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 

 Abstract— Recently, game theory has been used to design 
optimized strategies for defending an electric power system 
against terrorist attacks. In this paper, we extend the current 
static model to a more generalized framework which includes 
several interaction models between defenders and attackers. A 
new criterion of reliable strategies for defending power systems 
has been derived. In addition, two effective allocation 
algorithms have been developed to seek reliable strategies for 
two types of defense tasks. The new criterion and algorithms 
are complementary to current security criteria and can provide 
useful information to assist decision-makers (governments), for 
protecting their power systems under possible terrorism threat. 
Numerical simulation examples using the proposed methods 
are given as well. 
      Index Terms—Game theory, Power system security, Risk 
management, Reliable strategies, Terrorism threat. 

I. INTRODUCTION 

Since September 11, 2001 and the frequent suicide 
bombing attacks in some countries, terrorism has become a 
major threat for national security. The US government [1] 
has spent over $150 billion on homeland security and 
appropriates about $15 billion on protecting the country’s 
critical infrastructure every year. Critical infrastructure is a 
term widely used by many governments to describe assets 
that are essential for the functioning of a society and its 
economy.  So far, many countries have launched Critical 
Infrastructure Protection (CIP) plans. These include USA, 
Germany, United Kingdom, and Australia etc.. Each plan 
aims at building a more secure and more resilient country 
with strengthened national preparedness with timely 
response and rapid recovery of critical infrastructures in the 
event of terrorist attacks, natural disasters, or other 
emergencies [2] 

Power systems are always regarded as one of the most 
important infrastructures critical to the national security 
across the world. Consequently the vulnerability (security) 
analysis [3, 6] of power systems plays an essential role in the 
development of the electrical power industry. Traditionally, 
power system security is implemented via the 
well-established methodologies, which are mainly some 
criteria guiding the decision-makers on how to organize the 
prevention, response and recovery from a usual failure. For 
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example, the widely used N-1 criterion [4] and the high risk 
N-k criterion [5] are among those criteria used for the power 
industry. Those criteria can handle disruptions resulted from 
accidents or random acts of the nature. Technically, they 
identify and deal with sets of events that are most likely to 
disrupt the systems and when those events happen so as to 
ensure the secure or normal operation of power systems. For 
economy, electrical companies usually ignore such events 
with sufficiently low probabilities of occurring. 

However, with the boosting of a broad range of terrorism 
motivations, power systems, as one of the most important 
critical infrastructures, might became the target of terrorists 
[2, 7]. As a result, the traditional security framework of 
power systems is facing an immense challenge, because 
terrorists are often considered as fully intelligent and 
strategic actors. They can deliberately trigger those low 
probability events which are lack of protection but can cause 
serious damage to the power system. If such malicious attack 
happens, the impact will be significant. Some researchers 
have studied the power grid security problems under terrorist 
attacks. By studying how to attack power grids, they tried to 
explore new vulnerability measures of a power system. 
Salmeron et al. [8] firstly formulize the terrorism threat 
problem in power systems, in which terrorists try to 
maximize the load shed. Arroyo et al. [9] generalized 
Salmeron’ model to a more flexible bilevel programming 
problem. Moreover, Motto et al. [10] transformed the 
problems [8, 9] into a mixed integer bilevel programming 
model and presented a solution procedure. From [8-10], it 
can be observed that in the new context where terrorists 
come into play, traditionally robust power systems have 
become vulnerable. Therefore, seeking new methodologies 
and security criteria for defending power systems under 
potential terrorism threat is an urgent and important work. 

Game theory [11] treats actors as fully strategic and has 
been successfully applied to many disciplines including 
economics [12-13], political science [14] and military 
[15-16], where multiple players with different objectives can 
compete and interact with each other. Recently, Holmegren 
et al. [17] proposed a static two-player zero-sum game model 
for studying the strategies of defending electric power 
systems under terrorist attacks. In the model, simultaneously, 
defenders deploy a strategy with limited budget for 
protecting each element of power systems and terrorists 
choose a target to attack. Furthermore, they studied a number 
of attack strategies and found that a dominant defense 
strategy1 did not exist. For every attack strategy, there exists 

 
1 A dominant defense strategy means that for all attack scenarios, the 

strategy is always optimal. 
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an optimized defense strategy against it. This is an initial 
attempt for power system protection under terrorism threat 
and game theory inaugurates a new dimension for potential 
solutions. However, it is obvious that successful application 
of those optimized defense strategies requires priori 
defenders knowledge on the terrorists’ attack strategies. 
Otherwise, those optimized strategies might not be effective. 
For example, Table I which is abstracted from ref. [17], 
shows the loss of defenders in different combinations of 
attack strategies and defense strategies. 
 

 
From Table I, we can see that defense strategy D1 for the 

attack strategy A1 is optimized, which can limit the loss of 
defenders to a minimum level compared with all other 
defense strategies. Nevertheless, if terrorists employ A5 
against D1, the loss of defenders will increase significantly. 
If defenders employ D5 for defending A5, the loss can fall to 
a minimum level again, but will increase sharply again if 
terrorists adopt another strategy A11 against D5. In this kind 
of game, because both defenders and terrorists do not know 
the strategy of each other, employing optimized strategies 
D1 and D5 are not reliable and the loss of defenders is not 
predictable. Moreover, a risk of large loss always exists. To 
eliminate the risk, we need to explore a reliable strategy of 
defenders, under which large loss can be avoided and the 
final loss can be estimated no matter what attack scenario 
terrorists will play. 

On the other hand, in real world applications, a more 
reliable situation is not like the static model but rather a 
dynamic (sequence) game model. Under a dynamic game 
model, before starting a strike, terrorists will make sufficient 
preparation and gather inside information about the object by 
all means, i.e. “how do defenders protect the object?”; 
“which parts are more vulnerable?”; “which parts can cause 
serious damage?” etc.. That is to say, in the dynamic game, 
defenders should deploy a strategy first and then terrorists 
decide a target to attack after seeing the defender’s action. In 
this situation, those optimized strategies D1-D6 in table I 
will fail to withstand. For example, if defenders deploy 
strategy D5, intelligent terrorists must choose attack strategy 
A11 in order to achieve the maximum loss of defenders. In 
this game, because terrorists have known the defenders’ 
strategy, they must seek a more effective attack scenario 
which can maximize the damage. This is an extreme situation 
between defenders and terrorists. Another possible situation 
is that terrorists can not obtain all information needed. That is, 
they only know partially the strategy of the defenders. 
Accordingly, the game between the defenders and the 
terrorists are manifold and to the best of our knowledge, few 

papers have discussed them in power system security 
analysis. 

 In this paper, we propose a comprehensive game 
framework which includes the static game model firstly 
proposed in [17] and several new dynamic versions extended 
by us. Furthermore, risk management theory will be 
introduced to analyze the framework and reliable strategies 
of defenders will be explored. Finally, two effective 
algorithms will be developed to achieve reliable strategies 
for the following two common defense problems.  

(1) When the defenders have a limited budget, how do 
they allocate the budget to deploy a reliable strategy? 

(2) When the defenders want to limit their loss to an 
expected value, how much budget do they need in order to 
deploy a reliable defending strategy? 

The rest of this paper is organized as follows. Section II 
introduces a defender-attacker modeling approach. The 
game framework is described and analyzed in Section III. 
The two effective algorithms to obtain reliable strategies for 
defenders are formed in Section IV, while some illustrative 
examples are given in Section V. The conclusions are drawn 
in Section VI. 

II. DEFENDER-ATTACKER MODELING 

The defender-attacker model of electrical power systems, 
previously reported in [17], is provided below and we make 
some improvement for its wider application. The defenders 
are governments who have limited budget to protect power 
systems as much as possible. The attackers are terrorists who 
have a capability to launch a successful attack on a target 
with different sizes. For example, a single terrorist can break 
a transmission line or a transformer; a terrorism organization 
can disable several key elements of a power system. Thus, 
[17] assumes that a combination of elements of power 
systems can be considered as a target. A successful attack 
will lead to a failure of a target, which may cause a loss to 
utilities. Usually, many factors determine the loss, such as 
the price of failed equipments, the expense on maintenance, 
the reliability cost of interruption of energy supply to 
customers, as well as many other resultant direct and indirect 
costs. Moreover, it is obvious that losses are proportional to 
the time required to restore the services after such attacks. 
Thus, without loss of generality, before deploying a defense 
strategy, let 0jX be the expected loss ratio of target j. That 

is, if target j is attacked, the loss will be jX per hour. Let 

jT be the recovery time (h) that target j is totally restored. 

Accordingly, the total expected loss of target j without 
defending, defined as yj, can be calculated as jjj TXy  .  

A. Defending Formulation 

  Assume that a power system is composed of N elements 
including generators, transmission lines, substation devices, 
transformers, etc.. Defenders need to decide how to allocate 
their limited budget R0 for the protection of the N elements. 
Every element i has a protection function described by 

)( ii cp [17] as follows, 

        TABLE I  
  THE LOSS IN DIFFERENT COMBINATION OF ATTACK 

 STRATEGIES AND DEFENSE STRATEGIES [17] 

                  
Attack 

Strategy 
                       Defense Strategy 
  D1          D2           D3            D4           D5          D6      

A1 
A5 
A11 

  2.0          2.5           5.0            2.5          3.0          3.2 
314         432          641           220         121         189 
703         966        1187           435         423         559 



 
 

 

Nicp ii ,,1   1)(0                                 (1) 

where ic is the allocated budget for protecting element i. 

Function pi(ci) in (1) represents the probability of a 
successful attack against element i. For example, ic is 0 

means that there is no budget distributed on element i, thus 
the probability of successful attack on i is 1. When 

ic increases, the corresponding )( ii cp  should decrease. That 

is, it is harder to attack successfully. 
Correspondingly, )( ii cp can be formulated as a continuous 

decreasing function. Defenders allocate budget among the N 
elements in a power system. Protection can be described by 
the following protection function vector 

),...,( 21 NpppP                                          (2) 

In addition, usually electrical companies have a basic 
recovery capacity for maintaining and for repairing the 

failure of each element. base
it  is the time it takes to repair 

element i when no budget is spent on the recovery [17]. If 
defenders allocate budget on recovery, the recovery time 

it will decrease, i.e. 

)( cov eryrei
base
ii cftt                            (3) 

where )( cov eryrei cf  is a continuous decreasing function and 

eryrec cov  is a variable as the allocation of  budget for 

recovery. If a target is comprised of n elements, defenders 
can employ different repair schemes depending on the 
available budget [17].  Anyway, the recovery time can be 
roughly formulated as  





n

i
eryrei

base
ij cftT

1
cov )(                              (4) 

Let the total budget be R0 and the strategy of defenders be 
),( cov1 eryreN cccc  . It is easy to obtain the following: 

NiRcc oeryre

N

i

i ,,1 ,cov

1
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

                    (5) 

where 0,0 cov  eryrei cc  and N represents N elements. 

B. Attacking Formulation 

As discussed previously, different terrorists (individuals 
and groups) can launch different size of attack. Suppose that 
terrorists can successfully attack a target consisting of n 
elements, where the n is limited by the capability of terrorists. 
For a target composed of  n elements, the total number of 
targets M can be calculated as [17] 

)!(!

!

nNn

N

n

N
M











 .                                 (6) 

Because defenders do not know the strategy that terrorists 
will choose, a reasonable assumption is that terrorists use a 
mixed strategy, i.e. randomize over those targets. Thus, 
terrorists’ strategy is a vector of probabilities q of dimension 
M. jq corresponds to the probability that target j is attacked, 

),( 1 Mqqq                                                      (7) 

Mjq j ,,1       ,10                                (8) 
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III. THE COMPREHENSIVE GAME FRAMEWORK 

A. The playoff between defenders and terrorists 

Defenders and terrorists are strictly adversaries of each 
other and there is no cooperation between them. The aim of 
defenders is to decrease their loss as much as possible while 
terrorists intend to increase the loss to the greatest possible 
extent. Thus, the interaction between them can be seen as a 
two-person zero-sum game. That is, terrorists’ gain equals to 
defenders’ loss which is called the playoff between them. 

Accordingly, considering the descriptions in in Section II, 
the playoff (the loss of defenders or the gain of terrorists) can 
be defined as 

 
 


M

j

M

j

jjj cUqqcLL
1 1

)(),(                          (10) 

where jq is the probability that target j is attacked and 

)(cU j  is the expected loss under defending strategy c. For an 

attack on a target j which is comprised of a single element j  

jjjj ycpcU  )()(                                      (11) 

If an attack size is more than 1, i.e. 1n , the problem 
becomes quite complex, because one must account for the 
possibility that only a subset of the target is destroyed [17]. 
For instance, when n=2, namely an attack on a target j 
consisting of elements i1 and i2, then the loss is  
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Generally speaking, if a target j consisting of n elements, i.e. 

nii 1 , is attacked, the loss )(cU j of defenders can be 

defined as 
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 )(cU j is a sum of 12 11   n
n

n
n

n
n ccC  items. 

On the other hand, it should be noted that the expected 
loss of each target j without defending, i.e. }{Sy where S is 

the subset of target j, will change with time. For example, the 
depreciation of equipments; the maintenance cost should 
increase if the payment of employees or other fees rise; the 
load is also increasing every year with increasing demand for 
electricity in most nations. However, usually the fluctuation 
of }{Sy  in a period is not distinct. Therefore, we set a period 

as the validity of the strategy of defenders. Depending on the 
requirement of defenders for different precision, the period 
can be a quarter, half a year or a year. In a period, }{Sy  is 



 
 

 

considered as a constant. After the period, defenders should 
change the strategy according to the new }{Sy . In real world, 

it is also common that governments would adjust the 
appropriation of budget periodically through various 
approaches/projects such as annual planning, operations 
planning, system planning and revenue resets. 

Admittedly, the computational time will increase if 
defenders recalculate }{Sy  regularly. However, 

governments have the capability to employ some high 
performance computing equipments to accurately calculate 

}{Sy or approximately estimate }{Sy  by empirical data. 

Given the focus of this paper, we do not discuss how to 
obtain }{Sy . The objective of the paper is to develop 

methodologies such that when defenders have known }{Sy  

beforehand, the defenders know how to deploy a reliable 
strategy against all possible attacks by intelligent and 
strategic terrorists. In fact, estimating }{Sy should be a 

prerequisite for defenders against potential terrorist attacks. 
That is, if defenders do not know }{Sy , it is impossible to 

protect power systems effectively. Specifically, we attempt 
to acquire a universal strategy c and no matter what strategy 
q terrorists plays, the playoff L, namely the loss of defenders, 
can be estimated and limited to a minimum level.  In order to 
do so, firstly we need polish the relationship between 
defenders and terrorists. According to game theory [18], the 
interaction between defenders and terrorists can be divided 
into several situations. In the following section, we will 
describe those situations and then combine them into a new 
comprehensive framework. 

B. Types of game between defenders and terrorists 

    1) Static game [17] 
Simultaneously, defenders deploy a strategy c (allocation 

plan of budget for N elements of a power system) to defend 
and terrorists choose a strategy q to launch an attack. 
Simultaneousness [17, 18] includes another equivalent case: 
they do not move at the same time, but the later player is 
unaware of earlier player’s action. In the game of defenders 
and terrorists, the later player must be terrorists. Otherwise if 
terrorists attack first, the later defense is useless2. 
     2) Dynamic game 

The static game assumes that terrorists know nothing 
about defenders’ strategy. However, in real situation, 
terrorists can try their best to seek the information they need. 
For example, they can use threat, blackmail, torture and 
bribery to acquire the protection information of power 
systems, namely the strategy of defenders and the accurate 
time when the strategy will be altered. Therefore in order to 
better include those factors, we extend the static model to a 
dynamic version: 

 
2  If terrorists attack first, they can obtain a large playoff and the later 

defense can not change the result which has been gained by terrorists.  

In the beginning of every period, defenders deploy a 
strategy c first. Terrorists can see the action c and then 
choose a strategy q to launch an attack in the period. 

(3) Manifoldness of games 
The static and dynamic models are two extreme cases 

which assume that terrorists know nothing or fully know the 
strategy of defenders. Sometimes terrorists can only partly 
know the strategy and we can form many cases based on how 
much terrorists have known the strategy. Consequently, the 
game models between defenders and terrorists are manifold, 
which make the problem quite complicated if we discuss 
them one by one. For facilitating the analysis, we generalize 
the diversity into the following comprehensive framework. 

C. The comprehensive framework 

1) Framework description 
From the previous subsection, we can see that there is no 

difference for defenders to play those different kinds of 
games. They must deploy a strategy first and they do not 
know the strategy of terrorists. The manifoldness is only 
resulted from the diversity of terrorists. Accordingly the 
framework can be formed by the following two phases. 
     Phase 1: Periodically, defenders deploy a strategy first 
and they know nothing about the strategy of terrorists.  
     Phase 2: Terrorists choose a strategy to attack in the 
period. There are three kinds of terrorists. They know 
nothing about the strategy of defenders which is equivalent 
to the static model; they partly know the strategy; or they 
fully know the strategy, which is equivalent to the dynamic 
model. 

2) Framework Analysis 
In Introduction section, we have seen that while deploying 

those optimized strategy D1-D6 [17] in the static model, 
there is a risk or possibility with a large loss against the 
strategy. With the increase of information collecting 
activities about the strategy of defenders, which corresponds 
to terrorists partly know the strategy, the risk will rise and 
finally reach 100% of the dynamic model. According to risk 
management theory [19], for each strategy played by 
defenders, a maximum loss of defenders under the strategy 
always exists. The maximum loss is a pessimistic situation.  
For example, assume that defenders deploy a strategy Cc ' , 
where C is the strategy space of defenders, the maximum loss 
or pessimistic loss can be achieved by the following 
mathematical programming 

 




M

j

jj
Q q

cUq
1

  
)'( max .                                   (14) 

where Q is the strategy space of terrorists. This programming 
is implemented with constraints )9()1(  . Let 'q be the 

solution and 'L  be the objective function value, namely the 
maximum. If terrorists do not know 'c , there is a possibility 
(risk) that defenders will lose the maximum 'L  when 
terrorists play strategy 'q  by chance, which is the 

pessimistic situation under strategy 'c and provide an 
appropriate benchmark indicating the risk. Moreover, if 



 
 

 

terrorists know 'c , rational and intelligent terrorists must 
play strategy 'q  for pursuing the maximum gain 'L .  

From the example, we can see that although there are 
several kinds of terrorists considered in the proposed 
framework, they can only increase the risk or possibility of 
pessimistic situation and they can not increase the 
pessimistic loss, which implies that we can seek a universal 
reliable strategy against all kinds of terrorists by decreasing 
the pessimistic loss as much as possible.  

For each strategy of defenders Cc , we can have a 
pessimistic loss by maximum programming (14). It is 
obvious that there exists a minimum pessimistic loss on the 
strategy space of defenders, which can be formed by the 
following minmax programming. 

 




M

j
jj

Q q Cc
cUq

1
   

)( max min .                                      (15) 

Eq (15) is also implemented with constraints )9()1(  . Let 

pair ),( 00 cq  be the solution and 0L be the objective 

function value. That is, when defenders deploy 

strategy 0c and terrorists choose strategy 0q , the loss of 

defenders is the minimum pessimistic loss 0L . Because 0L is 

a pessimistic loss of defenders under strategy 0c , as long as 

they deploy strategy 0c , no matter what strategies terrorists 

play, the loss of defenders can not exceed 0L . Moreover, 

strategy 0c  can decrease the pessimistic loss to a minimum. 

Obviously, 0c  is a reliable strategy of defenders. Thus, we 
can derive the following Criterion for reliable strategy 
design. 
Reliable Strategy Criterion: In the proposed framework, the 

reliable strategy of defenders is 0c  and the minimum 

pessimistic loss of defenders is 0L , which can be obtained 
respectively by  

).)( (max minarg
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and 
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0 )( max min                           (17) 

This criterion reveals that as long as defenders deploy 

strategy 0c , they can guarantee that their loss will be not 

more than 0L . It should be noted that the final playoff can 
not be exactly achieved before terrorists launch an attack 

because of the diversity of terrorists. In fact, 0L is the least 
upper bound of defenders’ loss, namely the minimum loss in 
the worst case. 

IV. THE PROPOSED ALLOCATION ALGORITHMS  

A. Budget allocation analysis 

From the criterion, we know that the reliable strategy of 

defenders is 0c and the minimum pessimistic loss that 

defenders can guarantee to themselves is 0L . They can be 
achieved by solving (15). Previous attempts [20-23] to solve 
the minmax programming have mostly focused on the saddle 
point, which needs equation (18) to be hold. 
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However, Eq. (18) requires the playoff function satisfying 
some strict conditions [20-23]. In the proposed framework, 
we just point out how to design the protection functions 

)( ii cp  and the recovery functions )( cov eryrei cf , but we do 

not exactly specify the details of them. This approach 
provides sufficient flexibility for defenders to design their 
protection and recovery functions depending on their 
specific situations. Thus, the condition of (18) can not 
always hold. To avoid such difficulties, in this section, we 
will reveal that the playoff function has a special structure 
which implies that we can develop a general effective 

algorithm to obtain the reliable strategy 0c and the minimum 

pessimistic loss 0L , regardless of whether equation (18) 
holds or not. 

The playoff function is 
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1 . Obviously, )(cL can be seen as a 

normalized weighted mean of M items and each item 
)(cU j represents the expected loss of defenders if target j is 

attacked with defending under strategy c. For a fixed c, the 
maximum of the normalized weighted mean, namely 
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)( max , must be )}(),(max{ 1 cUcU M . That is to 

say, if only one target has the maximum expected loss among 
all targets, the maximum playoff can be obtained by terrorists 
attacking the target. If there are k targets with the same 
maximum expected loss, the maximum playoff is achieved 
by terrorists attacking one of them. Anyway, for any strategy 
c  deployed by defenders, the maximum playoff 

)(cM always exists, which is defined as 

)}(),(max{)( 1 cUcUcM M                           (19) 

Obviously, Eq. (19) is equivalent to 
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Accordingly, minmax programming (15), namely 






M

j
jj

Q q Cc
cUq

1
   

)( max min , can be transformed into 

                            )(min cM
Cc

                                             (20) 

By the equivalent transformation, we can eliminate the 
vector q  in the initial mathematical programming (15). This 
largely reduces the complexity of the programming. In fact, 
the new programming (20) can be considered as a pure 
allocating problem: i.e. to allocate budget to N+1 variables 



 
 

 

),,( cov1 eryreN ccc  such as )(cM becomes minimum. The 

final allocation plan, i.e. ),,( cov1 eryreN ccc  is the reliable 

strategy of defenders and the final )(cM  is the minimum 

pessimistic loss of defenders. 
To make the allocation more clear, firstly, we consider the 

simplest case. It is known that every currency has a minimum 
unit. For example, the minimum of USD is 1 cent and the 
minimum of AUD is 5 cents. If the budget is only the 
minimum, it must be totally allocated to a single variable in 

),,( cov1 eryreN ccc  . The expected loss of a target which is 

comprised of n elements, i.e. nii 1 , can be expressed as 
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It is a function of n+1 variables, namely vector 
),( cov1 eryreii ccc

n
 which is a subset of vector 

),,( cov1 eryreN ccc  . For one variable in ),( cov1 eryreii ccc
n

  

increases, others keep unchanged, the function )(cU j will 

decrease. Furthermore, there must be a variable which can 
cause the function the fastest decrease and thus, the variable 
corresponds to the fastest descent direction. Mathematically, 
the variable can be sought by the minimum 3  first-order 
partial derivative of function )(cU j  at current allocation. 

Obviously, the minimum budget should be distributed to the 
fastest descent direction of the target which has the 
maximum expected loss. We call the simplest case as atomic4 
allocation. 
   Repeating the atomic allocation, the budget will increase, 
and )(cM will decrease. Thus, we can form two kinds of 

allocation problems. 
(1) Suppose that budget R0 is fixed. Defenders should deploy 
a reliable strategy ),,( cov1 eryreN ccc   to minimize )(cM . 

(2) Assume that )(cM  is specified. Defenders should 

deploy a reliable strategy ),,( cov1 eryreN ccc   to reach it and 

the final total budget is the sum of each element of 
),,( cov1 eryreN ccc  . 

The solution procedure of the two kinds of allocation 
problems are described in the following allocation 
algorithms A and B respectively. 

B. Allocation algorithm A 

Step 1: Initialize total budget R0 and let c=0 namely, 
0),,( cov1  eryreN ccc . Let eryreN ccccr cov21  .  

Step 2: Define protection functions )( ii cp and recovery 

functions )( cov eryrei cf for N elements.   

Step  3:  While ( 0Rr  ) do 

 
3 All first-order partial derivatives are negative. Thus, the minimum one 

will lead to the reduction of the function maximum. 
4  ‘atomic’ is a term from Computer Science, which means that the 

allocation is the minimum unit and it can not be divided further. 

1)  According to current allocation ),,( cov1 eryreN ccc  , 

compute the expected loss for all M targets and let the 
maximum one be )(' cU j . If there are two or more 

targets owning the maximum expected loss, randomly 
choose one, i.e. )}(),(max{)(' 1 cUcUcU Mj  . 

2)  Compute all first-order partial derivatives of the 
function )(' cU j  for n+1 variables at current allocation 

),,( cov1 eryreN ccc   and let the fastest descent direction 

be jc' . (If there are two or more variables owning the 

fastest descent direction, randomly choose one). 
3)  Allocate a 0R to the variable in ),,( cov1 eryreN ccc   

which corresponds to jc' and update the r. 

Step  4:  Output ),,( cov1 eryreN ccc  and )(1 cU to )(cU M . 

The output ),,( cov1 eryreN ccc  is the final allocation plan, 

namely the reliable strategy of defenders. )(1 cU  to )(cU M  

are the final expected loss of all targets after deploy the 
reliable strategy. The maximum value, namely 

)}(),(max{ 1 cUcU M  is the minimum pessimistic loss of 

defenders. 0R  is a minimum unit of the distribution. 

According to the requirement of defenders for different 
precision, they can adopt different 0R , e.g. the minimum of 

the currency or  some other units of the currency. The smaller 
the 0R  is, the more time need to implement the algorithm, 

but more accurate the result will be.  

C. Allocation algorithm B 

Step 1: Let 0),,( cov1  eryreN ccc , eryreN ccccr cov21   

and let U be the minimum pessimistic loss that 
defenders want to obtain. 

Step 2: Define protection functions )( ii cp and recovery 

functions )( cov eryrei cf  for N elements. Compute the 

initial expected loss for all M targets and let the 
maximum be )(' cU j . 

Step  3: While ( UcU j )(' ) do 

1) Compute all first-order partial derivatives of the 
function )(' cU j  for n+1 variables at current 

allocation ),,( cov1 eryreN ccc  and let the fastest 

descent direction be jc' .  

2) Allocate a 0R to the variable in ),,( cov1 eryreN ccc   

which corresponds to jc' and update the r. 

3) According to current allocation ),,( cov1 eryreN ccc  , 

compute the expected loss for all targets and let the 
maximum be )(' cU j .  

Step 4: Output ),,( cov1 eryreN ccc  , )(1 cU to )(cU M  and r. 

The output ),,( cov1 eryreN ccc  is the reliable strategy of 

defenders. )(1 cU  to )(cU M  are the final expected loss of all 

targets. The maximum among all targets must be not more 



 
 

 

than the specified value U and the r is the final budget that is 
necessary to deploy the reliable strategy. 

D. The implementation of defense strategy 

Admittedly, it should be noted that for attack size n>1, the 
time of “calculating the expected loss for all M targets” will 
exponentially increase with the growth of system size N. In 
order to effectively implement the two algorithms, here a 
pruning strategy is introduced. We set a threshold of damage 
and only consider those targets which can cause a loss more 
than the threshold. By this way, defenders can adjust the 
computing time.  

In addition, the proposed framework provides sufficient 
flexibility for defenders to deploy a reliable strategy and 
some details should be designated beforehand by the 
defenders. They can be summarized as follows:  

(P1) Defenders can consider several kinds of elements, 
i.e. transmission lines, generators, transformers, etc. being 
attacked; 

(P2) Defenders can estimate }{Sy  in different concerns 

and many factors can be included, such as the price of failed 
equipments, the expense on maintenance, the cost of energy 
loss of supply to customers etc; 

 (P3) Defenders can define different protection functions 
and recovery functions for each element and choose arbitrary 
currency as the budget; and 

(P4) Defenders can specify different thresholds in order 
to adjust the computing time. 

Given the flexibility of the framework, the proposed 
criterion and the two algorithms are universal. That is, as 
long as defenders specify those details (P1)-(P4), the two 
proposed algorithms can be used to obtain reliable strategies.      
 

V. CASE STUDY 

For clarity, conciseness and easy illustration of this case 
study, we only consider transmission lines being attacked 
and }{Sy  is the energy loss only. Moreover, budget R0 is 

considered as a dimensionless quantity, i.e. a quantity 
without any physical units. In addition, the two functions 
(21-22) used for transmission lines in [17] are also employed 
here.  
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The base recovery time base
it  is one hour [17]. By 

simplification, we can easily illustrate that how the proposed 
algorithms are carried out to explore reliable strategies in a 
period for different cases. 

It should be noted that we just illustrate some simple 
cases in this simulation. Defenders can further develop the 
details (P1)-(P4) with more protection functions, recovery 
functions as well as }{Sy  for each target according to their 

real situation and precision requirement. 

A. Five-bus system 

The five-bus system [9] is a small system with five buses 
and six transmission lines, which can be applied to enable a 
clear illustrating the procedure of the proposed algorithms, 
the reliable strategies of defenders and the final playoffs in 
different cases. five-bus test system and its demands are 
displayed in Fig. 1. The line reactance is expressed on a base 
of 100 MVA and 138 kV and line capacities are all 100 MW. 
All generators have lower and upper generation bounds from 
0 to 150 MW.  

 
                           Fig.1 Five-bus system. 

Case 1: n=1, i.e. the target is comprised of one line. To 
rapidly obtain an expected energy loss after a target is 
attacked without defending, a DC power flow model with 
linear programming is adopted [4, 25] and the detail is given 
in Appendix. According to the model, it is easy to acquire the 
following Table II which represents the expected energy loss 
(MWh) after one line is attacked without defending. 

Applying algorithm A, Table III shows reliable strategies 
of defenders in different budgets, namely 10, 20, 30, 40 and 
50. Table IV displays the corresponding expected energy 
loss of each target.  

 
From Table III, we can see that when budget R0=10, the 

reliable strategy of defenders is c1=5, c2=5, and others are 0, 
namely )0,0,0,0,0,5,5(c . Table IV shows that under this 

strategy, the maximum expected energy loss among all 
targets is MWh 22.2221 UU , which is the minimum 

pessimistic loss of defenders. It is obvious that the playoff 

function 22.22)(
6

1


j

jj cUqL and the equality holds 

TABLE II 
THE EXPECTED ENERGY LOSS OF EACH TARGET  

WITHOUT DEFENDING 
 

       Targets Expected Energy Loss (MWh) 

U1: 4-5       50 
       U2: 3-5 

    U3: 1-2 
            50 

0 
    U4: 1-3 0  
    U5: 2-3                  0 
    U6: 1-4                  0 



 
 

 

when )0,0,0,0,,( 21 qqq  where 121  qq . If terrorists 

fully know the strategy of defenders, that is, they can know 
that U1 and U2 have the maximum expected energy loss, they 
must play the strategy )0,0,0,0,,( 21 qqq   for pursuing the 

maximum gain 22.22 MWh. Otherwise, if terrorists play any 
others strategies, the playoff can not reach 22.22 MWh. 
Therefore, as long as defenders deploy strategy 

)0,0,0,0,0,5,5(c , they can guarantee that their loss will not 

exceed the minimum pessimistic loss of 22.22 MWh. 
Likewise, from Tables III and IV, we can obtain other 
reliable strategies in different budgets and corresponding 
minimum pessimistic loss of defenders. 

 
 

 
Furthermore, it can be noted that in Table IV, expected 

energy loss for U1 and U2 are both the same under different 
budgets. The reason is that at the beginning, U1 and U2 have 
the same expected loss without defending. Firstly, minimum 
unit 0R is allocated to one of them e.g. U1. At the next step, 

U2 has the highest expected loss, 0R should be allocated to 

U2. Likewise, defenders must distribute budget to both of 
them alternately in order to keep them always the same. 
Otherwise, terrorists will attack the one owning the higher 
expected loss. In this case, the budget allocated on the lower 
one is a waste. 

On the other hand, if we want to limit the minimum 
pessimistic loss to 5% of the initial pessimistic loss, namely 

MWh 5.2%5*50  , applying algorithm B, we can achieve the 
reliable strategy as )2843.18,0,0,0,0,2843.24,2843.24(c  

with a total budget of 66.8528. 
Case 2: n=2, the target is comprised of two lines and there 

are 15 targets according to formula (6). Table V illustrates 
the expected energy loss (MWh) of each target after it is 
attacked without defending. 

Applying the proposed algorithm A, Table VI shows 
defenders’ reliable strategies in different budgets, namely 10, 
20, 30, 40 and 50. Table VII displays the targets with the 

maximum energy loss which represents the minimum 
pessimistic loss of defenders under each reliable strategy.  

On the other hand, if we want to limit the minimum 
pessimistic loss to 3% of the initial pessimistic loss, namely 

MWh 9%3*300  , applying proposed algorithm B, we can 
achieve the reliable strategy of defenders as c1=16,  c2=16, 
c3=0.7809, c4=0, c5=0.7809, c6=0,  c7=21.1111 with a total 
budget of 54.67.  

 
 

 

 
So far, we have discussed two cases with a test system. To 

fully illustrate the effectiveness of the proposed algorithms, a 
more complex test system is used in the next subsection. 

B. IEEE Reliability test systems 

The IEEE reliability test system (RTS) [24] has 24 buses, 
32 generators, 38 lines and 17 loads. It is used for case study 
3 as a more complex system compared with the five bus 
system of Fig1. 

TABLE VII 
               TARGETS WITH MAXIMUM EXPECTED ENERGY LOSS UNDER 

EACH RELIABLE STRATEGY OF DEFENDERS 
 

Budget Targets with Maximum Energy Loss (MWh)  

10 
20 
30 
40  
50 

U1: 83.0078 
U1: 39.2448 
U1: 22.4448 
U1, U10: 14.6366 
U1, U10:  10.3894 

                                                         TABLE VI 
RELIABLE STRATEGY OF DEFENDERS UNDER DIFFERENT BUDGETS 

 

Budget Reliable Strategies of Defenders 

10 c1=4.3743, c2=4.3743, c7=1.2514, others are 0 
20 c1=7.1420, c2=7.1420, c7=5.7159, others are 0 
30             c1=9.8564, c2=9.8564, c7=10.2872, others are 0 
40 c1=12.4243, c2=12.4243, c3=0.2037, c4=0, 

c5=0.2037,   c6=0, c7=14.7439. 
50 c1=14.8625, c2=14.8625, c3=0.6035, c4=0,   

c5=0.6035, c6=0, c7=19.0681 

TABLE IV 
     EXPECTED ENERGY LOSS OF TARGETS UNDER EACH  

RELIABLE STRATEGY OF DEFENDERS 
 

Budget 
    Expected Energy Loss (MWh)  

U1                              U2                 
10 
20 
30 
40 
50 

     22.22 
     12.46 
       7.81 
       5.35 
       3.89 

22.22 
12.46 

        7.81 
        5.35 
        3.89 

TABLE V 
THE EXPECTED ENERGY LOSS OF EACH TARGET 

 WITHOUT DEFENDING 
 

        Targets Expected Energy Loss (MWh) 

  U1:    3-5, 4-5 
U2:    2-3, 4-5 
U3:    1-4, 4-5 
U4:    1-2, 4-5 
U5:    1-3, 4-5 
U6:    1-2, 3-5 
U7:    1-3, 3-5 
U8:    1-4, 3-5 
U9:    2-3, 3-5 
U10:  1-2, 2-3 
U11:  1-2, 1-3  
U12:  1-3, 2-3 
U13:  1-2, 1-4 
U14:  1-4, 2-3 
U15:  1-3, 1-4 

            300 
            100 
            100 
            100 
            100 
            100 
            100 
            100 
            100 
              40 
              20 
                0 
                0 
                0 
                0 

                                                         TABLE III 
RELIABLE STRATEGY OF DEFENDERS UNDER DIFFERENT BUDGETS 

 

Budget       Reliable Strategies of Defenders 

10 c1=5,  c2=5, others are 0 
20 c1=8.667, c2=8.667, c7=2.667, others are 0 
30             c1=12, c2=12, c7=6, others are 0 
40 c1=15.333, c2=15.333, c7=9.333, others are 0 

50 c1=18.667, c2=18.667, c7=12.667, others are 0 



 
 

 

Case 3: n=1, i.e. the target is comprised of one 
transmission line. According to (6), there are 38 targets. Like 
Tables II and V, it is easy to obtain a table which represents 
the expected energy loss for the 38 targets without defending. 
For conciseness, we do not display it here. Generally 
speaking, for each budget, we can have a reliable strategy 
and a minimum pessimistic loss i.e. the least upper bound. 
With the increase of budget, the least upper bound will 
decrease, which can form a damage frontier. Fig.2 displays 
the frontier with the budget from 0 to 200. The red circles 
comprise the frontier, representing the minimum pessimistic 
loss of defenders. The final loss depends on the terrorists’ 
strategies.  The region in blue stands for the possible loss of 
defenders.  
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Fig.2 Damage frontier with the budget from 0 to 200 

VI. CONCLUSIONS  

Power systems are among the most important critical 
infrastructures for a country. Severe power system blackouts 
may results into huge billion dollar losses. Furthermore, the 
failures of power systems usually will propagate into other 
critical infrastructures such as communications, water supply, 
natural gas and transportation etc., which will cause a even 
larger disturbance of a society as well as panic and fear 
among its citizens. Power systems reliability and security are 
essential for the electrical industry. 
    In recently years, with the extensively growth of terrorism 
activities, power systems probably become the target of 
terrorists. However, the current reliability and security 
framework is vulnerable against terrorist attacks, because 
terrorists can be highly intelligent and/or they can even hire 
scientists and power engineers to seek the vulnerability of 
power systems and then launch a vital attack. If this happens, 
the impact and the loss of a society can be immense. 

This paper presents a new comprehensive and 
quantitative mathematic framework to study the new power 
systems security problem under potential terrorism threats. 
the interactions between the defenders and terrorists are 
formed as different games. Game theory is a useful 
mathematic tool by which terrorists can be modeled as fully 
intelligent and strategic players. We also derived a new 
criterion for reliable strategy design and two effective 

algorithms are also developed to acquire reliable strategies 
against terrorist attacks. When defenders deploy the strategy 
before terrorists launch an attack, the loss can be predictable 
and limited to a minimum level. 

APPENDIX 

The DC power flow equation can be described as [4,25] 
PHF                                             (A1) 

where T
mFFFF ),...,,( 21  is the real power in m 

transmission lines. P is a vector whose components are the 
power of each node. H is a constant matrix. The reference 
node is not included in the vector P to avoid singularity of H. 
In DC power flow model the susceptance matrix B is [25] 

AbAB T                                         (A2) 
where A is the network adjacency matrix nmA   and b is a 

diagonal matrix with each entry representing the susceptance 
of each transmission line. Let Θ  be the voltage angle vector. 
It is easy to obtain the following two relations 

ΘBP                                         (A3) 
                                   ΘAbF                                    (A4) 

Combining (A2)-(A4) we can have 
                                  1 BAbH                                  (A5) 

Normally, a power system is in a stationary state in which 
it operates with a feasible solution of power flow equations. 
When a target is attacked, some lines might be overloaded. In 
this case, it is necessary to redispatch the injected power to 
obey the system constraints and if those constraints can not 
be satisfied, load has to be shed to reach a new feasible 
solution. Furthermore, it is known that shed load counts for 
the energy loss of power to supply to customers. The loss 
should be minimized. Therefore, the redispatch of power 
flow can be formulated as a linear programming (LP) 
problem. The objective function of the problem, namely the 
load shedded is defined as [25] 

                      



loadj

jcf min                                         (A6) 

which subjects to the equation (A1) and overall power 
balance [25] 

0  
  loadsj

j
generatorsi loadsj

ji dcp                            (A7) 

where pi is the generated power for generator node i, cj is the 
load shedding for load node j and dj is the initial load of j. In 
addition, this minimization is implemented with the 
following constraints: 
(a) Generation capacity limits for generator i 

                                maxmin
iii ppp                            (A8) 

(b) The constraints of load shedding limits for load j         
                                  jj dc 0                                          (A9) 

(c) The line flow limits 
                                   max

kk FF                                         (A10) 

where max
kF is the maximum line power flow of line k.  
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