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Abstract

The timeline of computer vision research is marked with

advances in learning and utilizing efficient contextual rep-

resentations. Most of them, however, are targeted at im-

proving model performance on a single downstream task.

We consider a multi-task environment for dense prediction

tasks, represented by a common backbone and independent

task-specific heads. Our goal is to find the most efficient

way to refine each task prediction by capturing cross-task

contexts dependent on tasks’ relations. We explore various

attention-based contexts, such as global and local, in the

multi-task setting and analyze their behavior when applied

to refine each task independently. Empirical findings confirm

that different source-target task pairs benefit from different

context types. To automate the selection process, we pro-

pose an Adaptive Task-Relational Context (ATRC) module,

which samples the pool of all available contexts for each

task pair using neural architecture search and outputs the

optimal configuration for deployment. Our method achieves

state-of-the-art performance on two important multi-task

benchmarks, namely NYUD-v2 and PASCAL-Context. The

proposed ATRC has a low computational toll and can be

used as a drop-in refinement module for any supervised

multi-task architecture.

1. Introduction

The role of context in computer vision is hard to over-

state; most notable breakthroughs boil down to a clever

extraction [30], learning [26], and utilization [25] of contex-

tual representations. The success of Convolutional Neural

Networks (CNN) is largely due to their inherent ability to

capture the local context and build very deep [41] contextual

hierarchies within the model. Recently, the progressive adop-

tion of the attention mechanism in computer vision [51] has

brought forth more flexible context descriptions conditioned

on the interdependence of individual pixels, while steadily

replacing the traditional convolutional building blocks [11].

Multi-Task Learning (MTL) [6] is concerned with shar-

ing representations between tasks. Motivated by the obser-
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Figure 1. Schematic of the task relational context (orange overlay)

for the marked pixel (orange cross) of target task semantic segmen-

tation. Our algorithm selects one distillation context type for each

source task (dashed lines represent a switch). Alternatively, the

connection can be severed by choosing none. The procedure is

analogous for all other target tasks.

vation that representations of visual tasks are often highly

correlated [56], recent works [50, 44] focusing on multi-task

dense prediction have extended context extraction across

tasks through soft-gated message passing. Referred to as

multi-modal distillation in the literature [50], the idea is to

augment the high-level representations of downstream target

tasks by selectively aggregating complementary features of

a set of source tasks. The gating function in the distillation

thereby learns to focus on useful cross-task information flow.

Despite their effectiveness, current multi-modal distilla-

tion schemes [50, 44] suffer from two main limitations: (1)

The employed gates only regulate information flow based

on the source task feature values. As such, the distillation

module fails to capture task interactions fully. (2) Each tar-

get pixel exclusively receives information from its source

counterpart, i.e., the message passing is restricted locally.

Compelled by these drawbacks, we propose a new type of
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attention-driven multi-modal distillation scheme, based on

three key contributions:

1. Increase the expressivity of the cross-task gate by con-

ditioning it on the interdependence of source and target

task pixels. Our multi-modal distillation scheme is

therefore relational.

2. Enable global cross-task message passing by enlarging

the receptive field of the distillation scheme. We refer to

each pixel’s distillation receptive field as its distillation

context.

3. Customize the distillation context type for each source-

target task pair. We formulate five context type candi-

dates (global, local, T-label, S-label, none) and adapt

the type automatically with respect to each source-

target task pair in a given architecture (see Fig. 1).

Contributions 1 and 2 are addressed by leveraging and

adapting the scaled-dot product attention mechanism [45]

for multi-modal distillation. For contribution 3, we repur-

pose modern Neural Architecture Search (NAS) methods to

automatically find the optimal context type for each source-

target task connection. Overall, we present a novel Adaptive

Task-Relational Context (ATRC) module which can be used

as a drop-in module for CNNs to refine any dictionary of

supervised dense prediction tasks. We show its effectiveness

empirically with the architecture shown in Fig. 2: a single

neural network for all tasks with a shared backbone of RGB

input, multiple task-specific heads, and ATRC distillation

modules to refine each task’s predictions.

The paper is structured as follows: Sec. 2 provides an

overview of related work; Sec. 3.1 introduces the architecture

of ATRC; Sec. 3.2 explains the types of relational contexts in

consideration; Sec. 3.3 covers the adaptation of the context

type through NAS techniques; Sec. 4 provides the empirical

study details and verifies the proposed method state-of-the-

art performance on several important benchmarks; Sec. 5

concludes the paper.

2. Related Work

Multi-Task Learning (MTL) methods employ two main

paradigms to learn shared representations: hard parameter

sharing and soft parameter sharing. Hard parameter sharing

characterizes architectures which typically share the first hid-

den representations among the tasks while branching to in-

dependent task-specific representations at a later stage. Most

approaches split to task-specific heads at a single branch

point [24, 22, 10, 39]. However, such naive branching can

be sub-optimal, raising interest in mechanisms that allow

for finely branched architectures [31, 43, 5]. Our work is

complementary to these hard parameters sharing methods,

since we introduce a module which refines task-specific

features. Soft parameter sharing, in contrast, marks archi-

tectures which induce knowledge transfer between separate

task-specific networks through feature fusing mechanisms.

Feature fusing can be introduced along the entire network

depth [35, 15, 28], whereby computational cost is often a

limiting factor. Our proposed module can be interpreted as

a sophisticated feature fusing mechanism, applied only at a

single stage to refine high-level representations.

Several recent MTL works follow a similar strategy:

PAP [56] and PSD [57] refine task-specific feature maps

through global and local self-attention respectively. The

employed attention masks are first refined by propagating

affinity patterns across tasks and then applied iteratively on

the target task feature maps. In contrast to [56, 57], our ap-

proach directly attends to source task features by explicitly

modeling pairwise interactions between source and target

tasks. More closely related to our work, PAD-Net [50] uses

multi-modal distillation to enhance task-specific predictions.

Information flow from each source to target task is regulated

with a sigmoid-activated gate function. MTI-Net [44] com-

bines the multi-modal distillation module of PAD-Net with

a multi-scale refinement scheme to facilitate cross-task talk

at multiple scales. However, the gates used in the distillation

module of [50, 44] are functions of the source task features

only and operate per pixel. Our method, on the other hand,

leverages pairwise task similarities to create more expressive

gates through the attention mechanism, while also enabling

global cross-task message passing.

Attention was originally developed to improve sentence

alignment in neural machine translation [2]. In computer

vision, variants of scaled dot-product attention [45] in par-

ticular have been used to capture global relationships over

the entire pixel space [47, 3, 52], locally [36], and even

channel-wise [13]. In these approaches, the representation

of each target pixel is augmented by aggregating the rep-

resentations of pixels within the specified context. Each

context pixel thereby contributes according to its relation to

the target, hence the term relational context. Relevant to our

work, A2-Net [9], ACFNet [54], and OCR-Net [53] define

their own relational context types by grouping pixels into

distinct regions (e.g., object class) and attending to proto-

typical representations of those regions instead. All of the

above mentioned methods focus on attention for a single

downstream task and utilize fixed context descriptions. Our

work extends these concepts to a multi-task scenario while

choosing the optimal relational context type from a pool of

candidates for each source-target task pair.

Neural Architecture Search (NAS) automates the pro-

cess of engineering problem-specific neural network archi-

tectures, with the goal of minimizing hand-crafted network

design. To this end, seminal works use either reinforce-

ment learning [58, 59] or evolutionary [38, 37] algorithms

to sample promising candidate architectures from a large
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Figure 2. (a) Overview of a multi-task network with the proposed Adaptive Task-Relational Context (ATRC) module. The main network

can have any topology, provided that the head for each task n produces both the features (Fn) for ATRC to refine and the auxiliary prediction

(An). In our experiments we predict Fn and An with the main and auxiliary independent heads respectively. Within ATRC each task is

routed as target task to N Context Pooling (CP) blocks (n-th row of CP blocks) and as source task to N CP blocks (n-th column). The

outputs of CP blocks are concatenated for each task independently and fed through a projection module (‘Task n’). The predictions Pn

are obtained after processing ATRC outputs with a final layer (‘Pred n’). (b) Dissection of a CP block, refining target task (T ) features

through source task (S) information. During the search stage, the CP block extracts all five contextual representations (white blocks, see

Sec. 3.2) and returns a convex combination of them. After search convergence, a single context type is sampled via argmax, i.e., the αi

form a one-hot vector. Legend: Green blocks denote modules with learned weights, red blocks denote loss functions. Best viewed in color.

search space. Although effective, architecture search with

these methods can be very compute-intensive, prompting

researchers to explore differentiable NAS [27, 49, 17]. In-

stead of a single operation, differentiable NAS uses a convex

combination of several operations at a given layer, enabling

gradient-based optimization of the search space by training

the operation mixing weights. The primary contribution of

our work is a novel multi-modal distillation module; we thus

utilize existing advances in differentiable NAS [49] and a

custom search space to automate the context selection for

different source-target task pairs.

3. Adaptive Task-Relational Context

In this section, we describe the proposed Adaptive Task-

Relational Context (ATRC) module within a general multi-

task learning framework. First, we briefly outline the overall

architecture, before dissecting the building blocks of the

ATRC module. Finally, we discuss the employed adaptive

context type search scheme.

3.1. Architecture Design

Our ATRC module can be incorporated as a refinement

stage in any multi-task neural network (e.g., across mul-

tiple scales). For transparency we intentionally keep the

example configuration simple (see Fig. 2a): The backbone

is shared among all tasks; shallow heads are used per task

to generate task-specific features Fn and auxiliary predic-

tions An, where n ∈ {1, ..., N} indexes the task. In our

basic design, we predict Fn and An independently, using a

3×3Conv-BN-ReLU and 1×1Conv-BN-ReLU-1×1Conv
layer respectively. The role of the An is further explained in

Sec. 3.2.3.

The ATRC module refines the features FT of each target

task T by attending to the features Fn of every available

task n ∈ {1, ..., N} within a separate Context Pooling (CP)

block for each source-target task pair. Each row of the carte-

sian grid of CP blocks in Fig. 2a thus serves to refine one

target task T , using information from a different source task

S in each column. The self-attention performed in the CP

blocks on the diagonal enables the distillation module to ad-

ditionally capture intra-task relationships. The outputs of all

CP blocks within a row are concatenated along the channel

dimension, fused with a 1×1Conv-BN layer, concatenated

with the original target task features FT , and processed with

1×1Conv-BN-ReLU. Lastly, the refined features are fed

through a 1×1Conv layer (‘Pred T ’ in Fig. 2a) to obtain the

final predictions PT .

3.2. Context Pooling Block

A CP block aims to extract useful features from one

source task S to augment one target task T . To this end,

each CP block performs at its core a version of scaled dot-

product attention, the main component of the widely success-

ful Transformer [45]. Accordingly, the target task feature

map FT and the source task feature map FS are first trans-

formed to queries q, keys k and values v using 1×1Conv-
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BN-ReLU layers f∗.

q = fq(FT ), k = fk(FS), v = fv(FS) (1)

Throughout this paper, we assume that tensors are flattened

along the spatial dimension (including q, k, v). A matrix

of attention weights A is generated based on the pairwise

similarity between q and k features. CP block outputs v′

are attention-weighted combinations of v features (dk is the

channel dimension of k).

v′ = softmax

(
qk⊺√
dk

)

︸ ︷︷ ︸
A

v (2)

In the multi-task setting, the attention weights can be

interpreted as modeling the likelihood of feature co-

occurrence [55] in transformed target (q) and source (k)

task maps. The contribution of each source task pixel within

the context of the target task pixel is then gated accord-

ing to the estimated co-occurrence likelihood. Intuitively,

co-occurrence might improve the robustness of target task

predictions in ambiguous cases, e.g., for T = ‘semantic seg-

mentation’ and S = ‘depth estimation’, the context of a pixel

of class ‘sky’ is more likely to consist of many pixels with

large depth.

The attention maps in Eq. 2 model pixel interactions

globally (‘all-to-all’), i.e., the distillation context of each

pixel is unconstrained. Depending on the present source and

target task combination, this might not be ideal. We therefore

introduce four variants of the above attention mechanism

in Sec. 3.2.1, 3.2.2, 3.2.3, each characterized by a different

context definition. In Sec. 3.3 we describe how we adapt the

CP block for different source-target task pairs.

3.2.1 Global Context

In this case, the distillation context of a specific target pixel is

simply every pixel of the source task. Naive implementations

of this approach lead to a prohibitively large memory foot-

print, as the complexity of computing the attention weights

scales with O(L2), where L is the number of pixels.

To circumvent this issue, we utilize a linearization scheme

similar to [21]. In particular, we can calculate the attention

map for a target pixel i using an arbitrary similarity function

sim(·) with positive domain instead of softmax.

v′i =

∑L

j=1 sim (qi, kj) vj
∑L

j=1 sim (qi, kj)
(3)

This includes all kernel functions sim(qi, kj) = φ(qi)φ(kj),
which allows us to shift the multiplication order: φ(kj) and

vj can be multiplied first and reused for every φ(qi), which

reduces the overall complexity to O(L). In this work, we

simply choose a linear kernel φ(x) = x, corresponding to

cosine similarity. To avoid numerical issues, we replace the

ReLU activation functions in fq and fk of Eq. 1 with the

smooth approximation softplus(x) = log (1 + exp (x)).

3.2.2 Local Context

We can constrain the context to encompass only source pix-

els spatially close to the target pixel [36], mimicking the

receptive field of a convolution. With Nb(i) denoting the 2D

spatial neighborhood of target pixel i with extent b (we use

b = 9× 9), the attention formula analogously to Eq. 2 is:

v′i =
∑

j∈Nb(i)

softmax
Nb(i)

(
qik

⊺

j√
dk

)
vj (4)

This operation resembles a convolution with a spatially-

adaptive filter [42]—the attention map.

3.2.3 Label Context

Both the global and local relational contexts are spatially

defined, i.e., distillation is conducted through a spatial at-

tention mask. Label context, on the other hand, is defined

in label space, meaning that we (1) partition the label space

into a set of disjoint label regions, (2) find a prototypical rep-

resentation for each region, and (3) relate each pixel to each

region prototype. This concept has been applied to semantic

segmentation in [54, 53]. In this section we generalize it to

any dense prediction task and explore its potential for MTL.

Partitioning the label space is straightforward for classifi-

cation tasks, i.e., the label regions can be equivalent to the

classes. For regression tasks, however, we need to discretize

the continuous label space. Consequently, we bin the values

on a logarithmic scale for depth prediction and cluster pre-

dictions on the unit sphere using k-means for surface normal

estimation (see Sec. D of the supplementary material for

details).

We follow the approach of OCR-Net [53] for supervised

learning of the region prototypes for each task n: Specifi-

cally, auxiliary prediction heads calculate the spatial maps

An ∈ R
L×Rn (see Fig. 2a), where each entry indicates the

degree to which a pixel l ∈ {1, ..., L} belongs to a label

region r ∈ {1, ..., Rn}. During training, these maps are

learned with ground truth supervision using a cross-entropy

loss. The resulting maps An are normalized using spatial

softmax to obtain Ân, representing the spatial probability

density of each label region r. In a multi-task setup, we can

then choose to define the label regions in either target or

source task label space:

T -label. In this approach, label regions are defined in

target task (T ) space. Source task features are spatially

aggregated using target task spatial maps ÂT , yielding the
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Image w/ mark SemSeg Depth Normal Bound

Figure 3. Heatmaps showing label context attention maps relating

to the pixel marked with a white cross in the left image, i.e. we

visualize the corresponding row of A in Eq. 2. For each target task

we visualize the self-attention maps only.

region prototypes pS ∈ R
RT×C , where C is the source task

channel dimension.

pS = Â⊺

TFS (5)

pS is then substituted for FS in Eq. 1 to obtain k and v.

S-label. Alternatively, source task features can also be

aggregated via source task (S) spatial maps ÂS , by substi-

tuting ÂS for ÂT in Eq. 5.

The key difference between the two approaches is best

illustrated with an example: Assuming target task semantic

segmentation and source task depth estimation, the T -label

context groups depth features according to object class and

makes each target pixel attend to the prototypical depth fea-

tures for each object class (e.g., the representative depth

feature of all ‘car’ pixels). Conversely, the S-label context

simply groups depth features according to their depth, en-

abling semantic features to interact with entire depth regions.

We visualize example self-attention maps for a single

target pixel (white cross) of a trained label context distillation

model in Fig. 3. The maps illustrate that the model learns to

focus on context pixels within distinct label regions.

3.3. Automated Context Type Selection

While all presented context types could help improve tar-

get task features, some might be more effective than others

in specific scenarios. Therefore, CP blocks are designed to

tailor their context type (attention mechanism) to the present

source-target task pair. In this paper we opt for differentiable

NAS techniques to automatically select a single context type

for each CP block, by optimizing a supergraph encompass-

ing all options (see Fig. 2b). However, a CP block is not

limited to a single context type per se and could instead

refine predictions given a combination of context types in a

static [29, 48] or even dynamic [18] fashion.

Our search space consists of five candidates in each CP

block: global, local, T-label, S-label, and a none opera-

tion. The none operation simply severs the information flow

between two tasks, which can prevent task interference, a

common problem in MTL [24, 20]. Operation selection in

a CP block j can be formulated as a multiplication of all

candidates Oj with a one-hot vector Zj sampled from the

categorical distribution pαj
(Zj).

Õj = Z⊺

j Oj (6)

Continuous relaxation of the search space (while maintain-

ing this sampling process) is achieved through the Gumbel-

Softmax gradient estimator [32, 19], yielding a softened

one-hot random variable Ẑj .

Ẑ
(i)
j =

exp
((

logα
(i)
j +G

(i)
j

)
/λ
)

∑5
u=1 exp

((
logα

(u)
j +G

(u)
j

)
/λ
) (7)

G
(u)
j ∼ Gumbel(0, 1) is a Gumbel random variable, and λ

is the softmax temperature. In our case, the architecture pa-

rameters α are updated in the same round of backpropagation

as the network weights (single-level optimization). A more

detailed discussion of Gumbel-Softmax for differentiable

NAS is provided in [49].

Empirically, samples from α-distributions trained with

Gumbel-Softmax exhibit large variance after convergence,

leading to unstable evaluation of sampled subgraphs. We

thus use a two-pronged strategy to counteract this problem:

(1) Similarly to [14], we adopt entropy regularization on

pαj
(Zj) to explicitly control the sampling variance. Instead

of the commonly employed candidate operation pretrain-

ing, we can simply start the architecture search from scratch

with a negative regularization weight to enforce a uniform α-

distribution. The weight is gradually increased to a positive

value during training to ultimately incentivize low-entropy

solutions, which imply a low variance as the architecture

is sampled from the supergraph. (2) We stop the archi-

tecture sampling process in CP block j completely once

pαj
has reached a low-entropy solution. After a defined

threshold is surpassed, we fix the block selection procedure

in j using argmax. Using this strategy, we obtain high-

performing architectures directly during the search stage

(see Fig. 4), demonstrating that our search objective is well

defined. Nevertheless, for a fair comparison, we still retrain

the discovered architectures from scratch—as is common

practice [27, 49].

4. Experiments

We briefly review the experimental setup, before present-

ing empirical studies. Training details are provided in Sec. A

of the supplementary material and reference code is available

at https://github.com/brdav/atrc.

4.1. Setup

Datasets. Experiments are conducted on two widely-used

dense prediction datasets: (1) NYUD-v2 [40], which consists
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Distillation module
Resource SemSeg ↑ Depth ↓ Normal ↓ Bound ↑

∆m [%] ↑
Params (M) MAdds (G) mean std. mean std. mean std. mean std.

None (single task baseline) 16.09 40.93 38.02 0.14 0.6104 0.0041 20.94 0.08 76.22 0.07 0.00

None (multi-task baseline) 4.52 17.59 36.35 0.26 0.6284 0.0034 21.02 0.06 76.36 0.05 -1.89

Cross-Stitch [35] 4.52 17.59 36.34 0.55 0.6290 0.0051 20.88 0.04 76.38 0.07 -1.75

PAP [56] 4.54 53.04 36.72 0.31 0.6178 0.0065 20.82 0.03 76.42 0.07 -0.95

PSD [57] 4.71 21.10 36.69 0.55 0.6246 0.0036 20.87 0.07 76.42 0.13 -1.30

PAD-Net A [50] / NDDR-CNN [15] 4.59 18.68 36.72 0.31 0.6288 0.0037 20.89 0.02 76.32 0.07 -1.51

PAD-Net B [50] 5.02 25.18 36.70 0.16 0.6264 0.0021 20.85 0.03 76.50 0.06 -1.33

PAD-Net C [50] / MTI-Net [44] 5.50 32.42 36.61 0.15 0.6270 0.0048 20.85 0.03 76.38 0.07 -1.44

Global relational context 4.73 21.43 38.30 0.65 0.6007 0.0073 20.60 0.07 76.26 0.05 1.00

Local relational context 4.73 22.19 36.79 0.29 0.6260 0.0044 20.91 0.06 76.44 0.05 -1.34

T -label relational context 5.06 25.91 38.88 0.31 0.6059 0.0014 20.48 0.05 76.30 0.06 1.33

S-label relational context 5.06 25.91 38.33 0.64 0.6006 0.0019 20.56 0.06 76.26 0.05 1.07

ATRC (ours) 5.06 25.76 38.90 0.43 0.6010 0.0046 20.48 0.02 76.34 0.12 1.56

Table 1. Controlled distillation module comparison on NYUD-v2 with a HRNet18 backbone. For all models except the single task baseline, a

shared encoder and small task-specific heads are used (Sec. 3.1). We insert the different distillation modules before the final prediction layer.
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Figure 4. Performance compari-

son of the models sampled from

the supergraph at the end of the

context type search vs. after re-

training. The chart shows mean

and std. of the relative perfor-

mance improvement w.r.t. sin-

gle task (ST) models: (Mm −
MST )/MST for model m and

‘higher = better’ metric M , and

vice versa for ‘lower = better’.

of 795 training and 654 testing images of indoor scenes, with

annotations for semantic segmentation (‘SemSeg’), depth

estimation (‘Depth’), surface normal estimation (‘Normal’),

and boundary detection (‘Bound’). (2) PASCAL-Context [8],

a split of the larger PASCAL dataset [12], providing 4998

training and 5105 testing images, labeled for semantic seg-

mentation, human parts segmentation (‘PartSeg’), saliency

estimation (‘Sal’), surface normal estimation, and boundary

detection. We use the distilled saliency and surface normal

labels of [33].

Backbones. We test our framework using several back-

bones: HRNetV2-W18-small (HRNet18), HRNetV2-W48

(HRNet48) [46], and ResNet-50 [16].

Metrics. We evaluate ‘Semseg’ and ‘PartSeg’ with mean

intersection over union, ‘Depth’ with root mean square er-

ror, ‘Normal’ with mean angular error, ‘Sal’ with maxi-

mum F-measure as in [1], and ‘Bound’ with the optimal-

dataset-scale F-measure of [34]. All experiments in this

paper are repeated five times; the mean is reported for ev-

ery metric (in Table 1 also the standard deviation). To

quantify overall multi-task performance for N tasks, we

adopt the average per-task performance drop (∆m) with re-

spect to single task baselines b for model m [33]: ∆m =
1
N

∑N

i=1(−1)γi(Mm,i − Mb,i)/Mb,i. γi = 1 if lower is

better for metric Mi and γi = 0 otherwise.

4.2. Distillation Module Benchmarking

In Table 1 we conduct a series of controlled experiments

to assess the effectiveness of different distillation modules

fairly. Using a HRNet18 backbone, we alter the MTL ar-

chitecture design described in Sec. 3.1 only by replacing

the ATRC module with other distillation modules. For the

baselines, no distillation module is used.

As expected, all investigated distillation modules out-

perform the trivial multi-task baseline in terms of multi-

task performance ∆m. Furthermore, most relational context

modules fare significantly better than their alternatives. Ex-

cepting local relational context, augmenting the multi-task

network with relational context beats the single task baseline

while maintaining a far lower computational footprint.

Table 1 also reveals that no single relational context type

dominates for every task. This suggests that a more fine-

grained context customization for each individual source-

target task pair could improve overall performance. Indeed,

applying our automated context type selection (Sec. 3.3),

ATRC, produces the best result in multi-task performance.

Fig. 5 visualizes the resource cost of the various dis-

tillation modules by plotting the multi-task performance

vs. number of parameters and multiply-add operations

(MAdds). The computational overhead of the relational con-

text modules—and most other distillation modules—remains

low compared to single task networks. Our ATRC combines

the benefits of all the relational context modules by maxi-

mizing performance while remaining bounded in terms of

resource cost.
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Figure 5. Distillation module resource analysis using an HRNet18 backbone on NYUD-v2. We plot multi-task performance ∆m vs. number

of parameters (left) and MAdds (right) for multi-task models with different distillation modules inserted before the final prediction layer.

4.3. Comparison with State­of­the­Art

To validate the proposed ATRC module, we present ex-

perimental comparisons with the following baselines across

a number of scenarios: separate single task networks, multi-

task network (shared backbone; task-specific heads; no dis-

tillation) and the state-of-the-art MTI-Net [44]. Tables 2

and 3 display the results obtained on the NYUD-v2 dataset,

using HRNet18 and HRNet48 backbones respectively, while

Table 4 shows PASCAL-Context results using HRNet18.

MTI-Net uses a large-scale decoder head consisting of two

separate stages: the Feature Propagation Module (FPM) and

a multi-scale multi-modal distillation module (the analog

of our ATRC module). To ensure a fair comparison, we

apply our method on both the basic architecture described

in Sec. 3.1, as well as the backbone complemented with

the FPM (+174% and +79% in number of parameters for

HRNet18 and HRNet48 respectively).

In all investigated cases, ATRC enhances performance sig-

nificantly compared to the multi-task baseline. Furthermore,

our method combined with the FPM consistently outper-

forms MTI-Net, even though MTI-Net applies multi-modal

distillation on four scales, while we only distill on the largest

scale (causing our model to be more parameter efficient, e.g.,

-22% in Table 2). This implies that task interactions can

be adequately captured at a single scale for distillation, pro-

vided that the backbone is able to extract and fuse multi-scale

information effectively (like HRNet).

Overall, the multi-task approaches are less effective com-

pared to single task baselines on the PASCAL-Context

dataset. This finding is in agreement with other works [33,

44] and could be attributed to the larger and more diverse

task dictionary. Nevertheless, the ranking order of the multi-

task approaches in terms of multi-task performance remains

consistent with the results obtained for NYUD-v2.

4.4. Source Task Importance

The simple design of the proposed ATRC module allows

us to investigate the importance of each source-target task

connection (=̂ CP block) for the final predictions of fitted

Model FPM SemSeg ↑ Depth ↓ Normal ↓ Bound ↑ ∆m [%] ↑
Single task 38.02 0.6104 20.94 76.22 0.00

Multi-task 36.35 0.6284 21.02 76.36 -1.89

MTI-Net [44] ✓ 39.89 0.5824 20.57 76.60 2.94

ATRC (ours)
38.90 0.6010 20.48 76.34 1.56

✓ 40.80 0.5826 20.51 76.50 3.57

Table 2. NYUD-v2 performance comparison, using a HRNet18

backbone. FPM = Feature Propagation Module [44].

Model FPM SemSeg ↑ Depth ↓ Normal ↓ Bound ↑ ∆m [%] ↑
Single task 45.87 0.5397 20.09 77.34 0.00

Multi-task 41.96 0.5543 20.36 77.62 -3.05

MTI-Net [44] ✓ 45.97 0.5365 20.27 77.86 0.15

ATRC (ours)
46.27 0.5495 20.20 77.60 -0.28

✓ 46.33 0.5363 20.18 77.94 0.49

Table 3. NYUD-v2 performance comparison, using a HRNet48

backbone. FPM = Feature Propagation Module [44].

Model FPM SemSeg ↑ PartSeg ↑ Sal ↑ Normal ↓ Bound ↑ ∆m [%] ↑
Single task 62.23 61.66 85.08 13.69 73.06 0.00

Multi-task 51.48 57.23 83.43 14.10 69.76 -6.77

MTI-Net [44] ✓ 61.70 60.18 84.78 14.23 70.80 -2.12

ATRC (ours)
57.89 57.33 83.77 13.99 69.74 -4.45

✓ 62.69 59.42 84.70 14.20 70.96 -1.98

Table 4. PASCAL-Context performance comparison, using a HR-

Net18 backbone. FPM = Feature Propagation Module [44].

models. To this end, we adapt permutation feature impor-

tance [4] to our setting. We can determine the importance of

a CP block by recording the drop in multi-task performance

∆m when the output of that block is randomly shuffled over

the dataset. To get a more reliable estimate, this procedure

is repeated multiple times with different permutations. Ne-

glecting feature multicollinearity, the average drop in ∆m

provides an estimate of how strongly the fitted model de-

pends on the inspected source task for the corresponding

target task prediction. We use held-out data in this experi-

ment to assess the importance for generalization power.

Fig. 6 visualizes the results for NYUD-v2. The inspection

reveals that self-attention remains the most important distil-

lation connection for three out of four tasks. However, depth
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Figure 6. Source task impor-

tance; measured by permutation

testing of fitted ATRC models

on NYUD-v2. The contribution

of a source task in the distilla-

tion is gauged by the drop in

multi-task performance ∆m as

the output of the corresponding

source-target task distillation is

randomly permuted. The values

shown in the matrix are mean per-

centage drops in ∆m.

estimation seems to rely more strongly on semantic segmen-

tation source features, corroborating empirical evidence in

the literature that depth estimation can be improved signif-

icantly using semantic predictions [50]. Overall, boundary

detection profits little from multi-modal distillation accord-

ing to this analysis, which is consistent with the lack of

noteworthy performance gain for this task in Table 1. We

hypothesize that this could be due to the large discrepancy

between the loss (we follow others [33, 44, 20] and use

balanced cross entropy) and metric for this task. A more

tailored loss function such as [23] might help in this case.

Source task importance scores are linearly correlated with

the search algorithm reliability—albeit weakly (Pearson cor-

relation coefficient of 0.43). Notably, we observe 100%

reliability for the three most important source-target task

connections of Fig. 6. This suggests that the search algo-

rithm is more consistent for important decisions. We quantify

search algorithm reliability using percentage agreement in

candidate selection between all search run pairs (does not

account for chance agreement, see Sec. F).

4.5. Complementary Methods

To demonstrate its flexibility, we combine our ATRC mod-

ule with (1) the contextual Atrous Spatial Pyramid Pooling

(ASPP) module of [7] and (2) automatic backbone branching

via Branched Multi Task Architecture Search (BMTAS) [5].

For these experiments, we use a dilated ResNet-50 backbone

(output stride 16) with a skip connection at stride 4, and fully

convolutional task-specific heads.

ASPP is a popular multi-scale context aggregation mod-

ule leveraging dilated convolutions. We insert a separate

ASPP module before each task-specific head. Table 5 shows

that ATRC also improves the performance of the ASPP-

augmented network, indicating that the two context aggrega-

tion stages are complementary to some extent. Interestingly,

the proportions of selected relational context types in the

ATRC search change drastically with ASPP, as illustrated

in Fig. 7: The proportion of local context rises from 0%

(w/o ASPP) to 41.6% (w/ ASPP), demonstrating that ATRC

adapts the context types given the nature of different back-

Model ATRC SemSeg ↑ PartSeg ↑ Sal ↑ Normal ↓ Bound ↑ ∆m [%] ↑
Single task 56.65 62.67 80.62 14.66 74.00 0.00

Multi-task
50.78 59.37 78.99 15.16 71.18 -4.97

✓ 62.99 59.79 82.25 14.67 71.20 0.95

ASPP [7]
62.70 59.98 83.81 14.34 71.28 1.77

✓ 63.60 60.23 83.91 14.30 70.86 2.13

BMTAS [5]
56.37 62.54 79.91 14.60 72.83 -0.55

✓ 67.67 62.93 82.29 14.24 72.42 4.53

Table 5. PASCAL-Context performance of ASPP [7] and BM-

TAS [5] when supplemented with our ATRC. For ASPP, we insert

an ASPP module at the beginning of each task-specific head. For

BMTAS, we use their method to find a branched backbone (in-

stead of fully shared). ATRC is complementary to both approaches.

Experiments are based on a dilated ResNet-50 backbone.

0 10 20 30 40 50

None

S-Label

T -Label

Local

Global

Context type proportion [%]

w/o ASPP

w/ ASPP

Figure 7. Proportions of selected

context types over five search

runs, for architectures without

and with an ASPP module [7]

inserted before the ATRC mod-

ule. The change in proportion

of the local context indicates that

ATRC adapts to better comple-

ment the new backbone. This ex-

periment was conducted on the

PASCAL-Context dataset using

a ResNet-50 based architecture.

bones (e.g., the enhanced receptive field of ASPP is better

complemented with local information).

Branched networks are a hard parameter sharing MTL

strategy and, as such, complementary to multi-modal distil-

lation (see Sec. 2). We show this by applying our method

in combination with a branched backbone configuration, de-

termined through the NAS-based BMTAS. The results in

Table 5 demonstrate that ATRC improves performance also

for branched multi-task networks.

5. Conclusion

We presented ATRC, a novel multi-modal distillation

module which exploits inter- and intra-task relationships to

refine pixel-wise predictions. The proposed approach lever-

ages scaled dot-product attention to enrich the features of

a target task through contextual source task features, while

explicitly factoring in tasks’ relations. We formulate four

relational context types for multi-modal distillation (global,

local, T-label, and S-label context) and detail an algorithm

which customizes the context type for every given source-

target task pair. Experimental analyses on NYUD-v2 and

PASCAL-Context benchmarks indicate that our ATRC mod-

ule outperforms comparable multi-modal distillation mod-

ules established in the literature. Overall, the presented

framework shows great promise for multi-task dense predic-

tion and opens the door for future research in customized

task-relational context descriptions.
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