion, that of the stairway plot was smaller (in absolute term) than that of the PSMC 

method for more recent history, while the opposite was observed for more ancient history. 

The last two observations were generally true for all models we studied, therefore for the 

following models we will focus on the accuracy of the two methods for inferring recent 

histories. Model 2 (Fig. 2b) assumes a sudden population size increase at one time point and 

besides that the population size remains constant, which mimics a previously estimated 

model for an African population32. For this model, the median of the stairway plot's 

inference fitted almost perfectly with the true model, while that of the PSMC method did not 

fit very well. Model 3 (Fig. 2c) assumes an exponential growth of population size with a rate 

of 0.004 per generation32 (i.e. r=0.004). Model 4 (Fig. 2d) is another exponential growth 

model which mimics the estimated recent growth of a population with European ancestry3. 

In both cases, while the stairway plot fits the true model reasonably well, the PSMC is 

biased upward dramatically. Model 5 (Fig. 2e) is based on an estimated human population 

demographic history4 with a faster exponential growth rate (r=0.01288). Model 6 (Fig. 2f) is 

a model tested in the PSMC publication16. Again, the stairway plot was a better fit to the 

recent population history than the PSMC.

For inferring more ancient population size changes, we compared the performances of the 

two methods using four additional models tested in the original PSMC publication plus a 

population split model (Supplementary Figure 1). As we mentioned previously, the 

stairway plot had a shorter upper limit and a larger dispersion for ancient history inference 

compared to the PSMC method. The former is a disadvantage for the stairway plot but the 

latter correctly reflects the uncertainty of our inferences, on the other hand. As to the PSMC 

method, although it had a smaller dispersion for ancient history inferences, the true histories 

often fall outside its 95% inference ranges. The stairway plot might produce an artificial 

bottleneck when the time spans of the last few θ estimations (see Online Methods) overlap 
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with ancient population size fluctuations (see Supplementary Figure 1e for an example and 

Discussion for its recognizable pattern). Overall, within the applicable time spans of the 

stairway plots, roughly up to the last 10 steps of the plot, the performances of the stairway 

plot for inferring ancient population size were comparable to the PSMC.

Many factors can affect the inference of the stairway plot. Using simulation we studied the 

impact of SNP number (or sequence length), sample size and recombination rate. In short, 

increasing sample size can significantly improve the inference accuracy (median), especially 

for inferring recent population growth, while the most obvious effects of larger SNP number 

and recombination rate are reducing the inference dispersion (Supplementary Figure 2). 

The underlying true demographic history determines the information contained in the 

sample SFS so that the inference results will also affected. There are known caveats related 

to that; some bottlenecks of the studied population may be missing from the plot due to 

limitation of inference power. For example, when two bottlenecks are close to each other or 

a very deep bottleneck following an ancient bottleneck, the stairway plot may not be able to 

infer the more ancient one (see Supplementary Figure 3 and more explanation in 

Discussion).

Application to the 1000 Genomes Project Data

We applied the stairway plot to the whole genome sequences of nine populations (LWK, 

YRI, CEU, GBR, TSI, FIN, CHB, CHS, JPT) from the 1000 Genomes Project24. We 

restricted our analysis to the genomic regions that are at least 50 kilobase away from any 

coding regions based on the RefSeq database33 to avoid potential impacts from natural 

selection34. We also removed regions that are outside the strict mask of the 1000 Genomes 

Project24 to reduce artifacts due to mapping errors. Finally, only sites whose ancestral alleles 

have been inferred with high confidence (see Online Methods) were included for analysis. 

Because all the SNPs are from intergenic regions and were called with low-depth 

sequencing, many of the SNPs on the rare spectrum were not observed. We adjusted the 

SFSs by using the empirical transition probabilities from the SFSs of the high-depth-

sequenced exome regions to the SFSs of low-depth-sequenced exome regions, with the 

assumption that the SFS bias due to low-depth is systematic and universal across the 

genome (see Online Methods and Supplementary Note for details). For each population, 

200 bootstrap SFSs were created from the adjusted SFS, and for each bootstrap SFS the 

stairway plot was used to infer the demographic history. The median inferred population 

size in each time interval based on the 200 estimations was used to construct a single 

inferred history of population size. As there were likely artificial bottlenecks observed for all 

nine populations (Supplementary Figure 4), only more recent histories up to 200-300 kya 

were taken as results. As a higher mutation rate or a lower generation time will lower our 

time estimation (and on the opposite a lower mutation rate or a higher generation time will 

heighten our time estimation), we also provided lower and upper estimations for time ranges 

assuming a (apes-like) generation time of 20 years35,36 with a mutation rate of 1.4×10–8 per 

bp per generation37 or a generation time of 30 years38 with a mutation rate of 1.0 × 10–8 per 

bp per generation29,30,39, respectively (in brackets in the following paragraph).
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Fig. 3 shows the estimations (see also Supplementary Figure 4) and their 95% bootstrap 

ranges for the nine populations. There are several patterns that are easily observed: (1) Non-

African populations all showed severe bottlenecks between 50-70 kya (36-105 kya), which 

are most likely due to modern human's OOA migration. (2) All non-African populations 

except the FIN also showed a shallower and more recent bottleneck between 20-30 kya 

(14-45 kya), and then was followed by size recoveries. The FIN did not show an obvious 

bottleneck between 20-30 kya, potentially due to limitation of inference power (see 

Discussion for details), and its size recovery began at around 15 kya (11-23 kya). (4) 

Compared to the Non-African populations, the two African populations show wider and 

shallower bottlenecks between 50-70 kya (36-105 kya) and no bottlenecks between 20-30 

kya (14-45 kya). (5) Both African populations also show bottlenecks between 100-200 kya 

(71-300 kya), probably associated with the origination of the anatomically modern human40. 

This bottleneck is not observed in non-African populations, also likely due to limitation of 

inference power (see Discussion).

DISCUSSION

Here we reported the development of a novel model-flexible method called stairway plot for 

inferring population demographic histories, which is designed for exploratory or hypothesis 

generating analysis. There are several other model-flexible methods including the family of 

skyline plot methods6–13 and the PSMC method, whose advantages and limitations were 

briefly discussed in the Introduction. New developments in this area include the diCal 

method17 and multiple sequential Markovian coalescent41 (MSMC). The diCal method 

extends the PSMC by modeling the configurations of multiple sequences, and showed 

improvement over the PSMC on inferring recent population histories. However, diCal 

requires the users to provide haplotypes (i.e. phased sequence data) and a mutation matrix 

(i.e. relative mutation rates) for the four nucleic bases, which may introduce biases into the 

estimation if not properly estimated. Besides, the computational intensity limits diCal's 

application to ~10 sequences. MSMC is another extension of the PSMC method. Instead of 

modeling all the coalescent events of multiple sequences, it focuses on the first coalescent 

event and the external branches of coalescent trees. However, due to the modeling and 

computational complexity, its application is currently limited to roughly 8 phased sequences. 

Our stairway plot method is based on the composite likelihood of SFS, and therefore has the 

advantages of efficient computation and the applicability to a broader range of sequence 

data, such as low-depth sequence24, pooled sequence22 and potentially even reference-free 

transcriptome data23. At the current stage, it can be applied to hundreds of unphased 

sequences. Compared to the PSMC method, the stairway plot can take the advantages of 

larger sample sizes and provide more accurate inference for recent population histories. 

However, the stairway plot still has the limitation for inferring ancient histories, for which 

the PSMC, diCal or MSMC methods may perform better. Therefore, we recommend the 

complementary usage of the stairway plot with the PSMC, diCal or MSMC.

The application of our stairway plot to nine populations from the 1000 Genomes Project 

provided some observations worth further and more careful investigation. First, we observed 

a bottleneck between 10-20 kya in the FIN, which was not observed in other European 

populations; and vice versa we observed a bottleneck between 20-30 kya in all European 
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populations except the FIN. One explanation of this pattern is that FIN ancestors separated 

from those of other European populations as earlier as 30 kya. Another possibility is that the 

FIN may also experience a bottleneck as other European populations, as the shape of its 

95% inference ranges suggests a population size decrease around 30 kya. We did some 

preliminary simulation experiments to investigate the two possibilities (see Supplementary 
Note for details). The results (Supplementary Figure 3b,c,d) showed that if a population 

experienced two continuous bottlenecks, one between 10-20 kya and another between 20-30 

kya, our method was not able to infer both bottlenecks. Instead, the plot tended to suggest 

the more recent bottleneck, which more or less matches the pattern we observed for the FIN. 

Although we cannot rule out the first explanation, our preliminary analysis suggests the 

second explanation might be true; that is, the FIN may experience the same bottleneck 

between 20-30 kya as other European populations, but it may also experience an additional 

bottleneck between 10-20 kya. Second, we observed that African populations have a 

bottleneck between 100-200 kya, which is missing in the plots of non-African populations. 

Again, one possible explanation is that ancestors of all non-African populations separated 

from those of the African populations as earlier as 200 kya41, and an alternative explanation 

is that our method does not have sufficient power to infer that ancient bottleneck with the 

non-African samples. Because our estimation of population sizes depends on the gene 

lineages available for coalescence during a period of time, the fewer gene lineages available 

during the period the less information available for inferring population sizes. As all non-

African populations experienced a deep OOA bottleneck between 50-70 kya, many gene 

lineages of the samples may not survive the bottleneck and be available for inferring more 

ancient population histories. Although we cannot rule out the first explanation, the 

simulation experiments we described above supported the alternative explanation, that is, 

any population having a deep OOA bottleneck did not show an ancient bottleneck between 

100-200 kya although the true model has one (Supplementary Figure 3b,c,d). However 

such an ancient bottleneck can be inferred if the population does not have a deep OOA 

bottleneck (Supplementary Figure 3a). Those results also emphasize that interpretations of 

inferred bottlenecks need to be careful and hypothesis testing is necessary before any 

conclusions are formulated.

There are many ways the stairway plot can be further improved. As our method models the 

“average” behavior of many independent coalescent trees, the expectations of coalescent 

times or E(tk)s are the “building blocks” for the steps observed in the stairway plot. By 

nature E(tk) is inversely proportional to k(k-1) (see Online Methods). Reflecting on the 

stairway plot, the step size of the plot, which is proportional to E(tk), is typically much larger 

when k is small (corresponding to ancient histories) than it is when k is large (corresponding 

to recent histories) . Put another way, we only model ancient demographic histories using a 

small number of parameters (or steps as to the plot). When the ancient demographic history 

is complex, the small number of steps overlapping that complex history may ill-fit the data. 

A typical result is an artificial bottleneck, which occurs only at the last few (< 10) steps of 

the plot with a distinguishable pattern of a beginning of population decrease at the second 

step (θ3) and a lowest point typically around the third step (θ4) (see examples in 

Supplementary Figure 1e and Supplementary Figure 4). Here we caution users of the 

stairway plot when such a pattern is observed, the true demographic changes of the 
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population studied may not be correctly reflected. Considering the lower resolution for 

ancient histories as to the stairway plot, we suggest comparing estimations from various 

methods (such as the PSMC/MSMC method and diCal) when applicable, and avoiding over-

interpretation of the inferred history with the last 10 steps of the stairway plot. One possible 

improvement for the stairway plot as to the estimation of ancient histories is by integrating 

the composite likelihood into a Bayesian framework8,9, which smoothes the θ estimations 

into continuous probability estimations. A further smoothness can be achieved with a 

smoothing prior based on a Gaussian Markov random field, in which the smoothness is 

informed by the data10. Another possible improvement for the estimation of the 

demographic history of a fast growing population, such as for the human population, is by 

using a different null model. Generally speaking, the underlying null model of the stairway 

plot is a population of constant size during a certain time period. If an instantaneous size 

change at a certain point within the period (defined by coalescent times) creates an 

alternative model with a significantly larger likelihood, the alternative model will replace the 

null model for further model refinement. This procedure produces a stairway-like inferred 

population model for a population with a fast size increase or decrease. Assuming an 

exponential growth model42 as the null model or a hybrid of the null models of constant size 

and exponential growth may reduce the number of parameters to be estimated for such 

populations, and therefore improve the accuracy of estimations. In addition, a more efficient 

optimization search algorithm for the number and values of θs shall further reduce the 

computational intensity so that the stairway plot method can be applicable to even larger 

sample sizes.

ONLINE METHODS

Composite likelihood of a SFS

We assume a random sample of n sequences is taken from a population, whose size may 

instantaneously change at the time points coinciding with coalescent events of the n 

sequences of the gene genealogy (Fig. 1). Let tk be the k-coalescent time, then the 

probability

where Nk is the effective size of the population during tk. We assume Nk remains constant 

during tk, and Nk-1 or Nk+1 may be equal to or different to Nk. With a given Nk, a realization 

of tk from an independent coalescent tree follows the above distribution. If we summarize a 

large number of independent coalescent trees, the average of observed tk will approach its 

expectation E(tk|Nk) = 4Nk/(k(k-1)). Let pi be the probability (or the expectation from a large 

number of independent coalescent trees) that a nucleic site is a SNP of size i (n-1 ≥ i ≥ 1), 

then pi can be expressed as a function of θk, where θk = 4Nkμ, and μ is the mutation rate per 

bp per generation43. In more detail,
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where

For simplicity, we define SNP size 0 as the size of monomorphic sites, and its probability is

Assuming each site is from an independent coalescent tree (i.e. unlinked), the number of 

SNPs of size i, ξi, can be modeled with a multinomial distribution and the composite 

likelihood of observing ξ0, ξ1, ... , ξn-1 can be written as

where

Theoretically, it is possible to use a subset of the SNP sizes for the likelihood calculation 

with a sacrifice of loss of information contained in those SNP size bins (see Supplementary 
Note for details and potential pitfalls).

When missing data exist, we can separate the whole SNP spectrum into ln sites with n 

observed alleles, ln-1 sites with n-1 observed alleles, and ln-2 sites with n-2 observed alleles, 

··· . The composite likelihood of the whole data set is
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Estimating θs

We used a Java library for numerical optimization called SwarmOps44 to search for the θs 

that maximize the composite likelihood of a given SFS. We used a specialized Genetic 

Algorithm method for real-valued search-spaces called Differential Evolution (DE)45 if the 

number of sequences is smaller than 200. Otherwise, we used a Pattern Search (PS) 

method44,46. We used default behavior parameters for DE, and 5000×d and 50×d iterations 

for DE and PS, respectively, where d is the number of different θs to be estimated.

As there are a total of n-1 different θs that can be estimated, we try to minimize the number 

of different θs to be estimated by using “break points” to group them. That is, in a ordered 

serial of θ2, θ3, ..., θn, break points are inserted into the serials that separate the θs into 

continuous groups. Any two consecutive θs that are not separated by a break point belong to 

the same group. We assume the θs within the same group have the same value, while those 

belonging to different groups may have different values. We also modeled the 

autocorrelation between the values of adjacent groups of θs following previous successful 

practices8.

The procedure for finding the best grouping of θs fitting the observed SFS is as follows: (1) 

It begins with a single θ, i.e. θ2 = θ3 = ... = θn. Obtain L1 as the likelihood calculated with 

this single θ estimation, that is, for a population model of constant size. (2) Increase d by 1; 

for each point between θk and θk+1, let θl = θk for all l ≤ k and θm = θk+1 for all m > k; use 

SwarmOps to find the estimations of the two θ values that maximized L; calculate L 

corresponding to that specific break point and the θ estimations; and find the break point 

with the largest L and designate it as L2. The procedure stops if –2ln(L1/L2) < 3.84, (i.e. a 

likelihood ratio test with one degree of freedom and α = 0.05), otherwise, we accept the new 

split. (3) increasing d by 1 and repeat the practice; based on the best θ break point(s) 

associated with Ld-1, find an additional break point associated with the largest L and 

designate it as Ld; and stop when –2ln(Ld-1/Ld) < 3.84. As this procedure is not an 

exhaustive search for the global optimum from the whole parameter space. It is not 

guaranteed to find the global optimum, especially when the underlying true model is 

complex. Based on our experiments and observations, the estimation results are typically 

acceptable approximations for the global optimum (see Supplementary Note for results 

from three example experiments).

Determining the population size at a given time point

Without loss of generality, we use θ to measure population size and mutation per bp to 

measure time (from the time point when the sample was taken). They can be easily 

converted to the number of individuals and the number of generations if divided by 4μ and 

μ, respectively. Given θk per bp, the expected length of tk is θk/(k(k-1)). Let

then the stairway plot infers θ at Ti < T ≤ Ti-1 equals θi-1.
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PSMC estimation

The PSMC estimations were conducted using the default parameters tuned for human 

populations. To measure its dispersion, for each simulated sample or bootstrap sample of 

multiple individuals, we inferred population size changes using PSMC. Then at each time 

point along the population history, we calculate the 2.5% and 97.5% percentiles of 

population size estimations from all inferred histories.

The simulation data

Sequence data were simulated using either ms26 or MaCS27 software. Detailed simulation 

commands can be found in the Supplementary Note. If not specified, all sequences were 

simulated assuming a mutation rate (μ) of 1.2 × 10–8 per bp per generation28–30 and a 

recombination of ρ = 0.8μ per bp per generation. Please note that we used a smaller 

estimation of recombination, as a recent study suggested that the average recombination rate 

for humans is about the same as the mutation rate47.

The 1000 Genomes Project data

The 1000 Genomes Project phase 1 whole genome SNP calls of the nine populations (LWK, 

YRI, CEU, GBR, TSI, FIN, CHB, CHS, JPT) were downloaded from the 1000 Genomes 

Project ftp sites. Regions that are within 50 kb from any known coding genes (based on the 

RefSeq database33) and that are outside the 1000 Genomes Project phase 1 strict mask were 

removed. Sites whose ancestral alleles were not inferred with a high confidence based on the 

1000 Genomes Project phase 1 annotation were also removed. The total number of sites in 

the human genome that passed our filtering is 650,351,035. For each population we 

calculated SFS only from the retained sites. Because intergenic regions were sequenced with 

low depth, many of the alleles with low frequencies were not observed. We adjusted the first 

20 minor allele frequency bins of each SFS for each population to obtain the most likely true 

SFS using the empirical transition probabilities that were based on the SFS of the high-depth 

sequence data of the exome regions and the SFS of low-depth sequence data of the same 

regions (see Supplementary Note for details).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the multi-epoch model. A coalescent tree with corresponding coalescent times 

is shown on the left and an illustration of the population size (width of the rectangle) 

changes as multi-epochs with each epoch coinciding with a coalescent event is shown on the 

right.
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Figure 2. 
Comparing the inferred histories of the stairway plot and the PSMC method using simulated 

samples based on six different models. Subfigures: a: Constant size model; b: Two-epoch 

model; c: Exponential growth model I; d: Exponential growth model II; e: Complex model; 

f: PSMC “standard” model. We assumed a mutation rate of 1.2 × 10–8 per bp per generation 

and a generation time of 24 years. Thin black lines: true models. Thick orange lines: 

medians of the inferred histories of the stairway plot. Thin orange lines: 2.5 and 97.5 

percentiles of the inferred histories of the stairway plot. Thick green lines: medians of the 

inferred histories of the PSMC method. Thin green lines: 2.5 and 97.5 percentiles of the 

inferred histories of the PSMC method. n: number of simulated sequences. L: length of 

simulated sequences.
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Figure 3. 
Inferred histories of nine populations. We assumed a mutation rate of 1.2 × 10–8 per bp per 

generation and a generation time of 24 years. Within each sub-figure, the black lines and 

two orange lines represent the medians and the 2.5 and 97.5 percentiles, respectively, of the 

stairway plot's estimations from 200 bootstrap SFSs.
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