
Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie Alexander Kirillov Ross Girshick Kaiming He

Facebook AI Research (FAIR)

Abstract

Neural networks for image recognition have evolved

through extensive manual design from simple chain-like

models to structures with multiple wiring paths. The suc-

cess of ResNets [12] and DenseNets [17] is due in large

part to their innovative wiring plans. Now, neural architec-

ture search (NAS) studies are exploring the joint optimiza-

tion of wiring and operation types, however, the space of

possible wirings is constrained and still driven by manual

design despite being searched. In this paper, we explore a

more diverse set of connectivity patterns through the lens of

randomly wired neural networks. To do this, we first define

the concept of a stochastic network generator that encap-

sulates the entire network generation process. Encapsula-

tion provides a unified view of NAS and randomly wired net-

works. Then, we use three classical random graph models

to generate randomly wired graphs for networks. The re-

sults are surprising: several variants of these random gen-

erators yield network instances that have competitive ac-

curacy on the ImageNet benchmark. These results suggest

that new efforts focusing on designing better network gen-

erators may lead to new breakthroughs by exploring less

constrained search spaces with more room for novel design.

The code is publicly available online1.

1. Introduction

What we call deep learning today descends from the

connectionist approach to cognitive science [39, 8]—a

paradigm reflecting the hypothesis that how computational

networks are wired is crucial for building intelligent ma-

chines. Echoing this perspective, recent advances in com-

puter vision have been driven by moving from models with

chain-like wiring [20, 55, 43, 44] to more elaborate connec-

tivity patterns, e.g., ResNet [12] and DenseNet [17], that are

effective in large part because of how they are wired.

Advancing this trend, neural architecture search (NAS)

[57, 58] has emerged as a promising direction for jointly

searching wiring patterns and which operations to per-

form. NAS methods focus on search [57, 58, 34, 27, 30,

28] while implicitly relying on an important—yet largely

overlooked—component that we call a network generator

(defined in §3.1). The NAS network generator defines a

1https://github.com/facebookresearch/RandWire

classifier classifier classifier

conv
1

conv
1

conv
1

Figure 1. Randomly wired neural networks generated by the

classical Watts-Strogatz (WS) [51] model: these three instances

of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0%

classification accuracy on ImageNet under a similar computational

budget to ResNet-50, which has 77.1% accuracy.

family of possible wiring patterns from which networks

are sampled subject to a learnable probability distribution.

However, like the wiring patterns in ResNet and DenseNet,

the NAS network generator is hand designed and the space

of allowed wiring patterns is constrained in a small subset

of all possible graphs. Given this perspective, we ask: What

happens if we loosen this constraint and design novel net-

work generators?

We explore this question through the lens of randomly

wired neural networks that are sampled from stochastic

network generators, in which a human-designed random

process defines generation. To reduce bias from us—the

authors of this paper—on the generators, we use three clas-

sical families of random graph models in graph theory [52]:

the Erdős-Rényi (ER) [7], Barabási-Albert (BA) [1], and

Watts-Strogatz (WS) [51] models. To define complete net-

works, we convert a random graph into a directed acyclic

graph (DAG) and apply a simple mapping from nodes to

11284

their functional roles (e.g., to the same type of convolution).

The results are surprising: several variants of these ran-

dom generators yield networks with competitive accuracy

on ImageNet [40]. The best generators, which use the

WS model, produce multiple networks that outperform or

are comparable to their fully manually designed counter-

parts and the networks found by various neural architecture

search methods. We also observe that the variance of ac-

curacy is low for different random networks produced by

the same generator, yet there can be clear accuracy gaps be-

tween different generators. These observations suggest that

the network generator design is important.

We note that these randomly wired networks are not

“prior free” even though they are random. Many strong

priors are in fact implicitly designed into the generator, in-

cluding the choice of a particular rule and distribution to

control the probability of wiring or not wiring certain nodes

together. Each random graph model [7, 51, 1] has certain

probabilistic behaviors such that sampled graphs likely ex-

hibit certain properties (e.g., WS is highly clustered [51]).

Ultimately, the generator design determines a probabilistic

distribution over networks, and as a result these networks

tend to have certain properties. The generator design under-

lies the prior and thus should not be overlooked.

Our work explores a direction orthogonal to concurrent

work on random search for NAS [24, 42]. These studies

show that random search is competitive in “the NAS search

space” [57, 58], i.e., the “NAS network generator” in our

perspective. Their results can be understood as showing

that the prior induced by the NAS generator design tends

to produce good models, similar to our observations. In

contrast to [24, 42], our work goes beyond the design of

established NAS generators and explores different random

generator designs.

Finally, our work suggests a new transition from design-

ing an individual network to designing a network gener-

ator may be possible, analogous to how our community

have transitioned from designing features to designing a

network that learns features. Rather than focusing primar-

ily on search with a fixed generator, we suggest designing

new network generators that produce new families of mod-

els for searching. The importance of the designed network

generator (in NAS and elsewhere) also implies that machine

learning has not been automated (c.f . “AutoML” [21])—the

underlying human design and prior shift from network en-

gineering to network generator engineering.

2. Related Work

Network wiring. Early recurrent and convolutional neural

networks (RNNs and CNNs) [38, 22] use chain-like wiring

patterns. LSTMs [15] use more sophisticated wiring to

create a gating mechanism. Inception CNNs [46, 47, 45]

concatenate multiple, irregular branching pathways, while

ResNets [12] use x + F(x) as a regular wiring template;

DenseNets [17] use concatenation instead: [x,F(x)]. The

LSTM, Inception, ResNet, and DenseNet wiring patterns

are effective in general, beyond any individual instantiation.

Neural architecture search (NAS). Zoph and Le [57]

define a NAS search space and investigate reinforcement

learning (RL) as an optimization algorithm. Recent re-

search on NAS mainly focuses on optimization methods,

including RL [57, 58], progressive [27], gradient-based

[30, 28, 54, 5], weight-sharing [34], evolutionary [35], and

random search [24, 42] methods. The search space in these

NAS works, determined by the network generator implicit

in [57], is largely unchanged in these works. While this

is reasonable for comparing optimization methods, it inher-

ently limits the set of feasible solutions.

Randomly wired machines. Pioneers of artificial intelli-

gence were originally interested in randomly wired hard-

ware and their implementation in computer programs (i.e.,

artificial neural networks). In 1940s, Turing [48] suggested

a concept of unorganized machines, which is a form of the

earliest randomly connected neural networks. One of the

first neural network learning machines, designed by Minsky

[32] in 1950s and implemented using vacuum tubes, was

randomly wired. In late 1950s the “Mark I Perceptron” vi-

sual recognition machine built by Rosenblatt [37] used an

array of randomly connected photocells.

Relation to neuroscience. Turing [48] analogized the un-

organized machines to an infant human’s cortex. Rosenblatt

[37] pointed out that “the physical connections of the ner-

vous system ... are not identical from one organism to an-

other”, and “at birth, the construction of the most important

networks is largely random.” Studies [51, 49] have observed

that the neural network of a nematode (a worm) with about

300 neurons is a graph with small-world properties [19].

Random graph modeling has been used as a tool to study

the neural networks of human brains [2, 4, 3].

Random graphs in graph theory. Random graphs are

widely studied in graph theory [52]. Random graphs ex-

hibit different probabilistic behaviors depending on the ran-

dom process defined by the model (e.g., [7, 1, 51]). The

definition of the random graph model determines the prior

knowledge encoded in the resulting graphs (e.g., small-

world [19]) and may connect them to naturally occurring

phenomena. As a result, random graph models are an ef-

fective tool for modeling and analyzing real-world graphs,

e.g., social networks, world wide web, citation networks.

3. Methodology

We now introduce the concept of a network generator,

which is the foundation of randomly wired neural networks.

1285

3.1. Network Generators

We define a network generator as a mapping g from a

parameter space Θ to a space of neural network architec-

tures N , g: Θ 7→ N . For a given θ ∈ Θ, g(θ) returns a

neural network instance n ∈ N . The set N is typically

a family of related networks, for example, VGG nets [44],

ResNets [12], or DenseNets [17].

The generator g determines, among other concerns, how

the computational graph is wired. For example, in ResNets

a generator produces a stack of blocks that compute x +
F(x). The parameters θ specify the instantiated network

and may contain diverse information. For example, in

a ResNet generator, θ can specify the number of stages,

number of residual blocks for each stage, depth/width/filter

sizes, activation types, etc.

Intuitively, one may think of g as a function in a pro-

gramming language, e.g. Python, that takes a list of argu-

ments (corresponding to θ), and returns a network architec-

ture. The network representation n returned by the gener-

ator is symbolic, meaning that it specifies the type of oper-

ations that are performed and the flow of data; it does not

include values of network weights,2 which are learned from

data after a network is generated.

Stochastic network generators. The above network gen-

erator g(θ) performs a deterministic mapping: given the

same θ, it always returns the same network architecture n.

We can extend g to accept an additional argument s that

is the seed of a pseudo-random number generator that is

used internally by g. Given this seed, one can construct

a (pseudo) random family of networks by calling g(θ, s)
multiple times, keeping θ fixed but changing the value of

s = 1, 2, 3, For a fixed value of θ, a uniform probability

distribution over all possible seed values induces a (likely

non-uniform) probability distribution over N . We call gen-

erators of the form g(θ, s) stochastic network generators.

Before we discuss our method, we provide additional

background by reinterpreting the work on NAS [57, 58] in

the context of stochastic network generators.

NAS from the network generator perspective. The NAS

methods of [57, 58] utilize an LSTM “controller” in the

process of generating network architectures. But the LSTM

is only part of the complete NAS network generator, which

is in fact a stochastic network generator, as illustrated next.

The weight matrices of the LSTM are the parameters θ
of the generator. The output of each LSTM time-step is a

probability distribution conditioned on θ. Given this dis-

tribution and the seed s, each step samples a construction

action (e.g., insert an operator, connect two nodes). The pa-

rameters θ of the LSTM controller, due to its probabilistic

behavior, are optimized (searched for) by RL in [57, 58].

2We use parameters to refer to network generator arguments and

weights to refer to the learnable weights and biases of a generated network.

However, the LSTM is not the only component in the

NAS network generator g(θ, s). There are also hand-

designed rules defined to map the sampled actions to a com-

putational DAG, and these rules are also part of g. Using

the node/edge terminology in graph theory, for a NAS net-

work in [58], if we map a combination operation (e.g., sum)

to a node and a unary transformation (e.g., conv) to an edge

(see the supplement), the rules of the NAS generator in-

clude, but are not limit to:

• A subgraph to be searched, called a cell [58], always

accepts the activations of the output nodes from the 2

immediately preceding cells;

• Each cell contains 5 nodes that are wired to 2 and only

2 existing nodes, chosen by sampling from the proba-

bility distribution output by the LSTM;

• All nodes that have no output in a cell are concatenated

by an extra node to form a valid DAG for the cell.

All of the generation rules, together with the choice of using

an LSTM, and other hyper-parameters of the system (e.g.,

the number of nodes, say, 5), comprise the NAS network

generator that produces a full DAG. It is also worth noticing

that the view of “node as combination and edge as transfor-

mation” is not the only way to interpret a neural network as

a graph, and so it is not the only way to turn a general graph

into a neural network (we use a different mapping in §3.2).

Encapsulating the complete generation process, as we

have illustrated, reveals which components are optimized

and which are hard-coded. It now becomes explicit that

the network space N has been carefully restricted by hand-

designed rules. For example, the rules listed above suggest

that each of the 5 nodes in a cell always has precisely input

degree3 2 and output degree 1 (see the supplement). This

does not cover all possible 5-(internal-)node graphs. It is

in a highly restricted network space. Viewing NAS from

the perspective of a network generator helps explain the

recently demonstrated ineffectiveness of sophisticated op-

timization vs. random search [24, 42]: the manual design in

the NAS network generator is a strong prior, which repre-

sents a meta-optimization beyond the search over θ (by RL,

e.g.) and s (by random search).

3.2. Randomly Wired Neural Networks

Our analysis of NAS reveals that the network generator

is hand-designed and encodes a prior from human knowl-

edge. It is likely that the design of the network generator

plays a considerable role—if so, current methods are short

of achieving “AutoML” [21] and still involve significant hu-

man effort (c.f . “Our experiments show that Neural Archi-

tecture Search can design good models from scratch.” [57],

3In graph theory, “degree” is the number of edges connected to a node.

We refer to “input/output degree” as that of input/output edges to a node.

1286

×w0

×w1

×w2

conv

Figure 2. Node operations designed for

our random graphs. Here we illustrate a

node (blue circle) with 3 input edges and

4 output edges. The aggregation is done

by weighted sum with learnable positive

weights w0, w1, w2. The transformation

is a ReLU-convolution-BN triplet, sim-

ply denoted as conv. The transformed

data are sent out as 4 copies.

emphasis added). To investigate how important the gener-

ator design is, it is not sufficient to compare different opti-

mizers (sophisticated or random) for the same NAS genera-

tor; it is necessary to study new network generators that are

substantially different from the NAS generator.

This leads to our exploration of randomly wired neu-

ral networks. That is, we will define network genera-

tors that yield networks with random graphs, subject to

different human-specific priors. To minimize the human

bias from us—the authors of this paper—on the prior, we

will use three classical random graph models in our study

([7, 1, 51]; §3.3). Our methodology for generating ran-

domly wired networks involves the following concepts:

Generating general graphs. Our network generator starts

by generating a general graph (in the sense of graph theory).

It generates a set of nodes and edges that connect nodes,

without restricting how the graphs correspond to neural net-

works. This allows us to freely use any general graph gen-

erator from graph theory (ER/BA/WS). Once a graph is ob-

tained, it is mapped to a computable neural network.

The mapping from a general graph to neural network op-

erations is in itself arbitrary, and thus also human-designed.

We intentionally use a simple mapping, discussed next, so

that we can focus on graph wiring patterns.

Edge operations. Assuming by construction that the graph

is directed, we define that edges are data flow, i.e., a directed

edge sends data (a tensor) from one node to another node.

Node operations. A node in a directed graph may have

some input edges and some output edges. We define the

operations represented by one node (Figure 2) as:

- Aggregation: The input data (from one or more edges) to

a node are combined via a weighted sum; the weights are

learnable and positive.4

- Transformation: The aggregated data is processed by a

transformation defined as a ReLU-convolution-BN triplet5

[13]. The same type of convolution is used for all nodes,

e.g., a 3×3 separable convolution6 by default.

4Applying sigmoid on unrestricted weights ensures they are positive.
5Instead of a triplet with a convolution followed by BN [18] then ReLU

[33], we use the ReLU-convolution-BN triplet, as it means the aggregation

(at the next nodes) can receive positive and negative activation, preventing

the aggregated activation from being inflated in case of a large input degree.
6Various implementations of separable convolutions exist. We use the

- Distribution: The same copy of the transformed data is

sent out by the output edges of the node.

These operations have some nice properties:

(i) Additive aggregation (unlike concatenation) main-

tains the same number of output channels as input channels,

and this prevents the convolution that follows from growing

large in computation, which may increase the importance of

nodes with large input degree simply because they increase

computation, not because of how they are wired.

(ii) The transformation should have the same number

of output and input channels (unless switching stages; dis-

cussed later), to make sure the transformed data can be com-

bined with the data from any other nodes. Fixing the chan-

nel count then keeps the FLOPs (floating-point operations)

and parameter count unchanged for each node, regardless

of its input and output degrees.

(iii) Aggregation and distribution are almost parameter-

free (except for a negligible number of parameters for

weighted summation), regardless of input and output de-

grees. Also, given that every edge is parameter-free the

overall FLOPs and parameter count of a graph are roughly

proportional to the number of nodes, and nearly indepen-

dent of the number of edges.

These properties nearly decouple FLOPs and parameter

count from network wiring, e.g., the deviation of FLOPs is

typically ±2% among our random network instances or dif-

ferent generators. This enables the comparison of different

graphs without inflating/deflating model complexity. Dif-

ferences in task performance are therefore reflective of the

properties of the wiring pattern.

Input and output nodes. Thus far, a general graph is not

yet a valid neural network even given the edge/node opera-

tions, because it may have multiple input nodes (i.e., those

without any input edge) and multiple output nodes. It is de-

sirable to have a single input and a single output for typical

neural networks, e.g., for image classification. We apply a

simple post-processing step.

For a given general graph, we create a single extra node

that is connected to all original input nodes. This is the

unique input node that sends out the same copy of input

data to all original input nodes. Similarly, we create a sin-

gle extra node that is connected to all original output nodes.

This is the unique output node; we have it compute the (un-

weighted) average from all original output nodes. These

two nodes perform no convolution. When referring to the

node count N , we exclude these two nodes.

Stages. With unique input and output nodes, it is sufficient

for a graph to represent a valid neural network. Never-

theless, in image classification in particular, networks that

form of [6]: a 3×3 separable convolution is a 3×3 depth-wise convolution

followed by a 1×1 convolution, with no non-linearity in between.

1287

stage output small regime regular regime

conv1 112×112 3×3 conv, C/2

conv2 56×56 3×3 conv, C
random wiring

N/2, C

conv3 28×28
random wiring random wiring

N , C N , 2C

conv4 14×14
random wiring random wiring

N , 2C N , 4C

conv5 7×7
random wiring random wiring

N , 4C N , 8C

classifier 1×1
1×1 conv, 1280-d

global average pool, 1000-d fc, softmax

Table 1. RandWire architectures for small and regular computa-

tion networks. A random graph is denoted by the node count (N)

and channel count for each node (C). We use conv to denote a

ReLU-Conv-BN triplet (expect conv1 is Conv-BN). The input size

is 224×224 pixels. The change of the output size implies a stride

of 2 (omitted in table) in the convolutions that are right after the

input of each stage.

maintain the full input resolution throughout are not desir-

able. It is common [20, 44, 12, 58] to divide a network into

stages that progressively down-sample feature maps.

We use a simple strategy: the random graph generated

above defines one stage. Analogous to the stages in a

ResNet, e.g., conv1,2,3,4,5 [12], our entire network consists

of multiple stages. One random graph represents one stage,

and it is connected to its preceding/succeeding stage by its

unique input/output node. For all nodes that are directly

connected to the input node, their transformations are mod-

ified to have a stride of 2. The channel count in a random

graph is increased by 2× when going from one stage to the

next stage, following [12].

Table 1 summarizes the randomly wired neural net-

works, referred to as RandWire, used in our experiments.

They come in small and regular complexity regimes (more

in §4). For conv1 and/or conv2 we use a single convolu-

tional layer for simplicity with multiple random graphs fol-

lowing. The network ends with a classifier output (Table 1,

last row). Figure 1 shows full computation graphs of three

randomly wired network samples.

3.3. Random Graph Models

We now describe in brief the three classical random

graph models used in our study. We emphasize that these

random graph models are not proposed by this paper; we

describe them for completeness. The three classical models

all generate undirected graphs; we use a simple heuristic to

turn them into DAGs (see the supplement).

Erdős-Rényi (ER). In the ER model [9, 7], with N nodes,

an edge between two nodes is connected with probability

P , independent of all other nodes and edges. This process

is iterated for all pairs of nodes. The ER generation model

has only a single parameter P , and is denoted as ER(P).

Any graph with N nodes has non-zero probability of be-

ing generated by the ER model, including graphs that are

disconnected. However, a graph generated by ER(P) has

high probability of being a single connected component if

P > ln(N)
N [7]. This provides one example of an implicit

bias introduced by a generator.

Barabási-Albert (BA). The BA model [1] generates a ran-

dom graph by sequentially adding new nodes. The initial

state is M nodes without any edges (1 ≤ M < N). The

method sequentially adds a new node with M new edges.

For a node to be added, it will be connected to an existing

node v with probability proportional to v’s degree. The new

node repeatedly adds non-duplicate edges in this way until

it has M edges. Then this is iterated until the graph has N
nodes. The BA generation model has only a single parame-

ter M , and is denoted as BA(M).

Any graph generated by BA(M) has exactly

M ·(N−M) edges. So the set of all graphs generated

by BA(M) is a subset of all possible N -node graphs—this

gives one example on how an underlying prior can be

introduced by the graph generator in spite of randomness.

Watts-Strogatz (WS). The WS model [51] was defined to

generate small-world graphs [19]. Initially, the N nodes are

regularly placed in a ring and each node is connected to its

K/2 neighbors on both sides (K is an even number). Then,

in a clockwise loop, for every node v, the edge that connects

v to its clockwise i-th next node is rewired with probability

P . “Rewiring” is defined as uniformly choosing a random

node that is not v and that is not a duplicate edge. This loop

is repeated K/2 times for 1≤i≤K/2. K and P are the only

two parameters of the WS model, denoted as WS(K,P).

Any graph generated by WS(K,P) has exactly N ·K
edges. WS(K,P) only covers a small subset of all possi-

ble N -node graphs too, but this subset is different from the

subset covered by BA. This provides an example on how a

different underlying prior has been introduced.

3.4. Design and Optimization

Our randomly wired neural networks are generated by

a stochastic network generator g(θ, s). The random graph

parameters, namely, P , M , (K,P) in ER, BA, WS respec-

tively, are part of the parameters θ. The “optimization” of

such a 1- or 2-parameter space is essentially done by trial-

and-error by human designers, e.g., by line/grid search.

Conceptually, such “optimization” is not distinct from many

other designs involved in our and other models (including

NAS), e.g., the number of nodes, stages, and filters.

Optimization can also be done by scanning the random

seed s, which is an implementation of random search. Ran-

dom search is possible for any stochastic network generator,

including ours and NAS. But as we present by experiment,

1288

(0.8)
(0.6)

(0.4)
(0.2) (7) (5) (3) (2) (1)

(8, 1)
(6, 1)

(4, 1)
(2, 1)

(8, 0.75)
(6, 0.75)

(4, 0.75)
(2, 0.75)

(8, 0.5)
(6, 0.5)

(4, 0.5)
(2, 0.5)

(8, 0.25)
(6, 0.25)

(4, 0.25)
(2, 0.25)

(8, 0)
(6, 0)

(4, 0)
(2, 0)70

71

72

73

74
to

p-
1

ac
cu

ra
cy

72.6 72.7 72.8
73.4 73.1 73.2 72.9 72.6

70.7

73.1 73.2 73.0
72.1

72.9 73.2
73.8

72.5
73.0 73.2 73.4 73.1

72.6 72.7 72.6 72.8
71.9

70.9
68.8 0.0

BA(M) WS(K,P)ER(P) WS(K,P= 0)
no randomness

Figure 3. Comparison on random graph generators: ER, BA, and WS in the small computation regime. Each bar represents the results

of a generator under a parameter setting for P , M , or (K,P) (tagged in x-axis). The results are ImageNet top-1 accuracy, shown as mean

and standard deviation (std) over 5 random network instances sampled by a generator. At the rightmost, WS(K,P=0) has no randomness.

ER(0.8)

ER(0.6)

ER(0.4) ER(0.2)

BA(7) BA(5)

BA(3)

BA(2) BA(1)

WS(8, 1.0)

WS(6, 1.0)

WS(4, 1.0)

WS(2, 1.0)

WS(8, 0.75)

WS(6, 0.75)

WS(4, 0.75)

WS(2, 0.75)

WS(8, 0.5)

WS(6, 0.5)

WS(4, 0.5)

WS(2, 0.5)

WS(8, 0.25)

WS(6, 0.25)

WS(4, 0.25) WS(2, 0.25)

WS(8, 0.0)

WS(6, 0.0)

WS(4, 0.0)

WS(2, 0.0)

Figure 4. Visualization of the random graphs generated by ER, BA, and WS. Each plot represents one random graph instance sampled

by the specified generator. The generators are those in Figure 3. The node count is N=32 for each graph. A blue/red node denotes an

input/output node, to which an extra unique input/output node (not shown) will be added (see §3.2).

the accuracy variation of our networks is small for differ-

ent seeds s, suggesting that the benefit of random search

may be small. So we perform no random search and report

mean accuracy of multiple random network instances. As

such, our network generator has minimal optimization (1- or

2-parameter grid search) beyond their hand-coded design.

4. Experiments

We conduct experiments on the ImageNet 1000-class

classification task [40]. We train on the training set with
∼1.28M images and test on the 50K validation images.

Architecture details. Our experiments span a small com-

putation regime (e.g., MobileNet [16] and ShuffleNet [56])

and a regular computation regime (e.g., ResNet-50/101

[12]). RandWire nets in these regimes are in Table 1, where

N nodes and C channels determine network complexity.

We set N=32, and then set C to the nearest integer such

that target model complexity is met: C=78 in the small

regime, and C=109 or 154 in the regular regime.

Random seeds. For each generator, we randomly sample

5 network instances (5 random seeds), train them from

scratch, and evaluate accuracy for each instance. To empha-

size that we perform no random search for each generator,

we report the classification accuracy with “mean±std” for

all 5 random seeds (i.e., we do not pick the best). We use

the same seeds 1, . . ., 5 for all experiments.

Implementation details. We train our networks for 100

epochs, unless noted. We use a half-period-cosine shaped

learning rate decay [29, 17]. The initial learning rate is 0.1,

the weight decay is 5e-5, and the momentum is 0.9. We use

label smoothing regularization [45] with a coefficient of 0.1.

Other details of the training procedure are the same as [11].

1289

4.1. Analysis Experiments

Random graph generators. Figure 3 compares the results

of different generators in the small computation regime:

each RandWire net has ∼580M FLOPs. Figure 4 visualizes

one example graph for each generator. The graph generator

is specified by the random graph model (ER/BA/WS) and

its set of parameters: e.g., ER(0.2). We observe:

All random generators provide decent accuracy over all

5 random network instances; none of them fails to converge.

ER, BA, and WS all have certain settings that yield mean

accuracy of >73%, within a <1% gap from the best mean

accuracy of 73.8% from WS(4, 0.75).

Moreover, the variation among the random network in-

stances is low. Almost all random generators in Figure 3

have an standard deviation (std) of 0.2∼0.4%. As a com-

parison, training the same instance of a ResNet-50 multiple

times has a typical std of 0.1∼0.2% [11]. The observed low

variance of our random generators suggests that even with-

out random search (i.e., picking the best from several ran-

dom instances), it is likely that the accuracy of a network in-

stance is close to the mean accuracy, subject to some noise.

On the other hand, different random generators may have

a gap between their mean accuracies, e.g., BA(1) has 70.7%

accuracy and is ∼3% lower than WS(4, 0.75). This suggests

that random generator design, including the wiring priors

(BA vs. WS) and generation parameters, plays an important

role in the accuracy of sampled network instances.

Figure 3 also includes a set of non-random generators:

WS(K,P=0). “P=0” means no random rewiring. Inter-

estingly, the results of WS(K,P=0) are all worse than their

WS(K,P>0) counterparts for any fixed K in Figure 3.

Graph damage. We explore graph damage by randomly

removing one node or edge—an ablative setting inspired by

[23, 50]. Formally, given a network instance after training,

we remove one node or one edge from the graph and evalu-

ate the validation accuracy without any further training.

When a node is removed, we evaluate the accuracy loss

(∆) vs. the output degree of that node (Figure 5, top). It is

clear that ER, BA, and WS behave differently under such

damage. For networks generated by WS, the mean degra-

dation of accuracy is larger when the output degree of the

removed node is higher. This implies that “hub” nodes in

WS that send information to many nodes are influential.

When an edge is removed, we evaluate the accuracy loss

vs. the input degree of this edge’s target node (Figure 5, bot-

tom). If the input degree of an edge’s target node is smaller,

removing this edge tends to change a larger portion of the

target node’s inputs. This trend can be seen by the fact that

the accuracy loss is generally decreasing along the x-axis in

Figure 5 (bottom). The ER model is less sensitive to edge

removal, possibly because in ER’s definition wiring of ev-

ery edge is independent.

1 5 9 13 17 21 25
0

20

40

 to
p-

1
ac

cu
ra

cy ER

1 3 5 7 9 11 13 15 17 19
0

20

40 BA

1 3 5 7 9 11
0

20

40 WS

output degree of removed node

1 5 9 13 17 21 25
0

20

40

 to
p-

1
ac

cu
ra

cy ER

1 2 3 5 7
0

20

40 BA

1 3 5 7 9 11
0

20

40 WS

input degree of removed edge's target node

Figure 5. Graph damage ablation. We randomly remove one

node (top) or remove one edge (bottom) from a graph after the

network is trained, and evaluate the loss (∆) in accuracy on Im-

ageNet. From left to right are ER, BA, and WS generators. Red

circle: mean; gray bar: median; orange box: interquartile range;

blue dot: an individual damaged instance.

random graph models (ER, BA, WS with different P,M, (K,P))

50

60

70

to
p-

1
ac

cu
ra

cy

3×3 separable conv
3×3 conv
3×3 max-pool 1×1 conv
3×3 avg-pool 1×1 conv

Figure 6. Alternative node operations. Each column is the mean

accuracy of the same set of 5 random graphs equipped with differ-

ent node operations, sorted by “3×3 separable conv” (from Fig-

ure 3). The generators roughly maintain their orders of accuracy.

Node operations. Thus far, all models in our experiment

use a 3×3 separable convolution as the “conv” in Figure 2.

Next we evaluate alternative choices. We consider: (i) 3×3

(regular) convolution, and (ii) 3×3 max-/average-pooling

followed by a 1×1 convolution. We replace the transforma-

tion of all nodes with the specified alternative. We adjust the

factor C to keep the complexity of all alternative networks.

Figure 6 shows the mean accuracy for each of the gen-

erators listed in Figure 3. Interestingly, almost all networks

still converge to non-trivial results. Even “3×3 pool with

1×1 conv” performs similarly to “3×3 conv”. The network

generators roughly maintain their accuracy ranking despite

the operation replacement; in fact, the Pearson correlation

between any two series in Figure 5 is 0.91∼0.98. This sug-

gests that the network wiring plays a role somewhat orthog-

onal to the role of the chosen operations.

4.2. Comparisons

Small computation regime. Table 2 compares our results

in the small computation regime, a common setting studied

in existing NAS papers. Instead of training for 100 epochs,

here we train for 250 epochs following settings in [58, 35,

27, 28] for fair comparisons.

RandWire with WS(4, 0.75) has mean accuracy of

74.7% (with min 74.4% and max 75.0%). This result is

better than or comparable to all existing hand-designed

1290

network top-1 acc. top-5 acc. FLOPs (M) params (M)

MobileNet [16] 70.6 89.5 569 4.2

MobileNet v2 [41] 74.7 - 585 6.9

ShuffleNet [56] 73.7 91.5 524 5.4

ShuffleNet v2 [31] 74.9 92.2 591 7.4

NASNet-A [58] 74.0 91.6 564 5.3

NASNet-B [58] 72.8 91.3 488 5.3

NASNet-C [58] 72.5 91.0 558 4.9

Amoeba-A [35] 74.5 92.0 555 5.1

Amoeba-B [35] 74.0 91.5 555 5.3

Amoeba-C [35] 75.7 92.4 570 6.4

PNAS [27] 74.2 91.9 588 5.1

DARTS [28] 73.1 91.0 595 4.9

RandWire-WS 74.7±0.25 92.2±0.15 583±6.2 5.6±0.1

Table 2. ImageNet: small computation regime (i.e., <600M

FLOPs). RandWire results are the mean accuracy (±std) of 5 ran-

dom network instances, with WS(4, 0.75). Here we train for 250

epochs similar to [58, 35, 27, 28], for fair comparisons.

network top-1 acc. top-5 acc. FLOPs (B) params (M)

ResNet-50 [12] 77.1 93.5 4.1 25.6

ResNeXt-50 [53] 78.4 94.0 4.2 25.0

RandWire-WS, C=109 79.0±0.17 94.4±0.11 4.0±0.09 31.9±0.66

ResNet-101 [12] 78.8 94.4 7.8 44.6

ResNeXt-101 [53] 79.5 94.6 8.0 44.2

RandWire-WS, C=154 80.1±0.19 94.8±0.18 7.9±0.18 61.5±1.32

Table 3. ImageNet: regular computation regime with FLOPs

comparable to ResNet-50 (top) and to ResNet-101 (bottom).

ResNeXt is the 32×4 version [53]. RandWire is WS(4, 0.75).

network
test

epochs top-1 acc. top-5 acc. FLOPs (B) params (M)size

NASNet-A [58] 3312 >250 82.7 96.2 23.8 88.9

Amoeba-B [35] 3312 >250 82.3 96.1 22.3 84.0

Amoeba-A [35] 3312 >250 82.8 96.1 23.1 86.7

PNASNet-5 [27] 3312 >250 82.9 96.2 25.0 86.1

RandWire-WS 3202 100 81.6±0.13 95.6±0.07 16.0±0.36 61.5±1.32

Table 4. ImageNet: large computation regime. Our networks

are the same as in Table 3 (C=154), but we evaluate on 320×320

images instead of 224×224. Ours are only trained for 100 epochs.

wiring (MobileNet/ShuffleNet) and NAS-based results, ex-

cept for AmoebaNet-C [35]. The mean accuracy achieved

by RandWire is a competitive result, especially considering

that we perform no random search in our random genera-

tors, and that we use a single operation type for all nodes.

Regular computation regime. Next we compare the

RandWire networks with ResNet-50/101 [12] under similar

FLOPs. In this regime, we use a regularization method in-

spired by our edge removal analysis: for each training mini-

batch, we randomly remove one edge whose target node has

input degree > 1 with probability of 0.1. This regulariza-

tion is similar to DropPath adopted in NAS [58]. We train

with a weight decay of 1e-5 and a DropOut [14] rate of 0.2

in the classifier fc layer. Other settings are the same as the

small computation regime. We train the ResNet/ResNeXt

competitors using the recipe of [11], but with the cosine

backbone AP AP50 AP75 APS APM APL

ResNet-50 [12] 37.1 58.8 39.7 21.9 40.8 47.6

ResNeXt-50 [53] 38.2 60.5 41.3 23.0 41.5 48.8

RandWire-WS, C=109 39.9 61.9 43.3 23.6 43.5 52.7

ResNet-101 [12] 39.8 61.7 43.3 23.7 43.9 51.7

ResNeXt-101 [53] 40.7 62.9 44.5 24.4 44.8 52.7

RandWire-WS, C=154 41.1 63.1 44.6 24.6 45.1 53.0

Table 5. COCO object detection results fine-tuned from the net-

works in Table 3, reported on the val2017 set. The backbone

networks have comparable FLOPs to ResNet-50 or ResNet-101.

schedule and label smoothing, for fair comparisons.

Table 3 compares RandWire with ResNet and ResNeXt

under similar FLOPs as ResNet-50/101. Our mean accu-

racies are respectively 1.9% and 1.3% higher than ResNet-

50 and ResNet-101, and are 0.6% higher than the ResNeXt

counterparts. Both ResNe(X)t and RandWire can be

thought of as hand-designed, but ResNe(X)t is based on

designed wiring patterns, while RandWire uses a designed

stochastic generator. These results illustrate different roles

that manual design can play.

Larger computation. For completeness, we compare with

the most accurate NAS-based networks, which use more

computation. For simplicity, we use the same trained net-

works as in Table 3, but only increase the test image size to

320×320 without retraining. Table 4 compares the results.

Our networks have mean accuracy 0.7%∼1.3% lower

than the most accurate NAS results, but ours use only ∼2/3

FLOPs and ∼3/4 parameters. Our networks are trained for

100 epochs and not on the target image size, vs. the NAS

methods which use >250 epochs and train on the target

331×331 size. Our model has no search on operations, un-

like NAS. These gaps will be explored in future work.

COCO object detection. Finally, we report the transfer-

ability results by fine-tuning the networks for COCO object

detection [26]. We use Faster R-CNN [36] with FPN [25] as

the object detector. Our fine-tuning is based on 1× setting

of the publicly available Detectron [10]. We simply re-

place the backbones with those in Table 3 (regular regime).

Table 5 compares the object detection results. A trend

is observed similar to that in the ImageNet experiments in

Table 3. These results indicate that the features learned by

our randomly wired networks can also transfer.

5. Conclusion

We explored randomly wired neural networks driven by

three classical random graph models from graph theory.

The results were surprising: the mean accuracy of these

models is competitive with hand-designed and optimized

models from recent work on neural architecture search. Our

exploration was enabled by the novel concept of a network

generator. We hope that future work exploring new gener-

ator designs may yield new, powerful networks designs.

1291

References

[1] Réka Albert and Albert-László Barabási. Statistical me-

chanics of complex networks. Reviews of modern physics,

74(1):47, 2002. 1, 2, 4, 5

[2] Danielle Smith Bassett and ED Bullmore. Small-world brain

networks. The neuroscientist, 12(6):512–523, 2006. 2

[3] Danielle S Bassett and Olaf Sporns. Network neuroscience.

Nature neuroscience, 20(3):353, 2017. 2

[4] Ed Bullmore and Olaf Sporns. Complex brain networks:

graph theoretical analysis of structural and functional sys-

tems. Nature reviews neuroscience, 10(3):186, 2009. 2

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,

2019. 2

[6] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017. 4

[7] Paul Erdős and Alfréd Rényi. On the evolution of random

graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

1, 2, 4, 5

[8] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and

cognitive architecture: A critical analysis. Cognition, 28(1-

2):3–71, 1988. 1

[9] Edgar Nelson Gilbert. Random graphs. The Annals of Math-

ematical Statistics, 30(4):1141–1144, 12 1959. 5

[10] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron, 2018. 8

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

6, 7, 8

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 2, 3, 5, 6, 8

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016. 4

[14] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan R Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors.

arXiv:1207.0580, 2012. 8

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 1997. 2

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017. 6, 8

[17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In CVPR, 2017. 1, 2, 3, 6

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 4

[19] Manfred Kochen. The Small world. Ablex Pub., 1989. 2, 5

[20] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Ima-

genet classification with deep convolutional neural networks.

In NIPS, 2012. 1, 5

[21] Quoc Le and Barrett Zoph. Using machine

learning to explore neural network architecture.

https://ai.googleblog.com/2017/05/

using-machine-learning-to-explore.html,

2017. 2, 3

[22] Yann LeCun, Bernhard Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne Hubbard, and

Lawrence D Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural computation, 1989. 2

[23] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, 1990. 7

[24] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. arXiv:1902.07638,

2019. 2, 3

[25] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 8

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV. 2014. 8

[27] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018. 1, 2, 7, 8

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In ICLR, 2019. 1, 2, 7, 8

[29] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-

ent descent with warm restarts. In ICLR, 2017. 6

[30] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan

Liu. Neural architecture optimization. In NIPS, 2018. 1, 2

[31] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In ECCV, 2018. 8

[32] Marvin Lee Minsky. Theory of neural-analog reinforce-

ment systems and its application to the brain model problem.

Princeton University., 1954. 2

[33] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 4

[34] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In ICML, 2018. 1, 2

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv:1802.01548, 2018. 2, 7, 8

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 8

[37] Frank Rosenblatt. The perceptron: a probabilistic model for

information storage and organization in the brain. Psycho-

logical review, 65(6):386, 1958. 2

[38] David E Rumelhart, Geoffrey E Hinton, and Ronald J

Williams. Learning representations by back-propagating er-

rors. Nature, 1986. 2

1292

[39] David E Rumelhart and James L McClelland. Parallel dis-

tributed processing: Explorations in the microstructure of

cognition. 1986. 1

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 2015. 2, 6

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 8

[42] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neu-

ral architecture search. arXiv:1902.08142, 2019. 2, 3

[43] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Math-

ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated

recognition, localization and detection using convolutional

networks. In ICLR, 2014. 1

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 1, 3, 5

[45] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In ICLR Workshop, 2016. 2, 6

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 2

[47] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-

ception architecture for computer vision. In CVPR, 2016.

2

[48] Alan M Turing. Intelligent machinery. 1948. 2

[49] Lav R Varshney, Beth L Chen, Eric Paniagua, David H

Hall, and Dmitri B Chklovskii. Structural properties of the

caenorhabditis elegans neuronal network. PLoS computa-

tional biology, 7(2), 2011. 2

[50] Andreas Veit, Michael Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

work. In NIPS, 2016. 7

[51] Duncan J Watts and Steven H Strogatz. Collective dynamics

of ‘small-world’networks. Nature, 393(6684):440, 1998. 1,

2, 4, 5

[52] Douglas Brent West et al. Introduction to graph theory, vol-

ume 2. Prentice hall Upper Saddle River, NJ, 1996. 1, 2

[53] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 8

[54] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:

stochastic neural architecture search. ICLR, 2019. 2

[55] Matthew D Zeiler and Rob Fergus. Visualizing and under-

standing convolutional neural networks. In ECCV, 2014. 1

[56] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

ShuffleNet: An extremely efficient convolutional neural net-

work for mobile devices. In CVPR, 2018. 6, 8

[57] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In ICML, 2017. 1, 2, 3

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 1, 2, 3, 5, 7, 8

1293

