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�e paper presents a structure based on samplings and machine leaning techniques for the detection of multicategory EEG signals
where random sampling (RS) and optimal allocation sampling (OS) are explored. In the proposed framework, before using the
RS and OS scheme, the entire EEG signals of each class are partitioned into several groups based on a particular time period. �e
RS and OS schemes are used in order to have representative observations from each group of each category of EEG data. �en all
of the selected samples by the RS from the groups of each category are combined in a one set named RS set. In the similar way,
for the OS scheme, an OS set is obtained. �en eleven statistical features are extracted from the RS and OS set, separately. Finally
this study employs three well-known classi�ers: k-nearest neighbor (k-NN), multinomial logistic regression with a ridge estimator
(MLR), and support vector machine (SVM) to evaluate the performance for the RS and OS feature set. �e experimental outcomes
demonstrate that the RS scheme well represents the EEG signals and the k-NN with the RS is the optimum choice for detection of
multicategory EEG signals.

1. Introduction

Eciently detecting multicategory EEG signals is bene�-
cial for handling neurological abnormalities and also for
evaluating the physiological state of the brain for a broad
range of applications in biomedical community. EEG signals
indicate the electrical activity of the brain and contain useful
information about the brain state to study brain function
[1]. �e identi�cation of di�erent categories EEG signals
is traditionally performed by experts based on the visual
interpretation.�emanual scoring is subject to human errors
and it is time consuming, costly process and not sucient
enough for reliable information [2, 3]. �us there is an
ever-increasing need for developing automatic systems to
evaluate and diagnose multicategory EEG signals to prevent
the possibility of the analyst missing information. Complex
characteristics of EEG signals (e.g., poor signal-to-noise ratio,

nonstationary, and aperiodic) require employment of robust
detection algorithms in order to achieve reasonable detection
performance. Hence, designing ecient detection algorithms
has been an important goal and highly attractive area to
ensure a proper evaluation and treatment of neurological
diseases for this study.

In order to perform the detection of signal’s category,
�rst the most important task is to extract distinguishing
features or characteristics from EEG data that can describe
the morphologies or the key properties of the signals. �e
features signi�cantly a�ect the accuracy of detecting EEG
signals [4]. �e features characterizing the original EEG are
used as the input of a classi�er to di�erentiate di�erent
categories of EEGs. As optimal features play a very important
role in the performance of a classi�er, this study intends to
�nd out a robust feature extraction process for the detection
of multicategory EEG signals.
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Recently, various approaches for automatic detection of
multicategory EEG signals have been reported. Siuly and
Li [5] proposed a statistical framework for multiclass EEG
signal classi�cations. �ey developed an optimum allocation
scheme based on the variability of observationwithin a group
(based on speci�c time) of the EEG data and selected a rep-
resentative sample. �e representatives were fed to the least
square support vectormachine (LS-SVM) classi�er instead of
taking representative features that may be a limit for further
consideration of a detection technique.An approach based on
a cascade of wavelet-approximate entropy was introduced by
Shen et al. [6] for the feature extraction in the EEG signal clas-
si�cation.�ey tested three existing methods, support vector
machine (SVM), �-nearest neighbour (�-NN), and radial
basis function neural network (RBFNN), and determined the
classi�er of best performance. Acharjee and Shahnaz [7] had
a study on twelve Cohen class kernel functions to transform
EEG data in order to facilitate the time frequency analysis.
�e transformed data formulated a feature vector consisting
of modular energy and modular entropy, and the feature
vectorwas fed to an arti�cial neural network (ANN) classi�er.
Muthanantha Murugavel et al. [8] had conducted a study
based on Lyapunov feature and a multiclass SVM for the
detection of EEG signals. Übeyli [9] presented an approach
that integrated automatic diagnostic systems with spectral
analysis techniques for EEG signal classi�cation. �e wavelet
coecients and power spectral density (PSD) values obtained
by eigenvector methods were used as features, and these
features were fed to each of the seven classi�cation algorithms
(SVM, recurrent neural networks (RNN), PNN, mixture of
experts (ME), modi�ed mixture of experts (MME), com-
bined neural networks (CNN), and multilayer perceptron
neural network (MLPNN)). Übeyli [10] provided another
algorithm based on eigenvector methods and multiclass
SVMs with the ECOC for the classi�cation of EEG signals. In
the feature extraction stage, three eigenvector methods such
as the Pisarenko, MUSIC, and minimum norm were used to
obtain the PSD values of the EEG signals that were employed
as the input of the multiclass SVMs. For the detection of
multiclass EEG signals, Guler and Ubeyli [11] had examined
again SVM, PNN and MLPNN on wavelet coecients and
lyapunov exponents features. �e experimental outcomes of
that research demonstrated that the SVMclassi�er performed
better than the other two classi�ers with these features.

In the literatures, the majority of the existing methods
cannot appropriately handle a large amount of EEG data due
to their structure. On the other hand, most of the methods
were limited in their success and e�ectiveness [10, 11]. In
addition, some of the existing methods of the feature extrac-
tion stage are not the right choice for getting representative
features from the original EEG data due to its nonstationary
and aperiodic characteristic (e.g., Fourier transformation)
[12]. Although numerous methods have been developed for
feature extraction stage, little attention has been paid in the
using of sampling, which is a fundamental component in
statistics to represent information from original entire EEG
signals. Sampling is very e�ective if the population (a group
of observations) is heterogeneous and is very large in size.
An e�ective sample (a subset of the group of observations)

of a population represents an appropriate extraction of the
useful data which provides meaningful knowledge of the
important aspects of the population. It will bemore expedient
if the population is divided into several groups according
to a speci�c characteristic and then selects representative
samples from each and every subgroup depending on group
size such that the entire samples re�ect the whole population.
As EEG recordings normally include a vast amount of data
and the data is generally heterogeneous with respect to time
period, it is a natural expectation that dividing thewhole EEG
recordings into some subgroupswith respect to time and then
taking representative samples from each subgroup would
improve the performance of a classi�er. �is improvement is
achieved in this paper for classifying the multicategory EEG
signals.

Challenging these issues, this paper explores the idea
of the sampling for getting representative information out
from raw EEG data for the detection of multicategory
EEG signals. In this study, we develop a structure for the
detection of multicategory based on sampling for the feature
extraction stage proposing two schemes: random sampling
(RS), optimum allocation sampling (OS). �is study uses the
RS andOS schemes to evaluate how ecient they are to select
representative samples from each segment of each category of
EEG data discussed in detail in Section 2.1. “Representative
sample” means a sample that is selected randomly from
a segment (a short time window) called “population” and
each observation of the population has a known, nonzero
chance of being selected in the sample. In the proposed
approach, �rstly we segment the whole EEG signals of a class
(a category) into several groups according to a particular
time period. �en we draw samples from each group of a
class using the RS and OS technique, separately. A�er that,
for each of the RS and OS schemes, we make two separate
sample sets called “RS” set and “OS” set combining all of their
samples from each group of that class (detailed discussion
in Section 2.1). A�er that we extract descriptive features
from the RS set and the OS set of that class (discussed in
Section 2.2). �e same procedure applies for all of the classes
of EEG data. �e accumulation of all features from all of the
classes constitutes a feature vector for the RS scheme and also
for the OS scheme.�e collection of all features from all class
of EEG signals for the RS and OS scheme is employed as an
input set in the classi�er.

To achieve a higher detection performance, the set
of input features and the choice of the machine learning
techniques are crucial. If a feature provides large interclass
di�erences for di�erent classes, the technique can exhibit a
better performance. In order to �nd out an e�ective model
with highest accuracy for detection of multicategory EEG
signals, in this paper we test three machine learning tech-
niques, namely, �-nearest neighbours (�-NN), multinomial
logistic regression with a ridge estimator (MLR), and support
vectormachine (SVM) on the composite features. To evaluate
the performance of the classi�ers, we apply cross validation
procedure to create training set and testing set. All possible
performance parameters are used to assess the e�ectiveness
of the proposed approaches. It is important to note that the
sample selection procedure in both the RS and OS schemes
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Figure 1: Structure of the proposed method for the detection of multicategory EEG signals.

are repeated for 20 times with the reported three classi�ers
to observe the consistency of the structure. We also compare
our proposed algorithms with the other existing well-known
algorithms in the literature. �e experimental results show
that the proposed RS based algorithm can detect perfectly for
each class of EEG signals in terms of all possible detection
parameters by using the �-NN classi�er.

�e rest of the paper is organized as follows. Section 2
presents a description of the proposedmethodology in detail.
In this section, we also brie�y describe the three classi�ers
and the features extraction methods used in this paper.
�e description of benchmark EEG data and experimental
design are provided in Section 3. In Section 4, we present the
experimental results of the three classi�ers with a detailed
discussion. �is section also provides a comparative report
in the context of existing studies in the literature. Finally,
concluding remarks are included in Section 5.

2. Method

�e detection technique that is developed in this study is
comprised of three key structures. 	e 
rst one is to select
representative samples from each and every segment of an
entire signal data of a category (e.g., healthy subject with eye
open; epileptic patient during seizure activity). In order to
select a representative sample, we employ random sampling
(RS) and optimum allocation sampling (OS) scheme, sepa-
rately to compare their e�ectiveness. �en we select samples
by using the RS and OS techniques from each segment of a
class and consequently make two di�erent groups (“RS” and
“OS”) as shown in Figure 1. �e subsequent second one is to
extract representative features from each of the RS and OS
groups to represent the distribution of data pattern and then
to integrate all of the features of each class in a matrix that is
called feature vector set. 	e third one is the use of detection
method, which is based on the machine learning algorithms.
We herewith employ three di�erent classi�ers: �-NN, MLR,
and SVM for the detection of multicategory EEG signals.
Integration of the second and third structure results into a
novel time series detection technique. We use this integrated
technique to identify multicategories EEG signals.

2.1. Sampling. In statistics, sampling is a process of selection
of a subset of individuals from a group of observations (called

Sampling 

Population Sample

Figure 2: An example of a visual representation of the sampling
process.

population) to represent the whole population. Figure 2
illustrates how observations are selected in a sample from
population. As shown in Figure 2, the population of size
12 consists of three colour observations such as red, green,
and gray, where there are three elements of green colour, six
elements of red colour, and three elements of gray colour.
In the sample, two red, one green, and one gray colour
elements are selected from the population through a random
sampling process. �us only four elements are selected in the
sample that represents the whole population of size 12. In
the proposed framework, before using sampling, we segment
the EEG signals of each class into several groups based on a
particular time period in order to have representative values
of a speci�c time period.

�e reason of segmentation is to properly account for
possible stationarities assignal processing methods requiring
stationarity of signals while EEG signals are nonstationary
and aperiodic and the magnitudes of the signals are changed
over time. In order to have representative values of a speci�c
time period, the EEG signals of a class are divided into
some mutually exclusive groups. As can be seen in Figure 1,
this study partitions the EEG signals of each class into� nonoverlapping segments denoted by Seg1, Seg2, . . . , Seg�
considering a particular time period.�en, the representative
observations are selected from each segment by the RS and
OS technique, separately.Depending on the selection process,
the algorithm consists of two types, provided below.

2.1.1. Random Sampling (RS). In this case, we determine the
required sample size from each segment considering each
segment as a population with a desired con�dence interval
and con�dence level. �e required sample size of the whole
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data of a class (called population) is determined by using (1)
and (2) [13–16]:

SS = �2 × � × (1 − �)�2 , (1)

where SS means the sample size; � is the standard normal
variate (�-value) for the desired con�dence level; � is the
assumed proportion in the target population estimated to
have a particular characteristic; and � is the margin of errors
or the desired level of precision. If population is �nite, the
required sample size for each class is given by

	 = SS1 + (SS − 1) /Popu , (2)

where Popu means population size and 	 is the required
sample size. A�er determining the sizes, we select the rep-
resentative samples directly from the respective segments of
each class.�en all of the selected samples from the segments
of each class are combined together in a set (called RS set)
from where representative characteristics are obtained as
features discussed in Section 2.2.

2.1.2. Optimum Allocation Sampling (OS). In this scenario,
we �rstly determine the required sample size from the whole
EEG signals with a desired con�dence interval and con�-
dence level. �en we determine the required sample from
each segment using the optimum allocation (OS) scheme by
(3) that considers the variability among the signals in each
segment. A detailed description of the OS is available in
[5, 14]:

	 (
) = ��√∑��=1 ���2
∑��=1 (��√∑��=1 ���2) × �


 = 1, 2, . . . ., �; � = 1, 2, . . . , �,
(3)

where 	(
) is the required sample size of the 
th Seg;�� is the
data size of the 
th Seg; ���2 is the variance of the �th channel
of the 
th Seg; and� is the sample size of the EEG recording
of a class obtained. Finally, we select the required sample
from each segment based on the OS structure.�en all of the
selected samples from the segments of each class are united
in a set (named OS set) and representative characteristics are
extracted from the OS set as discussed in Section 2.2.

2.2. Feature Extraction. Feature extraction aims at describ-
ing many data points into fewer parameters, which are
termed “features” that represent important pattern of data
distribution. �e feature extraction process transforms the
original signals into a feature vector. �ese features represent
the behaviours of the EEG signals, which are particularly
signi�cant for recognition and diagnosing purposes. In this
paper, the eleven statistical features from each segment of
EEG channel data are extracted as the valuable parameters
for the representation of the characteristics of the original
EEG signals which are mean (�Mean), median (�Me), mode

(�Mo), standard deviation (�SD), �rst quartile (�Q1), third
quartile (�Q3), interquartile range (�IQR), skewness (��1),
kurtoses (��2), minimum (�Min), and maximum (�Max). It
is noted that these features are the most representative values
to describe the original EEG signal in each segment. �e
feature set is denoted by {�Mean, �Me, �Mo, �Q1, �Q3, �IQR,�SD, ��1 , ��2 , �Min, �Max}. Out of above eleven features,�Min, �Max, �Me (also called 2nd quartile), �Q1, and �Q3
are together called a �ve-number summary. A �ve-number
summary is sucient to represent a summary of a large
dataset [17–19]. It is well known that a �ve-number summary
from a database provides a clear representation about the
characteristics of a dataset.

Again an EEG data can be symmetric or skewed. For a
symmetric distribution, appropriate measures for measuring
the centre and variability of the data are the mean and the
standard deviation, respectively. For skewed distributions,
the median and the interquartile range (IQR) are the appro-
priate measures for measuring the centre and spread of the
data [17, 19]. Mode is the value in the dataset that occurs most
o�en. �e mode for a continuous probability distribution
is de�ned as the peak of its histogram or density function.
Skewness describes the shape of a distribution that charac-
terizes the degree of asymmetry of a distribution around its
mean [17, 19]. kurtosis is a descriptor of the shape of a data
distribution whether the data are peaked or �at relative. It
quanti�es whether the shape of the data distribution matches
the normal distribution. For these reasons, we consider
these eleven statistical features as the valuable parameters for
representing the characteristics of the EEG signals and also
brain activity as a whole. �e accumulations of all obtained
features from all segments of all classes are employed as the
input for the three di�erent classi�ers.

2.3. Detection. In this work, this study employs three clas-
si�ers: �-nearest neighbours (�-NN), multinomial logistic
regression with ridge estimators (MLR), and support vector
machine (SVM) to evaluate the performance for the RS and
OS feature set. �e reason of choosing of these classi�ers for
this study is its simplicity and e�ectiveness in implementa-
tion.�ey is also very powerful and fastest learning algorithm
that examines all its training input for classi�cation in this
area. �e following sections provide a brief idea about the
classi�cation methods that are used in this research.

2.3.1. �-Nearest Neighbours (�-NN). �e �-NN is a very
intuitive method in which the classi�er labels observations
based on their similarity between observations in the training
data. Among the various methods of supervised statistical
pattern recognition, the �-NN rule achieves consistently
high performance, without a priori assumptions about the
distributions from which the training examples are drawn
[20]. Given a query vector �0 and a set of � labelled

instances {��, ��}�1 , the task of the classi�er is to predict
the class label of �0 on the prede�ned � classes. �e �-NN
classi�cation algorithm tries to �nd the �-nearest neighbors
of �0 and uses a majority vote to determine the class label
of �0. Without prior knowledge, the �-NN classi�er usually
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applies Euclidean distances as the distance metric [21]. An
appropriate value should be selected for �, because the success
of classi�cation is very much dependent on this value. �ere
are several methods to choose the k-value; onemodest idea is
to run the algorithm many times with di�erent k-values (� =1, 2, . . . , 20) and choose the one with the best performance. A
detailed discussion of this method is available in [22, 23].

2.3.2. Multinomial Logistic Regression Classi
er with a Ridge
Estimator (MLR). �eMLR have become increasingly popu-
larwith the easy availability of appropriate computer routines.
Ridge estimators are used in MLR to improve the param-
eter estimates and to diminish the error made by further
prediction when maximum likelihood estimators (MLE) are
nonunique and in�nite to �t data. When the number of
explanatory variables is relatively large and or when the
explanatory variables are highly correlated, the estimates of
parameters are unstable, which means they are not uniquely
de�ned (some are in�nite) and/or the maximum of log-
likelihood is achieved at 0 [24, 25]. In this situation, ridge
estimators are used to generate �niteness and uniqueness of
MLE to overcome such problems. Let the response variable� ∈ {1, 2, . . . , �} have � possible values (categories). If there
are � classes for 	 instances with � attributes (explanatory
variables), the parameter matrix � to be calculated will be� × (� − 1). �e probability for class � with the exception of
the last class is

�� (��) = exp (����)(∑��=1 exp (����) + 1) . (4)

�e last class has the probability

1 − �−1∑
�=1
�� (��) = 1∑�−1	=1 exp (����) + 1 . (5)

�e (negative) multinomial log-likelihood is thus

� = − 
∑
�=1

{{{
�−1∑
�=1
(��� × In (�� (��))) + (1 − �−1∑

�=1
���)

× In(1 − �−1∑
�=1
�� (��))}}} + ridge × �

2.
(6)

In order to �nd the matrix � for which � is minimised, a
Quasi-Newton Method is used to search for the optimized
values of the � × (� − 1) variables [24]. Note that before we
use the optimization procedure, we “squeeze” the matrix �
into�×(�−1) vector. A detailed description of theMLR can
be found in [24, 25].

2.3.3. Support Vector Machine (SVM). �e SVM is most pop-
ular machines learning tool that can classify data separated
by nonlinear and linear boundaries, originated fromVapnik’s
statistical learning theory [26].�emain concepts of the SVM
are to �rst transform input data into a higher dimensional

space and then construct an optimal separating hyper plane
(OSH) between the two classes in the transformed space
[27, 28]. �ose data vectors nearest to the constructed line
in the transformed space are called the support vectors that
contain valuable information regarding the (OSH). SVM is
an approximate implementation of the “method of structural
risk minimization” aiming to attend low probability of gen-
eralization error. In most real life problems (including our
problem), the data are not linearly separable. In order to solve
nonlinear problems, SVMs use a kernel function [27, 28],
which allows better �tting of the hyperplane to more general
datasets. In more recent times, SVMs have been extended
to solve multiclass-classi�cation problems. One frequently
used method in practice is to use a set of pairwise classi�ers,
based on one-against-one decomposition [28]. �e decision
function for binary classi�cation is as follows:

& (�) = sgn( �∑
�=1
��*�� (��, �) + -) ; 0 < *� < 4, (7)

where sgn is the signum function,5(��, �) is kernel function,
and - is the bias of the training samples. In this paper, radial
basis function (RBF) kernel is considered as a choice for
identifying di�erent categories EEG signals because it was
found to give the best classi�cation performance. Here 4 is
regularization parameter used to tune the trade-o� between
minimizing empirical risks (e.g., training error) and the
complexity of the machine is always set to its default value;

namely, 4 = �/∑��=5(��, �), where � is the size of the
training set.

In the multiclass classi�cation, the SVMs work by using
a collection of decision functions &��, and here kl indicates
each pair of classes selected from separated target classes.�e
class decision can be achieved by summing up the pairwise
decision functions [28]

&� (�) = 
∑
�=1

sgn (&�� (�)) . (8)

Here 	 is the number of separated target classes. �e
algorithm proceeds as follows: assign a label to the class:
arg max&�(�), (� = 1, 2, . . . , 	). �e pairwise classi�cation
converts then-class classi�cation problem into 	(	−1)/2 two-
class problems which cover all pairs of classes. An overview
of SVM pattern recognition techniques may be found in [26–
28].

3. Data and Experimental Design

3.1. Data. We used the EEG time series database [29] which
is publically available and is considered as a benchmark of
testing classi�cation techniques. �e detailed descriptions
of the dataset are discussed by Andrzejak et al. [30]. �e
whole database consists of �ve EEG datasets (Sets A–E),
each containing 100 single channel EEG signals of 23.6 sec
duration, composed for the study. Set A (denoted class Z)
and Set B (denoted class O) consisted of segments taken
from surface EEG recordings that were carried out on �ve
healthy volunteers using a standardized electrode placement
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Figure 3: Exemplary EEG signals from each of the �ve sets. From
top to bottom: class Z, class O, class N, class F, and class S.

scheme. Volunteers were relaxed in an awake state with eyes
open (class Z) and eyes closed (class O), respectively. Sets
C, D, and E (denoted classes N, F, and S, resp.) originated
from presurgical diagnosis. Segments in Set D (class F)
were recorded from within the epileptogenic zone and those
in Set C (class N) from the hippocampal formation of
the opposite hemisphere of the brain. While Set C (class
N) and Set D (class F) contained only activity measured
during seizure free intervals, Set E (class S) only contained
seizure activity. All EEG signals were recorded with the same
128-channel ampli�er system, using an average common
reference. A�er 12-bit analog-to-digital conversion, the data
were written continuously onto the disk of a data acquisition
computer system at a sampling rate of 173.61Hz. Band-pass
�lter settings were 0.53–40Hz (12 dB/oct.). In this work, �ve
classes’ (Z to S) classi�cation problems, called multiclass
classi�cation, are performed from the above dataset in order
to verify the performance of the proposed method. All the
EEGs from the dataset are used and they are classi�ed into
�ve di�erent classes: Z, O, N, F, and S, which can be denoted
by Z-O-N-F-S. Exemplary EEGs of each of the �ve classes are
depicted in Figure 3.

3.2. Training and Testing: Cross Validation. �ere are many
choices of how to divide the data into training and test sets
[31]. In order to reduce the bias of training and test data,
we propose employing k-fold cross validation technique [31–
34] considering � = 10 in this study. �is technique is
implemented to create the training set and testing set for
evaluation. Generally, with k-fold cross validation, feature
vector set is divided into � subsets of (approximately) equal

size. �e proposed classi�ers are trained and tested � times,
in which one of the subsets from training is le� out each time
and tested on the omitted subset. Each time, one of the subsets
(folds) is used as a test set and the other �−1 subsets (folds) are
put together to form a training set.�en the average accuracy
across all � trials is computed for consideration.

3.3. Select OptimumValues of the Parameters of the Classi
ers.
As mentioned before, this study uses three classi�cation
methods: �-NN, MLR, and SVM. �e �-NN model has only
one parameter � which refers to the number of nearest
neighbors. By varying �, the model can be made more or
less �exible. In this study, we select appropriate �-value in
automatic process following � selection error log as there is
no simple rule for selecting �. We consider the range of �-
value in between 1 and 30 and pick an appropriate �-value that
results in lowest error rate as the lowest error rate refers to the
best model. In the experimental results, we obtain the lowest
error rate for � = 1. In the MLR method, the parameters are
obtained automatically through a ridge estimator discussed
in Section 3.3. For the SVM, the RBF kernel function is
employed as an optimal kernel function over di�erent kernel
functions that were tested. As there are no speci�c guidelines
to set the values of the parameters for the MLR and the SVM
classi�ers, we consider the parameter values that have been
used in WEKA default parameters settings.

3.4. Performance Evaluation of Classi
cation Schemes. Cri-
teria for evaluating the performance of a classi�er are an
important part in its design. In this study, we assess the
performance of the proposed classi�ers through most of the
criteria that are usually used in biomedical research such as
true positive rate (TPR) or sensitivity, false alarm rate (FAR)
or false positive rate or 1 − speci�city, precision, recall, 6-
measure, accuracy, kappa statistics, mean, receiver operating
characteristic (ROC) curve area, and absolute error (MAE).
�ese criteria allow estimating the behaviour of the classi�ers
on the extracted feature data. �e evaluation measure most
used in practice is accuracy rate which evaluates e�ectiveness
of the classi�er by its percentage of correct prediction [35–
37]. �e TPR (sensitivity) provides the fraction of positive
cases that are classi�ed as positive and it is also called
recall [18, 31, 33, 38]. �e FAR [5] is the percentage of
false positives predicted as positive from negative class. �e
FAR usually refers to the expectancy of the false positive
ratio. Precision (positive predictive value) is a measure which
estimated the probability that a positive prediction is correct.6-measure is a combined measure for precision and recall
calculated as 2 ∗ Precision ∗ Recall/(Precision + Recall).
Kappa is a chance-corrected measure of agreement between
the classi�cations and the true classes [39]. It is calculated
by taking the agreement expected by chance away from the
observed agreement and dividing by the maximum possible
agreement.�e area under theROCcurve provides ameasure
of overall performance of the classi�er. �e ROC curve
displays the plots of TPR (sensitivity) versus false positive
rates [31].Mean absolute error (MAE) is used tomeasure how
close predictions are to the eventual outcomes.
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Figure 4: (a) Exemplary pattern of the RS and OS data with their respective original EEG signal from class Z (healthy subject with eye open).
(b) Exemplary pattern of the RS and OS data with their respective original EEG signal class S (epileptic patient during seizure activity).

4. Experimental Results and Discussions

To validate the e�ectiveness of the proposed approach, we
examine this scheme on the epileptic EEG database. �e
analyses of the RS and OS application are presented in
Section 4.1. Section 4.2 reports the resultant classi�cation
performance of the proposed method. �is section also
provides a comparison between the proposed method and
four well-known existing methods. All of the calculations
are carried out in MATLAB (version 7.14, R2012a). We
experimented three classi�cation algorithms: �-NN, MLR
with a ridge estimator, and SVM implemented in WEKA
machine learning toolkit [40]. LIBSVM (version 3.2) [41] is
used for the SVM classi�cation in WEKA.

4.1. Analysis on the Application of RS and OS. According
to our framework as shown in Figure 1, at �rst we segment
each of the �ve classes into four parts (� = 4). As every
channel of a class contains 4097 data points of 23.6 seconds,
in each class, the sizes of the four segments, Seg1, Seg2, Seg3,
and Seg4, are �1 = 1024, �2 = 1024, �3 = 1024, and �4 =
1025, respectively, and each segment contains the data for
5.9 sec. �en we select a sample (a representative subset of
a segment) from each of the four segments in every class
using the RS and OS technique, separately as discussed in
Section 2.1. �e calculated required sample sizes under the
RS and OS technique are reported in Table 1. In the RS, the
sample sizes for each segment are calculated by (2) whereas
(3) is used to compute the sample sizes for each segment in
theOS scheme. Using the calculated sample sizes displayed in
Table 1, the samples are selected from the respective segments
of that class. It is important to note that the sample selection
procedure is repeated twenty times in both the RS and OS
schemes to achieve most reliable and consistent results.

To illustrate exemplary pattern of the RS and OS sample,
Figures 4(a) and 4(b) are presented for a segment of a class.
Figure 4(a) displays an exemplary pattern of the RS and

Table 1: Obtained sample sizes by the OS and RS technique from
each segment of every class.

Di�erent
classes

Seg1 Seg2 Seg3 Seg4 Total

RS

Class Z 965 965 965 966 3861

Class O 965 965 965 966 3861

Class N 965 965 965 966 3861

Class F 965 965 965 966 3861

Class S 965 965 965 966 3861

Total 19305

OS

Class Z 797 822 837 832 3288

Class O 815 840 805 828 3288

Class N 839 841 780 828 3288

Class F 828 833 788 839 3288

Class S 833 844 815 796 3288

Total 16440

OS with their respective original EEG signal from class Z
(healthy subject with eye open). In Figure 4(a), we consider
RS sample and OS sample of 100 observations and their
respective original signal with same size from Seg1 of class Z
to point out pattern of the RS and OS data with their original
pattern.�is �gure reveals almost same pattern of the RS and
OS sample with their respective original EEG signal.

Figure 4(b) presents an exemplary outline of the RS and
OS data with an original signal from class S (epileptic patient
during seizure activity). As in Figure 4(a), the RS sample and
OS sample with 100 data points are considered from Seg1 of
class S to show pattern of both samples with their respective
original signal’s pattern. As shown in Figure 4(b), the patterns
of the RS and OS scheme are not very similar with their
respective original signal.
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Figure 5: (a) Illustration of feature values for the RS scheme in a testing set. (b) Illustration of feature values for the OS scheme in a testing
set.

A�er selection of the samples from each of the four
segments of each and every class by the RS procedure, we
combine all four samples of a class in a set called “RS” of that
class and we perform similar process for the OS scheme and
called it “OS” set of that class as shown in Figure 1. �en we
extract eleven features separately from the “RS” set and the
“OS” set of each class to represent the distribution pattern
of that class. �e reasons of considering the eleven features
in this study are discussed in detail in Section 2.2. As each
of the �ve classes consists of 100 single channel EEG signals,
the size of feature vector for a class is 100 × 11 in both the
RS and OS schemes. �us the size of whole feature vector for
all �ve classes is 500 × 11 in both sampling processes. A�er
that, 10-fold cross validation process is employed to generate
training set and testing set for performance evaluation of the
proposed algorithm as described in Section 3.2. In each of the
10 iterations, the training set holds 450 × 11 data point while
the testing set contains 50 × 11 data point. Here the training
set is used to train the classi�er and the testing set is used to
evaluate the accuracy and the e�ectiveness of the classi�ers
for the detection of the multiclass EEG data.

To provide an idea about the feature sets, we present two
diagrams: Figures 5(a) and 5(b) for the RS and OS scheme,
respectively, illustrating features of a testing set (1st fold). As
we know, the testing set contains �ve class features. In both
Figures 5(a) and 5(b), these �ve classes features are plotted
in �-axis indicating 1–10 for class Z, 11–20 for class O, 21–30
for class N, 31–40 for class F, and 41–50 for class S in both
�gures.Weobserve on these two diagrams that there are some
quantitative di�erences between two sampling (RS and OS)

features. In each classi�cation system, the training set is fed
into the three di�erent classi�ers as the input to train the
classi�er and the performances are assessed with the testing
test.

4.2. Resultant Classi
cation Performance. To explore the
performance of the RS and OS features, we tested three
machine leaning methods: �-NN, MLR with a ridge estima-
tor, and SVM for detection of multicategory EEG signals.
It is important to note that, due to the usage of sampling
process, di�erent samples may come in di�erent occasions
for both the RS and OS schemes. To overcome this bias
and to achieve more reliable and consistent outcomes, the
sampling procedure is repeated 20 times for both the schemes
with all the classi�ers used in this paper and then the
average performance parameter values are reported. Table 2
reports the detection performance for the �-NN classi�er
with the optimum �-value (� = 1) for both the RS and OS
features, separately.�is table provides di�erent performance
parameter values for each of the �ve classes in addition to
the overall performance. In Table 2, it can be seen that there
is a signi�cant di�erence of performances of �-NN classi�er
between the RS and OS technique. As shown in Table 2,
under the RS scheme, all of the performances indicators
demonstrate perfect detection of �ve categories EEG signals
by the �-NN classi�er with zero FAR. In this case, all of
the measurements of TPR, precision, recall, 6-value, and
accuracy for each and every class are 100% for the RS
features. On the other hand, under the OS scheme, the
performance of �-NN classi�er is not satisfactory. In this case,
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Table 2: Performances of the �-NN classi�er on the RS and OS scheme.

Performances for �-NN classi�er

Class RS scheme OS scheme

TPR FAR Precision Recall 6-value Acc TPR FAR Precision Recall 6-value Acc

Z 100 0 100 100 100 100 72.0 10.5 63.2 72.0 67.3 72.0

O 100 0 100 100 100 100 63.0 13.0 54.8 63.0 58.6 63.0

N 100 0 100 100 100 100 49.0 11.0 52.7 49.0 50.8 49.0

F 100 0 100 100 100 100 41.0 9.3 52.6 41.0 46.1 41.0

S 100 0 100 100 100 100 93.0 1.8 93.0 93.0 93.0 93.0

Overall 100 0 100 100 100 100 63.6 9.1 63.2 63.6 63.1 63.6

Table 3: Performances of the MLR on the RS and OS scheme.

Performances for MLR

Class RS scheme OS scheme

TPR FAR Precision Recall 6-value Acc TPR FAR Precision Recall 6-value Acc

Z 100 0 100 100 100 100 58.0 16.3 47.2 58.0 52.0 58.0

O 100 0.3 99.0 100 99.5 100 64.0 11.8 57.7 64.0 60.7 64.0

N 99.0 0 100 99.0 99.5 99.0 63.0 10.5 60.0 63.0 61.5 63.0

F 100 0 100 100 100 100 31.0 8.3 48.4 31.0 37.8 31.0

S 100 0 100 100 100 100 90.0 1.8 92.8 90.0 91.4 90.0

Overall 99.8 0.1 99.8 99.8 99.8 99.8 61.2 9.7 61.2 61.2 60.7 61.2

the overall TPR, precision, recall, 6-value, and accuracy for
the OS features are 63.6%, 9.1%, 63.2%, 63.6%, 63.1%, and
63.6%, respectively, with varying FAR. �e overall accuracy
is increased 36.4% for the RS scheme compared to the OS
scheme. �e signi�cant improvement is due to the fact of
the use of the RS scheme, the statistical features that well
represent the EEG signals compared to the OS scheme.

Tables 3 and 4 display the classi�cation results of the
MLR and SVM classi�ers under both RS and OS approach.
In both Tables 3 and 4, it is seen that the RS technique
achieves better performances for each and every individual
class with the MLR with very low FPR compared with the
OS technique. As shown in Table 3, the overall accuracy is
99.80% for the RS basedMLR approach, while it is 61.20% for
the OS based MLR method. In this case, the performance is
improved 38.6% for the RS scheme.We can also see in Table 4
that the RS technique achieves 99.40% of the overall accuracy
for the SVM classi�er whereas it is very low, 23.0%, for the
OS scheme. As we can see, the RS approach consistently
performs better for the �-NN, MLR, and SVM classi�ers
with very few FPR. On the other hand, the OS approach is
continuously producing lower performances and higher FAR
with these three classi�ers. �is may be due to that fact that,
under the OS approach, the sampling procedures and the
statistical features do not represent the whole EEG signals.
According to the classi�cation results as displayed in Tables
2–4, it is obvious that the RS process is the best way for
achieving representative information from various categories
EEG signals and the �-NN classi�er is the top suited with the
RS based features for detecting multicategories EEG signals.

Figure 6 displays kappa statistics for the �-NN,MLR, and
SVM classi�er under the RS and OS scheme. In this research,
kappa statistics test is used to evaluate the consistency of
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Figure 6: Kappa statistics values for the �-NN, MLR, and SVM
classi�er under the RS and OS scheme.

the three classi�ers: �-NN, MLR, and SVN between the two
processes, RS and OS scheme. �e consistency is mild if
kappa value is less than 0.2, fair if it lies between 0.21 and
0.40, moderate if it lies between 0.41 and 0.60, good if it is
between 0.61 and 0.80, and excellent if it is greater than 0.81.
As seen in Figure 6, kappa values are very high (close to 1)
for the RS scheme compared to the OS scheme for all of the
three classi�ers. In this �gure, error bars indicate the standard
error and standard errors are very high in the OS scheme
for each of the three classi�ers that indicate inconsistency of
the OS method. In Figure 6, it can be seen that the highest
kappa value is obtained by the �-NN algorithm with the RS
scheme.�is clearly indicates that the performance of the RS
scheme with the �-NN classi�er is excellent for the detection
of multicategory EEG signals.
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Table 4: Performances of the SVM with RBF kernel classi�er on the RS and OS scheme.

Performances for SVM with RBF kernel classi�er

Class RS scheme OS scheme

TPR FAR Precision Recall 6-value Acc TPR FAR Precision Recall 6-value Acc

Z 99.0 0 100 99.0 99.5 99.0 7.0 0 100 7.0 13.1 7.0

O 99.0 0 100 99.0 99.5 99.0 4.0 0 100 4.0 7.7 4.0

N 99.0 0 100 99.0 99.5 99.0 2.0 0 100 2.0 3.9 2.0

F 100 0 100 100 100 100 2.0 0.3 66.7 2.0 3.9 2.0

S 100 0.8 97.1 100 98.5 100 100 96.0 20.7 100 34.2 100

Overall 99.4 0.2 99.4 99.4 99.4 99.4 23.0 19.3 77.5 23.0 12.6 23.0
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Figure 7: ROC area for the �-NN,MLR, and SVM classi�er with the
RS and OS scheme.

Figure 7 presents ROC areas for the �-NN, MLR, and
SVM classi�ers with the RS and OS scheme, separately for
each of �ve classes and their overall ROCarea aswell.�e area
of the ROC curve is used as an index for evaluating classi�er
performance (e.g., lager area indicates better performance of
the classi�er). As can be seen in Figure 7, each of the three
classi�ers produces higher ROC area close to 1 with the use of
the RS scheme for each class while they yield lower area with
the use of the OS scheme. �is �gure validates the reliability
of the use of the RS scheme compared with the OS scheme
to get representative sample point from the EEG data. �e
shape of the MAE for each of the three classi�ers under the
RS and OS scheme is illustrated in Figure 8. It is noted that
the lowerMAE score indicates the higher performance of the
scheme. We can see that the score of MAE is very low for
the RS approach for each of the three classi�ers. On the other
hand, theOS approach yields very high score ofMAE for each
of the classi�ers. In this �gure, we also observe that the lowest
MAE is produced by the �-NN approach among the three
classi�ers for the RS scheme.�us we can argue strongly that
the statistical features obtained from RS scheme are perfect
representation of EEG signals and the �-NN classi�er is the
best choice for multicategory EEG signals detection.

Plenty of promising research works have been devoted
to the two-class classi�cation problems providing very good
outcomes dealing with the benchmark epileptic EEG data
[18, 37, 42, 43] but a few studies in the literature [5, 6, 9–11]
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Figure 8: 3D stacked area graph showingMAE for the �-NN, MLR,
and SVM classi�er under the RS and OS scheme.

(discussed in Section 1) have been performed for the multi-
class EEG signal classi�cation. In order to further examine
the eciency of our proposed framework, we also provide
a comparison of our proposed approach with �ve well-
known reported algorithms. Table 5 presents a comparative
study between our proposed method and the �ve reference
algorithms for the same benchmark epileptic EEG dataset.
�is table reports the detection performances of the �ve
categories EEG signals in terms of class speci�c accuracy
and overall accuracy.�e highest classi�cation performances
among the �ve algorithms are highlighted in bold font in
each method. From Table 5, it is clear that our proposed
algorithm yields the perfect detection performances that
are not achieved by any other methods in the literature.
�us, the RS scheme can be used as a perfect scheme for
feature extractions while the �-NN can be considered as an
optimum choice with it for the detection of multicategories
EEG signals.

5. Concluding Remarks

Perfect detection of multicategory EEG signals is a compli-
cated problem, requiring the analysis of large sets of EEG
data. �is study proposes a structure based on sampling
and machine learning approach to detect multicategory EEG
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Table 5: Comparison the results of our proposed approach with some reported research outcomes.

Methods Description
Classi�cation accuracy

Overall performance
Class Z Class O Class N Class F Class S

Proposed approach RS + �-NN 100.0 100.0 100.0 100.0 100 100.0

Siuly and Li [5] Optimum allocation + MLS-SVM 100.0 100.0 100.0 100.0 99.96 99.99

Shen et al. [6] Wavelet-approximate entropy + SVM 100.0 100.0 99.87 100.0 100.0 99.97

Übeyli [9]
Wavelet coecients and power
spectral density (PSD) values + SVM

99.25 99.13 99.25 99.38 99.00 99.20

Übeyli [10] PSD values + SVM 99.38 99.25 99.13 99.50 99.25 99.30

Guler and Ubeyli [11]
Wavelet coecients and Lyapunov
exponents + SVM

99.25 99.38 99.25 99.38 99.13 99.28

signals. �e RS and OS scheme are employed to select rep-
resentative samples from di�erent segments of multicategory
EEG signals. We experimented this methodology on bench-
mark epileptic EEG database. To examine the consistency
of the structure, the sample selection procedure in both
the RS and OS schemes with all the classi�ers used in this
paper is repeated for 20 times and the average performance
parameter values are reported. �e experimental results
show that the features obtained from the RS well represent
the multicategory EEG signals and achieve the consistent
detection rates in terms of all possible detection parameters
in all of the three classi�ers used in this paper.�e results also
demonstrated that the �-NN classi�er perfectly detects (100%
for all performance indicator) the multicategory EEG signals
under the RS technique.�e results represent a proof concept
of the successful detection of multicategory brain dynamics
quanti�cation through EEGs. Due to its perfect detection,
the RS technique is strongly recommended for capturing the
valuable information from the original EEGdatawhich is best
suited with the �-NN classi�er.�e proposedmethodmay be
applied for analysis and classi�cation of other nonstationary
biomedical signals.
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