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Abstract

Traditional approaches to the task of ACE

event extraction usually depend on manually

annotated data, which is often laborious to cre-

ate and limited in size. Therefore, in addi-

tion to the difficulty of event extraction itself,

insufficient training data hinders the learning

process as well. To promote event extraction,

we first propose an event extraction model to

overcome the roles overlap problem by sep-

arating the argument prediction in terms of

roles. Moreover, to address the problem of in-

sufficient training data, we propose a method

to automatically generate labeled data by edit-

ing prototypes and screen out generated sam-

ples by ranking the quality. Experiments on

the ACE2005 dataset demonstrate that our ex-

traction model can surpass most existing ex-

traction methods. Besides, incorporating our

generation method exhibits further significant

improvement. It obtains new state-of-the-art

results on the event extraction task, including

pushing the F1 score of trigger classification to

81.1%, and the F1 score of argument classifi-

cation to 58.9%.

1 Introduction

Event extraction is a key and challenging task for

many NLP applications. It targets to detect event

trigger and arguments. Figure 1 illustrates a sen-

tence containing an event of type Meet triggered

by ”meeting”, with two arguments: ”President

Bush” and ”several Arab leaders”, both of which

play the role ”Entity”.

There are two interesting issues in event ex-

traction that require more efforts. On the one

hand, roles in an event vary greatly in frequency

(Figure 2), and they can overlap on some words,

†These two authors contributed equally.
‡Corresponding Author.

[Trigger]

Event type: Meet

Sentence  : President Bush           is going to be meeting 

                   with several Arab leaders 

[Entity]

[Entity]

Figure 1: An event of type Meet is highlighted in the

sentence, including one trigger and two arguments.

even sharing the same argument (the roles over-

lap problem). For example, in sentence ”The

explosion killed the bomber and three shoppers”,

”killed” triggers an Attack event, while argument

”the bomber” plays the role ”Attacker” as well

as the role ”Victim” at the same time. There are

about 10% events in the ACE2005 dataset (Dod-

dington et al., 2004) having the roles overlap prob-

lem. However, despite the evidence of the roles

overlap problem, few attentions have been paid to

it. On the contrary, it is often simplified in evalu-

ation settings of many approaches. For example,

in most previous works, if an argument plays mul-

tiple roles in an event simultaneously, the model

classifies correctly as long as the prediction hits

any one of them, which is obviously far from ac-

curate to apply to the real world. Therefore, we

design an effective mechanism to solve this prob-

lem and adopt more rigorous evaluation criteria in

experiments.

On the other hand, so far most deep learn-

ing based methods for event extraction follow the

supervised-learning paradigm, which requires lots

of labeled data for training. However, annotating

accurately large amounts of data is a very labo-

rious task. To alleviate the suffering of existing

methods from the deficiency of predefined event

data, event generation approaches are often used

to produce additional events for training (Yang

et al., 2018; Zeng et al., 2018; Chen et al., 2017).

And distant supervision (Mintz et al., 2009) is a

commonly used technique to this end for label-

ing external corpus. But the quality and quantity
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Figure 2: Frequency of roles that appear in events of

type Injure in the ACE2005 dataset.

of events generated with distant supervision are

highly dependent on the source data. In fact, ex-

ternal corpus can also be exploited by pre-trained

language models to generate sentences. Therefore,

we turn to pre-trained language models, attempt-

ing to leverage their knowledge learned from the

large-scale corpus for event generation.

Specifically, this paper proposes a framework

based on pre-trained language models, which in-

cludes an event extraction model as our baseline

and a labeled event generation method. Our pro-

posed event extraction model is constituted of a

trigger extractor and an argument extractor which

refers result of the former for inference. In addi-

tion, we improve the performance of the argument

extractor by re-weighting the loss function based

on the importance of roles.

Pre-trained language models have also been ap-

plied to generating labeled data. Inspired by the

work of Guu et al. (2018), we take the existing

samples as prototypes for event generation, which

contains two key steps: argument replacement and

adjunct token rewriting. Through scoring the qual-

ity of generated samples, we can pick out those

of high quality. Incorporating them with existing

data can further improve the performance of our

event extractor.

2 Related work

Event Extraction In terms of analysis granularity,

there are document-level event extraction (Yang

et al., 2018) and sentence-level event extraction

(Zeng et al., 2018). We focus on the statistical

methods of the latter in this paper. These meth-

ods can be further divided into two detailed cat-

egories: the feature based ones (Liao and Grish-

man, 2010; Liu et al., 2010; Miwa et al., 2009; Liu

et al., 2016; Hong et al., 2011; Li et al., 2013b)

which track designed features for extraction, and

the neural based ones that take advantage of neu-

ral networks to learn features automatically (Chen

et al., 2015; Nguyen and Grishman, 2015; Feng

et al., 2016).

Event Generation External resources such as

Freebase, Frame-Net and WordNet are commonly

employed to generate event and enrich the train-

ing data. Several previous event generation ap-

proaches (Chen et al., 2017; Zeng et al., 2018)

base a strong assumption in distant supervision1

to label events in unsupervised corpus. But in fact,

co-occurring entities could have none expected re-

lationship. In addition, Huang et al. (2016) incor-

porates abstract meaning representation and distri-

bution semantics to extract events. While Liu et al.

(2016, 2017) manages to mine additional events

from the frames in FrameNet.

Pre-trained Language Model Pre-trained lan-

guage models are capable of capturing the mean-

ing of words dynamically in consideration of their

context. McCann et al. (2017) exploits language

model pre-trained on supervised translation corpus

in the target task. ELMO (Embeddings from Lan-

guage Models) (Peters et al., 2018) gets context

sensitive embeddings by encoding characters with

stacked bidirectional LSTM (Long Short Term

Memory) and residual structure (He et al., 2016).

Howard and Ruder (2018) obtains comparable re-

sult on text classification. GPT (Generative Pre-

Training) (Radford et al., 2018) improves the state

of the art in 9 of 12 tasks. BERT (Bidirectional

Encoder Representations from Transformers) (De-

vlin et al., 2018) breaks records of 11 NLP task

and received a lot of attention.

3 Extraction Model

This section describes our approach to extract

events that occur in plain text. We consider event

extraction as a two-stage task, which includes trig-

ger extraction and argument extraction, and pro-

pose a Pre-trained Language Model based Event

Extractor (PLMEE). Figure 3 illustrates the archi-

tecture of PLMEE. It consists of a trigger extractor

and an argument extractor, both of which rely on

the feature representation of BERT.

3.1 Trigger Extractor

Trigger extractor targets to predict whether a token

triggers an event. So we formulate trigger extrac-

tion as a token-level classification task with labels

1If two entities have a relationship in a knowledge base,
then all sentences that mention these two entities will express
that relationship.
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Figure 3: Illustration of the PLMEE architecture, including a trigger extractor and an argument extractor. The

processing procedure of an event instance triggered by the word ”killed” is also shown.

being event types, and just add a multi-classifier

on BERT to build the trigger extractor.

The input of the trigger extractor follows the

BERT, i.e. the sum of three types of embed-

dings, including WordPiece embedding (Wu et al.,

2016), position embedding and segment embed-

ding. Since the input contains only one sentence,

all its segment ids are set to zero. In addition, to-

ken [CLS] and [SEP]2 are placed at the start and

end of the sentence.

In many cases, the trigger is a phrase. There-

fore, we treat consecutive tokens which share the

same predicted label as a whole trigger. As gen-

eral, we adopt cross entropy as the loss function

for fine-tuning.

3.2 Argument Extractor

Given the trigger, argument extractor aims to ex-

tract related arguments and all roles they play.

Compared with trigger extraction, argument ex-

traction is more complicated because of three is-

sues: the dependency of arguments on the trigger,

most arguments being long noun phrases, and the

roles overlap problem. We take exactly a series of

actions to deal with these obstacles.

In common with trigger extractor, argument ex-

tractor requires three kinds of embeddings as well.

However, it needs to know which tokens comprise

the trigger. Therefore, we feed argument extractor

with the segment ids of trigger tokens being one.

2[CLS], [SEP] and [MASK] are special tokens of BERT.

To overcome the latter two issues in argument

extraction, we add multiple sets of binary classi-

fiers on the BERT. Each set of classifiers sever for

a role to determine the spans (each span includes a

start and an end) of all arguments that play it. This

approach is similar to the question answering task

on the SQuAD (Rajpurkar et al., 2016) in which

there is only one answer, while multiple arguments

playing the same role can appear simultaneously

in an event. Since the prediction is separated with

roles, an argument can play multiple roles, and a

token can belong to different arguments. Thus, the

roles overlap problem can also be solved.

3.3 Argument Span Determination

In PLMEE, a token t is predicted as the start of an

argument that plays role r with probability:

P r
s (t) = Softmax (W r

s · B (t)) ,

while as the end with probability:

P r
e (t) = Softmax (W r

e · B (t)) ,

in which we use subscript ”s” to represent ”start”

and subscript ”e” to represent ”end”. W r
s is the

weight of binary classifier that aims to detect starts

of arguments playing role r, while W r
e is the

weight of another binary classifier that aims to de-

tect ends. B is the BERT embedding.

For each role r, we can get two lists Br
s and Br

e

of 0 and 1 according to P r
s and P r

e . They indicate

respectively whether a token in the sentence is the



5287

start or end of an argument that plays role r3. Al-

gorithm 1 is used to detect each token sequentially

to determine spans of all arguments that play the

role r.

Algorithm 1 Argument span determination

In: P r
s and P r

e , Br
s and Br

e , sentence length l.

Out: Span list L of the arguments that play role r

Initiate: as ←-1, ae ←-1

1: for i← 0 to l do

2: if In State 1 & the ith token is a start then

3: as ← i and change to State 2

4: end if

5: if In State 2 then

6: if the ith token is a new start then

7: as ← i if P r
s [i] > P r

s [as]
8: end if

9: if the ith token is an end then

10: ae ← i and change to State 3

11: end if

12: end if

13: if In State 3 then

14: if the ith token is a new end then

15: ae ← i if P r
e [i] > P r

e [ae]
16: end if

17: if the ith token is a new start then

18: Append [as, ae] to L

19: ae ← -1, as ← i and change to State 2

20: end if

21: end if

22: end for

Algorithm 1 contains a finite state machine,

which changes from one state to another in re-

sponse to Br
s and Br

e . There are three states to-

tally: 1) Neither start nor end has been detected;

2) Only a start has been detected; 3) A start as well

as an end have been detected. Specially, the state

changes according to the following rules: State 1

changes to State 2 when the current token is a start;

State 2 changes to State 3 when the current token

is an end; State 3 changes to State 2 when the cur-

rent token is a new start. Notably, if there has been

a start and another start arises, we will choose the

one with higher probability, and the same for end.

3.4 Loss Re-weighting

We initially define Ls as the loss function of all

binary classifiers that are responsible for detect-

ing starts of arguments. It is the average of cross

3The i
th token is a start if Br

s [i]=1 or an end if Br

e [i]=1.

entropy between the output probabilities and the

golden label y:

Ls =
1

|R| × |S|

∑

r∈R

CE (P r
s ,y

r
s) ,

in which CE is cross entropy,R is the set of roles,

S is the input sentence, and |S| is the number of

tokens in S . Similarly, we define Le as the loss

function of all binary classifiers that detect ends:

Le =
1

|R| × |S|

∑

r∈R

CE (P r
e ,y

r
e) .

We finally average Ls and Le as the loss L of ar-

gument extractor.

As Figure 2 shows, there exists a big gap in fre-

quency between roles. This implies that roles have

different levels of ”importance” in an event. The

”importance” here means the ability of a role to

indicate events of a specific type. For example,

the role ”Victim” is more likely to indicate a Die

event than the role ”Time”. Inspired by this, we

re-weight Ls and Le according to the importance

of roles, and propose to measure the importance

with the following definitions:

Role Frequency (RF) We define RF as the fre-

quency of role r appearing in events of type v:

RF(r, v) =
N r

v
∑

k∈RNk
v

,

where N r
v is the count of the role r that appear in

the events of type v.

Inverse Event Frequency (IEF) As the mea-

sure of the universal importance of a role, we de-

fine IEF as the logarithmically scaled inverse frac-

tion of the event types that contain the role r:

IEF(r) = log
|V|

|{v ∈ V : r ∈ v}|
,

where V is tht set of event types.

Finally we take RF-IEF as the product of RF

and IEF: RF-IEF(r, v) = RF(r, v)× IEF(r). With

RF-IEF, we can measure the importance of a role

r in events of type v:

I(r, v) =
expRF-IEF(r,v)

∑

r′∈R expRF-IEF(r′,v)
.

We choose three event types and list the two

most important roles of each type in Table 1. It

shows that although there could be multiple roles
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Event Type Top 2 Roles Sum

Transport(15) Artifact, Origin 0.76

Attack(14) Attacker, Target 0.85

Die(12) Victim, Agent 0.90

Table 1: Top two roles and their sum importance for

each event type. The number in brackets behind event

type is the count of roles that have appeared in it.

in events of someone type, only a few of them is

indispensable.

Give the event type v of input, we re-weight Ls
and Le based on each role’s importance in v:

Ls =
∑

r∈R

I(r, v)

|S|
CE (P r

s ,y
r
s)

Le =
∑

r∈R

I(r, v)

|S|
CE (P r

e ,y
r
e) .

The loss of argument extractor L is still the aver-

age of Ls and Le.

4 Training Data Generation

In addition to PLMEE, we also propose a pre-

trained language model based method for event

generation as illustrated in Figure 4. By edit-

ing prototypes, this method can generate a con-

trollable number of labeled samples as the extra

training corpus. It consists of three stages: pre-

processing, event generation and scoring.

To facilitate the generation method, we define

adjunct tokens as the tokens in sentences except

triggers and arguments, including not only words

and numbers, but also punctuation. Taking sen-

tence in Figure 1 as an example, ”is” and ”going”

are adjunct tokens. It is evident that adjunct tokens

can adjust the smooth and diversity of expression.

Therefore, we try to rewrite them to expand the di-

versity of the generation results, while keeping the

trigger and arguments unchanged.

4.1 Pre-processing

With the golden labels, we first collect arguments

in the ACE2005 dataset as well as the roles they

play. However, those arguments overlap with oth-

ers are excluded. Because such arguments are of-

ten long compound phrases that contain too much

unexpected information, and incorporating them

in argument replacement could bring more unnec-

essary errors.

We also adopt BERT as the target model to

rewrite adjunct tokens in the following stage, and

fine-tune it on the ACE2005 dataset with the

masked language model task (Devlin et al., 2018)

to bias its prediction towards the dataset distribu-

tion. In common with the pre-training procedure

of BERT, each time we sample a batch of sen-

tences and mask 15% of tokens. Its goal is still

to predict the correct token without supervision.

4.2 Event generation

To generate events, we conduct two steps on a pro-

totype. We first replace the arguments in the proto-

type with those similar that have played the same

role. Next, we rewrite adjunct tokens with the fine-

tuned BERT. Through these two steps, we can ob-

tain a new sentence with annotations.

Argument Replacement The first step is to re-

place arguments in the event. Both the argument

to be replaced and the new one should have played

ever the same role. While the roles are inherited

after replacement, so we can still use origin labels

for the generated samples.

In order not to change the meaning drastically,

we employ similarity as the criteria for selecting

new arguments. It is based on the following two

considerations: one is that two arguments that play

the same role may diverge significantly in seman-

tics; another is that the role an argument plays

is largely dependent on its context. Therefore,

we should choose arguments that are semantically

similar and coherent with the context.

We use cosine similarity between embeddings

to measure the similarity of two arguments. And

due to ELMO’s ability to handle the OOV prob-

lem, we employ it to embed arguments:

E(a) =
1

|a|

∑

t∈a

E(t),

where a is the argument, E is ELMO embedding.

We choose the top 10 percent most similar argu-

ments as candidates, and use softmax operation on

their similarity to allocate probability.

An argument is replaced with probability 80%

while keeping constant with probability 20% to

bias the representation towards the actual event

(Devlin et al., 2018). Note that the triggers remain

unchanged to avoid undesirable deviation of de-

pendency relation.

Adjunct Token Rewriting The results of argu-

ment replacement can already be considered as the

generated data, but the constant context may in-

crease the risk of overfitting. Therefore, to smooth
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Figure 4: Flow chart of the generation approach.

the generated data and expand their diversity, we

manage to rewrite adjunct tokens with the fine-

tuned BERT.

The rewriting is to replace some adjunct tokens

in the prototype with the new ones that are more

matchable with the current context. We take it as

a Cloze task (Taylor, 1953), where some adjunct

tokens are randomly masked and the BERT fine

tuned in the first stage is used to predict vocabulary

ids of suitable tokens based on the context. We use

a parameter m to denote the proportion of adjunct

tokens that need to be rewritten.

Adjunct token rewriting is a step-by-step pro-

cess. Each time we mask 15% of adjunct tokens

(with the token [MASK]). Then the sentence is fed

into BERT to produce new adjunct tokens. The ad-

junct tokens that have not yet been rewritten will

temporarily remain in the sentence.

To further illustrate the above two steps, we give

an instance in Figure 4. In this instance, we set

m to 1.0, which means all the adjunct tokens will

be rewritten. The final output is ”Prime minister

Blair is reported to the meeting with the leaders”,

which shares the labels with the original event in

the prototype. It is evident that some adjunct to-

kens are preserved despite m is 1.0.

4.3 Scoring

Theoretically, infinite number of events can be

generated with our generation method. However,

not all of them are valuable for the extractor and

some may even degrade its performance. There-

fore, we add an extra stage to quantify the quality

of each generated sample to pick out those valu-

able. Our key insight for evaluating the quality

lies that it is tightly related to two factors, which

are the perplexity and the distance to the original

dataset. The former reflects the rationality of gen-

eration, and the latter reflects the differences be-

tween the data.

Perplexity (PPL) Different with the masked

perplexity (Devlin et al., 2018) of logarithmic ver-

sion, we take the average probability of those ad-

junct tokens that have been rewritten as the per-

plexity of generated sentence S ′:

PPL(S ′) =
1

|A(S ′)|

∑

t∈A(S′)

P (t),

where A is the set of adjunct tokens in S ′ that have

been rewritten.

Distance (DIS) We measure the distance be-

tween S ′ and the dataset D with cosine similarity:

DIS(S ′,D) = 1−
1

|D|

∑

S∈D

B(S ′) · B(S)

|B(S ′)| × |B(S)|
.

Different with embedding arguments by ELMO,

we utilize BERT to embed sentence and take the

embedding of the first token [CLS] as the sentence

embedding.

Both the PPL and the DIS are limited in [0,1].

We consider that generated samples of high qual-

ity should have both low PPL and DIS. Therefore,

we define the quality function as:

Q(S ′) = 1−
(

λPPL
(

S ′
)

+ (1− λ)DIS
(

S ′,D
))

, where λ ∈ [0, 1] is the balancing parameter. This

function is used to select generated samples of

high quality in experiments.

5 Experiments

In this section, we first evaluate our event extractor

PLMEE on the ACE2005 dataset. Then we give a

case study of generated samples and conduct au-

tomatic evaluations by adding them into the train-

ing set. Finally, we illustrate the limitations of the

generation method.
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Model

Phase Trigger Trigger Argument Argument

Identification(%) Calssfication(%) Identification(%) Calssfication(%)

P R F P R F P R F P R F

Cross Event N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6

Cross Entity N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3

Max Entropy 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7

DMCNN 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5

JRNN 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4

DMCNN-DS 79.7 69.6 74.3 75.7 66.0 70.5 71.4 56.9 63.3 62.8 50.1 55.7

ANN-FN N/A 79.5 60.7 68.8 N/A N/A

ANN-AugATT N/A 78.0 66.3 71.7 N/A N/A

PLMEE(-)
84.8 83.7 84.2 81.0 80.4 80.7

71.5 59.2 64.7 61.7 53.9 57.5

PLMEE 71.4 60.1 65.3 62.3 54.2 58.0

Table 2: Performance of all methods. Bold denotes the best result.

As previous works (Li et al., 2013b; Chen et al.,

2015; Hong et al., 2011), we take the test set

with 40 newswire documents, while 30 other doc-

uments as the validation set, and the remaining

529 documents to be the training set. However,

different with previous works, we take the follow-

ing criteria to evaluate the correctness of each pre-

dicted event mention:

1. A trigger prediction is correct only if its span

and type match with the golden labels.

2. An argument prediction is correct only if its

span and all roles it plays match with the

golden labels.

It is worth noting that all the predicted roles for

an argument are required to match with the golden

labels, instead of just one of them. We adopt Pre-

cision (P), Recall (R) and F measure (F1) as the

evaluation metrics.

5.1 Results of Event Extraction

We take several previous classic works for com-

parison, and divide them into three categories:

Feature based methods Document-level infor-

mation is utilized in Cross event (Liao and Gr-

ishman, 2010) to assist event extraction. While

Cross entity (Hong et al., 2011) uses cross-entity

inference in extraction. Max Extropy (Li et al.,

2013a) extracts triggers as well as arguments to-

gether based on structured prediction.

Neural based methods DMCNN (Chen et al.,

2015) adopts firstly dynamic multi-pooling CNN

to extract sentence-level features automatically.

JRNN (Nguyen et al., 2016) proposes a joint

framework based on bidirectional RNN for event

extraction.

External resource based methods DMCNN-

DS (Chen et al., 2017) uses FreeBase to label

potential events in unsupervised corpus by dis-

tance supervision. ANN-FN (Liu et al., 2016)

improves extraction with additionally events au-

tomatically detected from FrameNet, while ANN-

AugATT (Liu et al., 2017) exploits argument infor-

mation via the supervised attention mechanisms to

improve the performance further.

In order to verify the effectiveness of loss re-

weighting, two groups of experiments are con-

ducted for comparison. Namely, the group where

the loss function is simply averaged on all clas-

sifiers’ output (indicated as PLMEE(-)) and the

group where the loss is re-weighted based on role

importance (indicated as PLMEE).

Table 2 compares the results of the aforemen-

tioned models with PLMEE on the test set. As is

shown, in both the trigger extraction task and the

argument extraction task, PLMEE(-) has achieved

the best results among all the compared meth-

ods. The improvement on the trigger extraction

is quite significant, seeing a sharp increase of near

10% on the F1 score. While the improvement in

argument extraction is not so obvious, achieving

about 2%. This is probably due to the more rigor-

ous evaluation metric we have taken and the diffi-

culty of argument extraction task as well. More-

over, compared with feature based methods, neu-

ral based methods can achieve better performance.

And the same observation appears when compar-

ing external resource based methods with neural

based methods. It demonstrates that external re-
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Prototype m Generated Event

President Bush is
going to be meeting

with several Arab
leaders

0.2 Russian President Putin is going to the meeting with the Arab leaders

0.4 The president is reported to be meeting with an Arab counterpart

0.6 Mr. Bush is summoned to a meeting with some Shiite Muslim groups

0.8 The president is attending to the meeting with the Palestinians

1.0 Prime minister Blair is reported to the meeting with the leaders

Table 3: Example samples generated with different proportion of rewritten adjunct tokens. Italic indicates argument

and bold indicates trigger.

sources are useful to improve event extraction. In

addition, the PLMEE model can achieve better re-

sults on the argument extraction task - with im-

provement of 0.6% on F1 score for identification

and 0.5% for classification - than the PLMEE(-)

model, which means that re-weighting the loss can

effectively improve the performance.

5.2 Case Study

Table 3 illustrates a prototype and its generation

with parameter m ranging from 0.2 to 1.0. We

can observe that the arguments after replacement

can match the context in prototype relatively well,

which indicates that they are resembling with the

original ones in semantic.

On the other hand, rewriting the adjunct tokens

can smooth the generated data and expand their di-

versity. However, since there is no explicit guide,

this step can also introduce unpredictable noise,

making the generation not fluent as expected.

5.3 Automatic Evaluation of Generation

So far, there are mainly three aspects of the gen-

eration method that could have significant impacts

on the performance of the extraction model, in-

cluding the amount of generated samples (repre-

sented by n, which indicates times the generation

size is the number of dataset size), the proportion

of rewritten adjunct tokens m, and the quality of

the generated samples. The former two factors

are controllable in the generation process. Spe-

cially, we can reuse a prototype and get a variety of

combinations of arguments via similarity based re-

placement, which will bring different contexts for

rewriting adjunct tokens. Moreover, the propor-

tion of rewritten adjunct tokens can be adjusted,

making a further variation. Although the quality of

generation cannot be controlled arbitrarily, it can

be quantified by the score function Q so that those

samples of higher quality can be picked out and

added into the training set. With λ in Q changing,

different selection strategies can be used to screen

out the generated samples.

We first tuned the former two parameters on the

development set through grid search. Specially,

we set m ranging from 0.2 to 1.0 with an interval

of 0.2, and set n to be 0.5, 1.0 and 2.0, while keep-

ing other parameters unchanged in the generation

process. We conduct experiments with these pa-

rameters. By analyzing the results, we find that the

best performance of PLMEE on both trigger ex-

traction and argument extraction can be achieved

with m = 0.4 and n = 1.0. It suggests that nei-

ther too few generated samples nor too much is a

better choice for extraction. Too few has limited

influence, while too much could bring more noise

that disturbs the distribution of the dataset. For the

better extraction performance, we use such param-

eter settings in the following experiments.

We also investigate the effectiveness of the

sample selection approach, a comparison is con-

ducted between three groups with different selec-

tion strategies. We obtain a total of four times the

size of the ACE2005 dataset using our generation

method with m = 0.4, and pick out one quarter of

them (n = 1.0) with λ being 0, 0.5 and 1.0 respec-

tively. When λ is 0 or 1.0, it is either perplexity

or distance that determines the quality exclusively.

We find that the selection method with λ = 0.5
in quality function is able to pick out samples that

are more advantageous to promote the extraction

performance.

Model Trigger(%) Argument(%)

PLMEE 80.7 58.0

PLMEE(+) 81.1 58.9

Table 4: F1 score of trigger classification and argument

classification on the test set.

Finally, we incorporate the above generated

data with the ACE2005 dataset and investigate the

effectiveness of our generation method on the test
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set. In Table 4, we use PLMEE(+) denotes the

PLMEE model trained with extra generated sam-

ples. The results illustrate that with our event gen-

eration method, the PLMEE model can achieve the

state of the art result of event extraction.

5.4 Limitation

By comparing the annotations in generated sam-

ples and manually labeled samples, we find that

one issue of our generation method is that the roles

may deviate, because the semantics could change

a lot with only a few adjunct tokens been rewritten.

Taking Figure 5 as an example. The roles played

by argument ”Pittsburgh” and ”Boston” should be

”Destination” and ”Origin”, rather not the oppo-

site as in the prototype. This is because the to-

ken ”from” has been replaced with the token ”for”,

while token ”drive to” been replaced with ”return

from”.

Trigger leave

Event type Movement.Transport

Arguments Niagara Falls Toronto

Roles Origin Destination

Trigger leave

Event type Movement.Transport

Arguments Pittsburgh Boston

Roles Origin Destination

Prototype: Leave from Niagara Falls and drive to Toronto, on 85 miles

Generation: Leave for Pittsburgh and return from Boston in 200 miles

x x

✓

Figure 5: One of the generated samples with wrong

annotations.

6 Conclusion and Discussion

In this paper, we present a framework to promote

event extraction by using a combination of an ex-

traction model and a generation method, both of

which are based on pre-trained language models.

To solve the roles overlap problem, our extraction

approach tries to separate the argument predictions

in terms of roles. Then it exploits the importance

of roles to re-weight the loss function. To perform

event generation, we present a novel method that

takes the existing events as prototypes. This event

generation method can produce controllably la-

beled samples through argument replacement and

adjunct tokens rewriting. It also benefits from the

scoring mechanism which is able to quantify the

quality of generated samples. Experimental re-

sults show that the quality of generated data is

competitive and incorporating them with existing

corpus can make our proposed event extractor to

be superior to several state of the art approaches.

On the other hand, there are still limitations in

our work. Events of the same type often share sim-

ilarity. And co-occurring roles tend to hold a tight

relation. Such features are ignored in our model,

but they deserve more investigation for improving

the extraction model. In addition, although our

generation method can control the number of gen-

erated samples and filter with quality, it still suf-

fers the deviation of roles alike with distant super-

vision. Therefore, for the future work, we will in-

corporate relation between events and relation be-

tween arguments into pre-trained language mod-

els, and take effective measures to overcome the

deviation problem of roles in the generation.
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