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Abstract

Recent work has shown that self-attention can serve as

a basic building block for image recognition models. We

explore variations of self-attention and assess their effec-

tiveness for image recognition. We consider two forms of

self-attention. One is pairwise self-attention, which gener-

alizes standard dot-product attention and is fundamentally

a set operator. The other is patchwise self-attention, which

is strictly more powerful than convolution. Our pairwise

self-attention networks match or outperform their convolu-

tional counterparts, and the patchwise models substantially

outperform the convolutional baselines. We also conduct

experiments that probe the robustness of learned represen-

tations and conclude that self-attention networks may have

significant benefits in terms of robustness and generalization.

1. Introduction

Convolutional networks have revolutionized computer

vision. Thirty years ago, they were applied successfully to

recognizing handwritten digits [19]. Building directly on

this work, convolutional networks were scaled up in 2012 to

achieve breakthrough accuracy on the ImageNet dataset, out-

performing all prior methods by a large margin and launch-

ing the deep learning era in computer vision [18, 29]. Subse-

quent architectural improvements yielded successively larger

and more accurate convolutional networks for image recog-

nition, including GoogLeNet [31], VGG [30], ResNet [12],

DenseNet [16], and squeeze-and-excitation [15]. These ar-

chitectures in turn serve as templates for applications in

computer vision and beyond.

All these networks, from LeNet [19] onwards, are based

fundamentally on the discrete convolution. The discrete

convolution operator ∗ can be defined as follows:

(F ∗ k)(p) =
∑

s+t=p

F (s) k(t). (1)

Here F is a discrete function and k is a discrete filter. A

key characteristic of the convolution is its translation invari-

ance: the same filter k is applied across the image F . While

the convolution has undoubtedly been effective as the ba-

sic operator in modern image recognition, it is not without

drawbacks. For example, the convolution lacks rotation in-

variance. The number of parameters that must be learned

grows with the footprint of the kernel k. And the stationarity

of the filter can be seen as a drawback: the aggregation of

information from a neighborhood cannot adapt to its content.

Is it possible that networks based on the discrete convolution

are a local optimum in the design space of image recognition

models? Could other parts of the design space yield models

with interesting new capabilities?

Recent work has shown that self-attention may consti-

tute a viable alternative for building image recognition mod-

els [13, 27]. The self-attention operator has been adopted

from natural language processing, where it serves as the basis

for powerful architectures that have displaced recurrent and

convolutional models across a variety of tasks [33, 7, 6, 40].

The development of effective self-attention architectures in

computer vision holds the exciting prospect of discovering

models with different and perhaps complementary properties

to convolutional networks.

In this work, we explore variations of the self-attention

operator and assess their effectiveness as the basic building

block for image recognition models. We explore two types

of self-attention. The first is pairwise self-attention, which

generalizes the standard dot-product attention used in natural

language processing [33]. Pairwise attention is compelling

because, unlike the convolution, it is fundamentally a set

operator, rather than a sequence operator. Unlike the con-

volution, it does not attach stationary weights to specific

locations (s in equation (1)) and is invariant to permutation

and cardinality. One consequence is that the footprint of a

self-attention operator can be increased (e.g., from a 3×3 to

a 7×7 patch) or even made irregular without any impact on

the number of parameters. We present a number of variants

of pairwise attention that have greater expressive power than

dot-product attention while retaining these invariance proper-

ties. In particular, our weight computation does not collapse

the channel dimension and allows the feature aggregation to

adapt to each channel.

Next, we explore a different class of operators, which

we term patchwise self-attention. These operators, like the

convolution, have the ability to uniquely identify specific

locations within their footprint. They do not have the permu-
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tation or cardinality invariance of pairwise attention, but are

strictly more powerful than convolution.

Our experiments indicate that both forms of self-attention

are effective for building image recognition models. We

construct self-attention networks that can be directly com-

pared to convolutional ResNet models [12], and conduct

experiments on the ImageNet dataset [29]. Our pairwise self-

attention networks match or outperform their convolutional

counterparts, with similar or lower parameter and FLOP bud-

gets. Controlled experiments also indicate that our vectorial

operators outperform standard scalar attention. Furthermore,

our patchwise models substantially outperform the convolu-

tional baselines. For example, our mid-sized SAN15 with

patchwise attention outperforms the much larger ResNet50,

with a 78% top-1 accuracy for SAN15 versus 76.9% for

ResNet50, with a 37% lower parameter and FLOP count.

Finally, we conduct experiments that probe the robustness of

learned representations and conclude that self-attention net-

works may have significant benefits in terms of robustness

and generalization.

2. Related Work

Convolutional networks. Convolutional networks have

come to dominate computer vision. More than two decades

after their pioneering application to recognizing handwrit-

ten digits [19], ConvNets became mainstream after their

successful application to image recognition on the Ima-

geNet dataset [18, 29]. A succession of increasingly pow-

erful convolutional architectures for image recognition fol-

lowed [31, 30, 12, 16, 15]. These serve as the basis for

models developed for other computer vision tasks, such

as semantic segmentation [22, 3, 42, 44] and object detec-

tion [10, 9, 28, 21].

Self-attention. Self-attention models have revolutionized

machine translation and natural language processing more

broadly [33, 37, 7, 6, 40]. This has inspired applications of

self-attention and related ideas to image recognition [5, 34,

15, 14, 45, 46, 13, 1, 27], image synthesis [43, 26, 2], image

captioning [39, 41, 4], and video prediction [17, 35].

Until very recently, applications of self-attention in com-

puter vision were complementary to convolution: forms of

self-attention were primarily used to create layers that were

used in addition to, to modulate the output of, or otherwise

in combination with convolutions. In channelwise attention

models [34, 15, 14], attention weights reweight activations in

different channels. Other approaches [4, 36, 8] adopted both

spatial and channel attention. A number of methods learned

to reweight convolutional activations or offset the taps of con-

volutional kernels [5, 15, 34, 36, 46], thus retaining the basic

principle of convolutional feature construction. Others ap-

plied self-attention in specific modules that were appended

to convolutional structures [35, 45]. Bello et al. [1] com-

bined convolutional and self-attention processing streams,

but found that the global self-attention they used was not

sufficiently powerful to replace convolutions entirely. Jia

et al. [17] explored dynamic filter networks, which general-

ized convolutions, but the construction incurred significant

memory and computational costs and was not scaled up to

high-resolution images and larger datasets.

Most closely related to our work are the recent results of

Hu et al. [13] and Ramachandran et al. [27]. One of their

key innovations is restricting the scope of self-attention to

a local patch (for example, 7×7 pixels), in contrast to ear-

lier constructions that applied self-attention globally over a

whole feature map [35, 1]. Such local attention is key to lim-

iting the memory and computation consumed by the model,

facilitating successful application of self-attention through-

out the network, including early high-resolution layers. Our

work builds on these results and explores a broader variety

of self-attention formulations. In particular, our primary self-

attention mechanisms compute a vector attention that adapts

to different channels, rather than a shared scalar weight. We

also explore a family of patchwise attention operators that

are structurally different from the forms used in [13, 27] and

constitute strict generalizations of convolution. We show that

all the presented forms of self-attention can be implemented

at scale, with favorable parameter and FLOP budgets.

3. Self-attention Networks

In convolutional networks for image recognition, the lay-

ers of the network perform two functions. The first is feature

aggregation, which the convolution operation performs by

combining features from all locations tapped by the ker-

nel. The second function is feature transformation, which

is performed by successive linear mappings and nonlinear

scalar functions: these successive mappings and nonlinear

operations shatter the feature space and give rise to complex

piecewise mappings.

One observation that underlies our construction is that

these two functions – feature aggregation and feature trans-

formation – can be decoupled. If we have a mechanism that

performs feature aggregation, then feature transformation

can be performed by perceptron layers that process each

feature vector (for each pixel) separately. A perceptron layer

consists of a linear mapping and a nonlinear scalar function:

this pointwise operation performs feature transformation.

Our construction therefore focuses on feature aggregation.

The convolution operator performs feature aggregation

by a fixed kernel that applies pretrained weights to linearly

combine feature values from a set of nearby locations. The

weights are fixed and do not adapt to the content of the fea-

tures. And since each location must be processed with a

dedicated weight vector, the number of parameters scales

linearly with the number of aggregated features. We present

a number of alternative aggregation schemes and construct

high-performing image recognition architectures that inter-

leave feature aggregation (via self-attention) and feature

transformation (via elementwise perceptrons).
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3.1. Pairwise Self­attention

We explore two types of self-attention. The first, which

we refer to as pairwise, has the following form:

yi =
∑

j∈R(i)

α(xi,xj)⊙ β(xj), (2)

where ⊙ is the Hadamard product, i is the spatial index of

feature vector xi (i.e., its location in the feature map), and

R(i) is the local footprint of the aggregation. The footprint

R(i) is a set of indices that specifies which feature vectors

are aggregated to construct the new feature yi.

The function β produces the feature vectors β(xj) that

are aggregated by the adaptive weight vectors α(xi,xj).
Possible instantiations of this function, along with feature

transformation elements that surround self-attention opera-

tions in our architecture, are discussed later in this section.

The function α computes the weights α(xi,xj) that are

used to combine the transformed features β(xj). To simplify

exposition of different forms of self-attention, we decompose

α as follows:

α(xi,xj) = γ(δ(xi,xj)). (3)

The relation function δ outputs a single vector that represents

the features xi and xj . The function γ then maps this vector

into a vector that can be combined with β(xj) as shown in

Eq. 2.

The function γ enables us to explore relations δ that pro-

duce vectors of varying dimensionality that need not match

the dimensionality of β(xj). It also allows us to introduce

additional trainable transformations into the construction of

the weights α(xi,xj), making this construction more ex-

pressive. This function performs a linear mapping, followed

by a nonlinearity, followed by another linear mapping; i.e.,

γ={Linear→ReLU→Linear}. The output dimensional-

ity of γ does not need to match that of β as attention weights

can be shared across a group of channels.

We explore multiple forms for the relation function δ:

Summation: δ(xi,xj) = ϕ(xi) + ψ(xj)

Subtraction: δ(xi,xj) = ϕ(xi)− ψ(xj)

Concatenation: δ(xi,xj) = [ϕ(xi), ψ(xj)]

Hadamard product: δ(xi,xj) = ϕ(xi)⊙ ψ(xj)

Dot product: δ(xi,xj) = ϕ(xi)
⊤ψ(xj)

Here ϕ and ψ are trainable transformations such as linear

mappings, and have matching output dimensionality. With

summation, subtraction, and Hadamard product, the dimen-

sionality of δ(xi,xj) is the same as the dimensionality of

the transformation functions. With concatenation, the dimen-

sionality of δ(xi,xj) will be doubled. With the dot product,

the dimensionality of δ(xi,xj) is 1.

Position encoding. A distinguishing characteristic of pair-

wise attention is that feature vectors xj are processed in-

dependently and the weight computation α(xi,xj) cannot

incorporate information from any location other than i and j.

To provide some spatial context to the model, we augment

the feature maps with position information. The position

is encoded as follows. The horizontal and vertical coor-

dinates along the feature map are first normalized to the

range [−1, 1] in each dimension. These normalized two-

dimensional coordinates are then passed through a trainable

linear layer, which can map them to an appropriate range

for each layer in the network. This linear mapping outputs

a two-dimensional position feature pi for each location i in

the feature map. For each pair (i, j) such that j ∈ R(i), we

encode the relative position information by calculating the

difference pi −pj . The output of δ(xi,xj) is augmented by

concatenating [pi − pj ] prior to the mapping γ.

3.2. Patchwise Self­attention

The other type of self-attention we explore is referred to

as patchwise and has the following form:

yi =
∑

j∈R(i)

α(xR(i))j ⊙ β(xj), (4)

where xR(i) is the patch of feature vectors in the footprint

R(i). α(xR(i)) is a tensor of the same spatial dimensionality

as the patch xR(i). α(xR(i))j is the vector at location j in

this tensor, corresponding spatially to the vector xj in xR(i).

In patchwise self-attention, we allow the construction

of the weight vector that is applied to β(xj) to refer to

and incorporate information from all feature vectors in the

footprint R(i). Note that, unlike pairwise self-attention,

patchwise self-attention is no longer a set operation with

respect to the features xj . It is not permutation-invariant or

cardinality-invariant: the weight computation α(xR(i)) can

index the feature vectors xj individually, by location, and

can intermix information from feature vectors from different

locations within the footprint. Patchwise self-attention is

thus strictly more powerful than convolution.

We decompose α(xR(i)) as follows:

α(xR(i)) = γ(δ(xR(i))). (5)

The function γ maps a vector produced by δ(xR(i)) to a

tensor of appropriate dimensionality. This tensor comprises

weight vectors for all locations j. The function δ combines

the feature vectors xj from the patch xR(i). We explore the

following forms for this combination:

Star-product: δ(xR(i)) = [ϕ(xi)
⊤ψ(xj)]∀j∈R(i)

Clique-product: δ(xR(i)) = [ϕ(xj)
⊤ψ(xk)]∀j,k∈R(i)

Concatenation: δ(xR(i)) = [ϕ(xi), [ψ(xj)]∀j∈R(i)]
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Layers Output Size SAN10 SAN15 SAN19

Input 224×224×3 64-d linear

Transition 112×112×64 2×2, stride 2 max pool → 64-d linear

SA Block 112×112×64

[

3×3, 16-d sa

64-d linear

]

×2

[

3×3, 16-d sa

64-d linear

]

×3

[

3×3, 16-d sa

64-d linear

]

×3

Transition 56×56×256 2×2, stride 2 max pool → 256-d linear

SA Block 56×56×256

[

7×7, 64-d sa

256-d linear

]

×1

[

7×7, 64-d sa

256-d linear

]

×2

[

7×7, 64-d sa

256-d linear

]

×3

Transition 28×28×512 2×2, stride 2 max pool → 512-d linear

SA Block 28×28×512

[

7×7, 128-d sa

512-d linear

]

×2

[

7×7, 128-d sa

512-d linear

]

×3

[

7×7, 128-d sa

512-d linear

]

×4

Transition 14×14×1024 2×2, stride 2 max pool → 1024-d linear

SA Block 14×14×1024

[

7×7, 256-d sa

1024-d linear

]

×4

[

7×7, 256-d sa

1024-d linear

]

×5

[

7×7, 256-d sa

1024-d linear

]

×6

Transition 7×7×2048 2×2, stride 2 max pool → 2048-d linear

SA Block 7×7×2048

[

7×7, 512-d sa

2048-d linear

]

×1

[

7×7, 512-d sa

2048-d linear

]

×2

[

7×7, 512-d sa

2048-d linear

]

×3

Classification 1×1×1000 global average pool → 1000-d linear → softmax

Table 1. Self-attention networks for image recognition. ‘C-d linear’ means that the output dimensionality of the linear layer is ‘C’. ‘C-d

sa’ stands for a self-attention operation with output dimensionality ‘C’. SAN10, SAN15, and SAN19 are in rough correspondence with

ResNet26, ResNet38, and ResNet50, respectively. The number X in SANX refers to the number of self-attention blocks. Our architectures

are based fully on self-attention.

3.3. Self­attention Block

The self-attention operations described in Sections 3.1

and 3.2 can be used to construct residual blocks [12] that

perform both feature aggregation and feature transforma-

tion. Our self-attention block is illustrated in Figure 1. The

input feature tensor (channel dimensionality C) is passed

through two processing streams. The left stream evaluates

the attention weights α by computing the function δ (via the

mappings ϕ and ψ) and a subsequent mapping γ. The right

stream applies a linear transformation β that transforms the

input features and reduces their dimensionality for efficient

processing. The outputs of the two streams are then aggre-

gated via a Hadamard product. The combined features are

passed through a normalization and an elementwise nonlin-

earity, and are processed by a final linear layer that expands

their dimensionality back to C.

3.4. Network Architectures

Our network architectures generally follow residual net-

works, which we will use as baselines [12]. Table 1 presents

three architectures obtained by stacking self-attention blocks

at different resolutions. These architectures – SAN10,

SAN15, and SAN19 – are in rough correspondence with

ResNet26, ResNet38, and ResNet50. The number X in

SANX refers to the number of self-attention blocks. Our

architectures are based fully on self-attention.

aggregation

linear, C

!: linear, C/r2relation ", map. #

bn/relu

bn/relu

$,&: linear, C/r1

C

Figure 1. Our self-attention block. C is the channel dimensionality.

The left stream evaluates the attention weights α, the right stream

transforms the features via a linear mapping β. Both streams reduce

the channel dimensionality for efficient processing. The outputs

of the streams are aggregated via a Hadamard product and the

dimensionality is subsequently expanded back to C.

Backbone. The backbone of SAN has five stages, each with

different spatial resolution, yielding a resolution reduction

factor of 32. Each stage comprises multiple self-attention

blocks. Consecutive stages are bridged by transition layers

that reduce spatial resolution and expand channel dimen-

sionality. The output of the last stage is processed by a

classification layer that comprises global average pooling, a

linear layer, and a softmax.
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Transition. Transition layers reduce spatial resolution, thus

reducing the computational burden and expanding receptive

field. The transition comprises a batch normalization layer,

a ReLU [25], 2×2 max pooling with stride 2, and a linear

mapping that expands channel dimensionality.

Footprint of self-attention. The local footprint R(i) con-

trols the amount of context gathered by a self-attention oper-

ator from the preceding feature layer. We set the footprint

size to 7×7 for the last four stages of SAN. The footprint is

set to 3×3 in the first stage due to the high resolution of that

stage and the consequent memory consumption. Note that

increasing the footprint size has no impact on the number

of parameters in pairwise self-attention. We will study the

effect of footprint size on accuracy, capacity, and FLOPs in

Section 5.3.

Instantiations. The number of self-attention blocks in each

stage can be adjusted to obtain networks with different ca-

pacities. In the networks presented in Table 1, the number of

self-attention blocks used in the last four stages is the same

as the number of residual blocks in ResNet26, ResNet38,

and ResNet50, respectively.

4. Comparison

In this section, we relate the family of self-attention oper-

ators presented in Section 3 to other constructions, including

convolution [19] and scalar attention [33, 35, 27, 13]. Ta-

ble 2 summarizes some differences between the construc-

tions. These are discussed in more detail below.

Operation Content adaptive Channel adaptive

Convolution [19] ✗ ✓
Scalar attention [33, 35, 27, 13] ✓ ✗
Vector attention (ours) ✓ ✓

Table 2. The convolution does not adapt to the content of the image.

Scalar attention produces scalar weights that do not vary along the

channel dimension. Our operators efficiently compute attention

weights that adapt across both spatial dimensions and channels.

Convolution. The regular convolution operator has fixed

kernel weights that are independent of the content of the

image. It does not adapt to the input content. The kernel

weights can vary across channels.

Scalar attention. Scalar attention, as used in the trans-

former [33] and related constructions in computer vi-

sion [35, 27, 13], typically has the following form:

yi =
∑

j∈R(i)

(

ϕ(xi)
⊤ψ(xj)

)

β(xj) (6)

(A softmax and other forms of normalization can be added.)

Unlike the convolution, the aggregation weights can vary

across different locations, depending on the content of the

image. On the other hand, the weight ϕ(xi)
⊤ψ(xj) is a

scalar that is shared across all channels. (Hu et al. [13] ex-

plored alternatives to the dot product, but these alternatives

operated on scalar weights that were likewise shared across

channels.) This construction does not adapt the attention

weights at different channels. Although this can be mitigated

to some extent by introducing multiple heads [33], the num-

ber of heads is a small constant and scalar weights are shared

by all channels within a head.

Vector attention (ours). The operators presented in Sec-

tion 3 subsume scalar attention and generalize it in important

ways. First, within the pairwise attention family, the relation

function δ can produce vector output. This is the case for

the summation, subtraction, Hadamard, and concatenation

forms. This vector can then be further processed and mapped

to the right dimensionality by γ, which can also take posi-

tion encoding channels as input. The mapping γ produces a

vector that has compatible dimensionality to the transformed

features β. This gives the construction significant flexibility

in accommodating different relation functions and auxiliary

inputs, expressive power due to multiple linear mappings

and nonlinearities along the computation graph, ability to

produce attention weights that vary along both spatial and

channel dimensions, and computational efficiency due to the

ability to reduce dimensionality by the mappings γ and β.

The patchwise family of operators generalizes convolu-

tion while retaining parameter and FLOP efficiency. This

family of operators produces weight vectors for all positions

along a feature map that also vary along the channel dimen-

sion. The weight vectors are informed by the entirety of the

footprint of the operator.

5. Experiments

We conduct experiments on ImageNet classification [29].

The dataset contains 1.28 million training images and 50K

validation images from 1000 different classes. For compar-

isons of self-attention networks with convolutional networks

such as ResNet, we train on the original training set and re-

port accuracy (single center crop) on the original validation

set (referred to as ‘val-original’). For controlled experiments

and ablation studies on self-attention networks, we split a

separate validation set out of the original training set by ran-

domly sampling 50 images from the training set for each

category: this is referred to as ‘val-split’. This ensures that

architectural and hyperparameter choices are not made on

the same set that is used for comparisons with external base-

lines.

5.1. Implementation

We train all models from scratch for 100 epochs. We

use the cosine learning rate schedule with base learning rate

0.1 [23]. We apply standard data augmentation on Ima-

geNet, including random cropping to 224×224 patches [31],

random horizontal flipping, and normalization. We use syn-

chronous SGD with minibatch size 256 on 8 GPUs. We
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Method
ResNet26 vs. SAN10 ResNet38 vs. SAN15 ResNet50 vs. SAN19

top-1 top-5 Params Flops top-1 top-5 Params Flops top-1 top-5 Params Flops

Convolutional 73.6 91.7 13.7M 2.4G 76.0 93.0 19.6M 3.2G 76.9 93.5 25.6M 4.1G

SAN, pairwise 74.9 92.1 10.5M 2.2G 76.6 93.1 14.1M 3.0G 76.9 93.4 17.6M 3.8G

SAN, patchwise 77.1 93.5 11.8M 1.9G 78.0 93.9 16.2M 2.6G 78.2 93.9 20.5M 3.3G

Table 3. Comparison of self-attention networks and convolutional residual networks on ImageNet classification. Single-crop testing on the

val-original set.

use label smoothing regularization with coefficient 0.1 [32].

Momentum and weight decay are set to 0.9 and 1e-4, respec-

tively [12, 38, 11].

Our convolutional network baselines are ResNet26,

ResNet38, and ResNet50 [12]. ResNet38 and ResNet26

are constructed by taking ResNet50 as the starting point

and removing one or two residual blocks from each stage,

respectively. For self-attention blocks, we use r1 = 16 and

r2 = 4 by default (see Figure 1 for notation). The number

of channels sharing the same attention weight is set to 8.

5.2. Comparison to Convolutional Networks

Table 3 reports the results of the main comparison of the

presented self-attention networks to convolutional counter-

parts. For pairwise self-attention, we use the subtraction

relation. For patchwise self-attention, we use concatena-

tion. These decisions are based on the controlled experi-

ments reported in Section 5.3. The pairwise models match

or outperform the convolutional baselines, with similar or

lower parameter and FLOP budgets. The patchwise models

perform even better. For example, the patchwise SAN10 out-

performs not only ResNet26 but also ResNet38, with a 40%

lower parameter count and a 41% lower FLOP count versus

the latter. Likewise, the patchwise SAN15 outperforms not

only ResNet38 but also ResNet50 (78% top-1 accuracy for

SAN15 versus 76% for ResNet38 and 76.9% for ResNet50),

with a 37% lower parameter count and a 37% lower FLOP

count versus the latter.

5.3. Controlled Experiments

Relation function. Table 4 reports the results of a con-

trolled comparison of different relation functions on the

val-split set. For pairwise self-attention, summation, sub-

traction, and Hadamard product achieve similar accuracy.

These relation functions outperform concatenation and dot

product. In particular, these experiments indicate that vector

self-attention outperforms scalar self-attention. For patch-

wise self-attention, concatenation achieves slightly higher

accuracy than star-product and clique-product.

We also attempted a controlled comparison with the self-

attention configuration of Ramachandran et al. [27]. Unfor-

tunately, their implementation has not been released at the

time of writing, and there are many subtle differences that

can impact results, from the configuration of the input stem,

to positional encoding, to architectural hyperparameters, to

Method top-1 top-5 Params Flops

Conv.-ResNet26 76.0 92.8 13.7M 2.4G

SAN10-pair.

summation 77.4 93.3 10.5M 2.2G

subtraction 77.4 93.3 10.5M 2.2G

concatenate 76.4 92.6 10.6M 2.5G

Had. product 77.4 93.4 10.5M 2.2G

dot product 77.0 93.0 10.5M 1.8G

SAN10-patch.

star-product 78.7 94.0 10.9M 1.7G

clique-product 79.1 94.2 11.5M 1.9G

concatenation 79.3 94.2 11.8M 1.9G

Table 4. Controlled comparison of different relation functions on

the val-split set.

data augmentation and the training schedule. We attempted

to control for extraneous differences as much as possible

by using the same overall network architecture (SAN10)

and training setup (Section 5.1). Within this framework, we

reproduced the self-attention block of Ramachandran et al.

as closely as possible. In particular, we used their grouped

dot-product attention, added position information, and set

r1 and r2 (the bottleneck dimension reduction factor) to 4.

This yielded top-1 accuracy of 71.7% and top-5 accuracy

of 89.9%, lower than our self-attention configurations with

the same setup and lower than the results reported by Ra-

machandran et al. (The number of parameters is 13.9M, the

number of FLOPs is 2.3G.) Considered in conjunction with

our controlled experiments, this appears to support the con-

clusion that vector self-attention is a useful building block

for self-attention networks in computer vision. Our results

also indicate that patchwise self-attention may be particularly

powerful and merits further study. Finally, the difficulties

in reproducing results reported in related work highlight the

importance of timely release of reference implementations.

We will release our full implementation and experimental

setup open-source to facilitate comparison and assist future

work in this area.

Mapping function. We conduct an ablation study on the

number of linear layers in the attention mapping function γ.

The results are listed in Table 5. For pairwise models, using

two linear layers yields the highest accuracy. For patch-

wise models, different settings yield similar accuracy. Using

only one linear layer for attention mapping incurs signifi-

cant memory and computation costs in the patchwise setting.

Multiple layers enable the introduction of bottlenecks that
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reduce dimensionality and thus reduce memory and compu-

tation costs. Considering all the factors, we use two linear

layers (the intermediate setting in Table 5) as our default for

all models.

Method top-1 top-5 Params Flops

Conv.-ResNet26 76.0 92.8 13.7M 2.4G

SAN10-pair.

L 75.8 92.3 10.5M 1.8G

L→R→L 77.4 93.3 10.5M 2.2G

L→R→L→R→L 77.0 93.0 10.6M 2.5G

SAN10-patch.

L 79.3 94.2 53.5M 9.5G

L→R→L 79.3 94.2 11.8M 1.9G

L→R→L→R→L 79.5 94.3 12.7M 2.0G

Table 5. Controlled comparison of different mapping functions

on the val-split set. L and R denote Linear and ReLU layers,

respectively.

Transformation functions. We now evaluate whether the

use of three distinct transformation functions (ϕ, ψ, and β) is

helpful. The results are reported in Table 6. Using three dis-

tinct learnable transformations is generally the best choice.

An additional advantage is that a distinct β transformation

enables the use of different bottleneck dimension reduction

factors r1 and r2, which can be used to lower FLOP con-

sumption. For ϕ = ψ = β, we set r1 = r2 = 4, which

yields comparable accuracy to ϕ = ψ 6= β but at higher

FLOP counts.

Method top-1 top-5 Params Flops

Conv.-ResNet26 76.0 92.8 13.7M 2.4G

SAN10-pair.

ϕ = ψ = β 76.5 92.8 9.5M 3.0G

ϕ = ψ 6= β 76.3 92.6 10.0M 2.1G

ϕ 6= ψ 6= β 77.4 93.3 10.5M 2.2G

SAN10-patch.

ϕ = ψ = β 78.9 94.1 13.4M 2.2G

ϕ = ψ 6= β 79.0 94.0 11.3M 1.8G

ϕ 6= ψ 6= β 79.3 94.2 11.8M 1.9G

Table 6. Controlled evaluation of the use of distinct transformation

functions.

Footprint size. We now assess the impact of the size of

the footprint R(i) of the self-attention operator. The results

are reported in Table 7. In convolutional networks, larger

footprint sizes incur significant memory and computation

costs. In self-attention networks, the accuracy initially in-

creases with footprint size and then saturates. For pairwise

self-attention, increasing the footprint size has no impact on

the number of parameters. Taking all factors into account,

we set the footprint size to 7×7 as our default for all models.

Position encoding. Finally, we evaluate the importance of

position encoding in pairwise self-attention. The results are

reported in Table 8. Position encoding has a significant ef-

fect. Without position encoding, top-1 accuracy drops by 5

percentage points. Absolute position encoding [20] is better

Method top-1 top-5 Params Flops

Conv.-ResNet26

3×3 76.0 92.8 13.7M 2.4G

5×5 77.4 93.6 22.7M 4.0G

7×7 77.9 93.7 36.1M 6.5G

SAN10-pair.

3×3 75.3 92.0 10.5M 1.7G

5×5 76.6 92.9 10.5M 1.9G

7×7 77.4 93.3 10.5M 2.2G

9×9 77.8 93.5 10.5M 2.5G

11×11 77.6 93.3 10.5M 3.0G

SAN10-patch.

3×3 77.4 93.4 10.7M 1.6G

5×5 78.7 94.0 11.2M 1.7G

7×7 79.3 94.2 11.8M 1.9G

9×9 79.3 94.1 12.7M 2.1G

11×11 79.4 94.1 13.8M 2.3G

Table 7. Controlled assessment of the impact of footprint size.

than none, but accuracy is still low. Relative position encod-

ing, as described in Section 3.1, is much more effective.

Method top-1 top-5 Params Flops

Conv.-ResNet26 76.0 92.8 13.7M 2.4G

SAN10-pair.

none 72.3 90.3 10.5M 2.1G

absolute 74.7 91.7 10.5M 2.2G

relative 77.4 93.3 10.5M 2.2G

Table 8. The importance of position encoding in pairwise self-

attention.

5.4. Robustness

We now conduct two experiments that probe the robust-

ness of the representations learned by self-attention networks,

as compared to convolutional baselines.

Zero-shot generalization to rotated images. The first ex-

periment tests trained networks on rotated and flipped im-

ages. In this experiment, ImageNet images from the val-

original set are rotated and flipped in one of four ways:

clockwise 90◦, clockwise 180◦, clockwise 270◦, and upside-

down flip about the horizontal axis. This is zero-shot testing:

such manipulations were not performed at training time.

The results are reported in Table 9. Our hypothesis was

that pairwise self-attention models will be more robust to

this kind of manipulation than convolutional networks (or

patchwise self-attention), given that pairwise self-attention

is fundamentally a set operator. Indeed, we see that pairwise

self-attention models are less vulnerable than convolutional

or patchwise self-attention networks, although all networks

suffer from the domain shift. For example, when images

are rotated by 180◦, the performance of pairwise SAN19

drops by 18.9 percentage points, which is 5.1 percentage

points lower than the drop suffered by ResNet50. The pair-

wise SAN10 model achieves 54.7% top-1 accuracy in this
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Method
no rotation clockwise 90◦ clockwise 180◦ clockwise 270◦ upside-down

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

ResNet26 73.6 91.7 49.1(24.5) 72.7(19.0) 50.6(23.0) 75.4(16.3) 49.2(24.4) 72.8(18.9) 50.5(23.1) 75.4(16.3)

SAN10-pair. 74.9 92.1 51.8(23.1) 74.6(17.5) 54.7(20.2) 78.5(13.6) 51.7(23.2) 74.5(17.6) 54.7(20.2) 78.5(13.6)

SAN10-patch. 77.1 93.5 53.1(24.0) 75.7(17.8) 54.6(22.5) 78.4(15.1) 53.3(23.8) 76.0(17.5) 54.7(22.4) 78.3(15.2)

ResNet38 76.0 93.0 51.2(24.8) 74.2(18.8) 52.2(23.8) 76.9(16.1) 51.6(24.4) 74.6(18.4) 52.2(23.8) 76.8(16.2)

SAN15-pair. 76.6 93.1 54.5(22.1) 77.1(16.0) 57.9(18.7) 80.8(12.3) 54.8(21.8) 77.0(16.1) 58.0(18.6) 80.8(12.3)

SAN15-patch. 78.0 93.9 53.7(24.5) 76.1(17.8) 56.0(22.2) 79.5(14.4) 53.9(24.3) 76.2(17.7) 56.0(22.2) 79.4(14.5)

ResNet50 76.9 93.5 52.6(24.3) 75.3(18.2) 52.9(24.0) 77.4(16.2) 52.6(24.3) 75.5(18.0) 53.0(23.9) 77.3(16.2)

SAN19-pair. 76.9 93.4 54.7(22.2) 77.1(16.3) 58.0(18.9) 80.4(13.0) 55.0(21.9) 77.1(16.3) 57.9(19.0) 80.4(13.0)

SAN19-patch. 78.2 93.9 54.2(24.0) 76.3(17.6) 56.2(22.0) 79.5(14.4) 54.1(24.1) 76.4(17.5) 56.3(21.9) 79.5(14.4)

Table 9. Robustness of trained networks to rotation and flipping of images at test time. Zero-shot testing on the val-original set. Numbers in

the brackets show the relative performance drop compared to testing on original images with no manipulation (lower is better). Pairwise

self-attention models are less vulnerable than convolutional networks or patchwise self-attention.

regime, which is higher than the accuracy of the much larger

ResNet50 (52.9%).

Robustness to adversarial attacks. Next, we evaluate the

robustness of trained networks to adversarial attacks. We

subject the trained models to white-box targeted PGD at-

tacks [24]. Hyperparameters of the attacks include the max-

imal per-pixel perturbation ǫ (under the L∞ norm), attack

step size ρ, and the number of attack iterations n. We test

with two sets of hyperparameters: {ǫ, ρ, n} set to {8, 4,

2} and {8, 2, 4}, respectively. The results are reported in

Table 10.

The results indicate that self-attention models are much

more robust than convolutional networks. For example, with

4 attack iterations, the attack success rate for ResNet50 is

82.5% and top-1 accuracy drops to 11.8%. For the corre-

sponding pairwise and patchwise SAN models, the attack

success rate is much lower, at 63.7% and 62.0%, respectively,

and the models’ accuracy is roughly 2x higher, at 21.8% and

24.8%, respectively. For the ResNet26 baseline, 4 attack it-

erations essentially destroy the model, with a top-1 accuracy

of 1%. In comparison, the top-1 accuracy of the patchwise

SAN model is roughly 10x higher at 9.6%. (A random guess

baseline would exhibit a top-1 accuracy of 0.1%.)

Both experiments indicate that self-attention networks

may have significant benefits in terms of robustness and

generalization. These may surpass accuracy gains observed

in traditional evaluation procedures and merit further study.

6. Conclusion

In this paper, we explored the effectiveness of image

recognition models that are based fully on self-attention.

We considered two forms of self-attention: pairwise and

patchwise. The pairwise form is a set operation and is fun-

damentally different from convolution in this respect. The

patchwise form is a generalization of convolution. For both

forms, we introduced vector attention that efficiently adapts

Method
clean attack n = 2 attack n = 4

top-1 s. rate top-1 s. rate top-1

ResNet26 73.6 49.0 26.6 98.2 1.0

SAN10-pair. 74.9 32.8 35.3 90.1 5.3

SAN10-patch. 77.1 24.5 46.4 85.8 9.6

ResNet38 76.0 32.7 39.2 94.1 3.8

SAN15-pair. 76.6 15.5 47.3 67.5 19.6

SAN15-patch. 78.0 13.1 54.8 65.6 22.9

ResNet50 76.9 19.5 49.3 82.5 11.8

SAN19-pair. 76.9 13.1 49.1 63.7 21.8

SAN19-patch. 78.2 12.1 55.1 62.0 24.8

Table 10. Robustness of trained networks to adversarial attacks on

the val-original set. n is the number of attack iterations. ‘s. rate’

is the success rate of the attack (lower is better) and ‘top-1’ is the

accuracy under the attack (higher is better). Self-attention models

are much more robust than convolutional networks.

weights across both spatial dimensions and channels.

Our experiments yield a number of significant findings.

First, networks based purely on pairwise self-attention match

or outperform convolutional baselines. This indicates that

the success of deep learning in computer vision is not inextri-

cably tied to convolutional networks: there is an alternative

route to comparable or higher discriminative power, with dif-

ferent and potentially beneficial structural properties such as

permutation- and cardinality-invariance. Our second major

finding is that patchwise self-attention models substantially

outperform convolutional baselines. This suggests that patch-

wise self-attention, which generalizes convolution, may yield

strong accuracy gains across applications in computer vision.

Finally, our experiments indicate that vector self-attention is

particularly powerful and substantially outperforms scalar

(dot-product) attention, which has been the predominant

formulation to date.
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