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Abstract

Aspect term extraction (ATE) aims at iden-

tifying all aspect terms in a sentence and is

usually modeled as a sequence labeling prob-

lem. However, sequence labeling based meth-

ods cannot make full use of the overall mean-

ing of the whole sentence and have the lim-

itation in processing dependencies between

labels. To tackle these problems, we first

explore to formalize ATE as a sequence-to-

sequence (Seq2Seq) learning task where the

source sequence and target sequence are com-

posed of words and labels respectively. At the

same time, to make Seq2Seq learning suit to

ATE where labels correspond to words one by

one, we design the gated unit networks to in-

corporate corresponding word representation

into the decoder, and position-aware attention

to pay more attention to the adjacent words of

a target word. The experimental results on two

datasets show that Seq2Seq learning is effec-

tive in ATE accompanied with our proposed

gated unit networks and position-aware atten-

tion mechanism.

1 Introduction

Aspect term extraction (ATE) is a fundamental

task in aspect-level sentiment analysis, and aims

at extracting all aspect terms present in the sen-

tences (Hu and Liu, 2004; Pontiki et al., 2014,

2015, 2016). For example, given a restaurant re-

view “The staff is friendly, and their cheese pizza

is delicious”, the ATE system should extract as-

pect terms “staff” and “cheese pizza”.

Early works focus on detecting the pre-defined

aspects in a sentence (Hu and Liu, 2004; Zhuang

et al., 2006; Popescu and Etzioni, 2007). Then,

some works regard ATE as a sequence labeling

task and utilize Hidden Markov Model (Jin et al.,

2009) or Conditional Random Fields (Jin et al.,

2009; Ma and Wan, 2010; Jakob and Gurevych,

2010; Liu et al., 2013) to extract all possible as-

pect terms. With the development of deep learn-

ing techniques, neural networks based methods

(Wang et al., 2016; Liu et al., 2015; Li and Lam,

2017; Xu et al., 2018) have achieved good perfor-

mances in ATE task, and they still treat ATE as a

sequence labeling problem and extract more use-

ful features surrounding a word. Obviously, the

overall meaning of the sentence is important to

predict the label sequence. For example, the word

memory should be an aspect term in the laptop re-

view “The memory is enough for use.”, but it is

not an aspect term in the sentence “The memory

is sad for me.”. However, sequence labeling meth-

ods are not good at grasping the overall meaning

of the whole sentence because they cannot read

the whole sentence in advance. In addition, neural

networks based sequence labeling methods have

the limitation in processing label dependencies be-

cause they only use transition matrix to encourage

valid label paths and discourage other paths (Col-

lobert et al., 2011). As we know, the label of each

word is conditioned on its previous label. For ex-

ample, “O” is followed by “B/O” but not “I” in the

B-I-O tagging schema. To the best of our knowl-

edge, no neural networks based method utilizes

the previous label to improve their performances

directly.

Recently, sequence to sequence (Seq2Seq)

learning has been successfully applied to many

generation tasks (Cho et al., 2014b; Sutskever

et al., 2014; Bahdanau et al., 2014; Nallapati et al.,

2016). Seq2Seq learning encodes a source se-

quence into a fixed-length vector based on which a

decoder generates a target sequence. It just has the

benefits of first collecting comprehensive informa-

tion from the source text and then paying more at-

tention to the generation of the target sequence.

Thus, we propose to formalize the ATE task as

a sequence-to-sequence learning problem, where
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the source and target sequences are word and label

sequence respectively. Our proposed method can

make full use of the overall meaning of the sen-

tence when decoding the target sequence because

the fix-length vector stores all useful information

of a sentence and will be used in the decoding pro-

cess. At the same time, Seq2Seq learning can rem-

edy the label dependencies problem because each

label is conditioned on the previous label when

generating the label sequence.

Though Seq2Seq learning has its obvious ad-

vantages of generating a sequence, it faces the dif-

ficulties of how to precisely map each word with

its corresponding label. As we know, the label

of each word is highly related to its own mean-

ing. For example, an aspect term tends to be some

words used to identify any of a class of people,

places, or things (e.g. staff, restaurant, pizza),

while some words to describe an action, state, or

occurrence (e.g. hear, become, happen) are rarely

a part of an aspect term. Furthermore, our pro-

posed method can know for which word it gen-

erates a label, and this kind of one-to-one match

does not exist in other Seq2Seq task (e.g. machine

translation). To incorporate the exact meaning of

each word into Seq2Seq learning, we propose the

gated unit networks (GUN) which contain a gated

unit produced based on the hidden states of en-

coder and decoder. The gated unit can automat-

ically integrate information from the encoder and

decoder hidden states of the current word when de-

coding its label.

Furthermore, the label of each word is depen-

dent on its adjacent words because the adjacent

words of an aspect term tend to be article, verb,

adjective and etc. As the example in the first para-

graph, the adjacent words of staff : The, is and

friendly have positive effect on predicting its la-

bel, while the rest words are not key factors. This

shows the importance of adjacent words of each

word in predicting its label. In classic Seq2Seq

learning, attention mechanism is used to make

the decoder select important parts of source se-

quence to form a context vector for decoding cur-

rent word (Bahdanau et al., 2014). However, this

kind of attention mechanism cannot pay more at-

tention to the adjacent words of a word because it

does not take distance into account. To overcome

this shortage, we introduce the position-aware at-

tention which first computes the weight of each

word with regard to previous hidden state si−1.

Then, the weight of word i will be decreased based

on the distance between word i and current word

t. The more distant, the lower important. There-

fore, our position-aware attention model can force

the decoder to pay more attention to the adjacent

words of the current word when decoding its label.

We conduct experiments on two datasets, and

the experimental results demonstrate that our pro-

posed method achieves comparable results com-

pared with existing methods.

2 Model

Our proposed method is based on sequence-to-

sequence learning framework, plus two supple-

mentary components namely position-aware at-

tention and gated unit networks, which are used

to capture features from the current word and its

adjacent words. In this section, we will introduce

our model in detail, whose overall architecture is

displayed in Figure 1.

2.1 Sequence-to-Sequence Learning

For convenience, we first define the notations

which will be used next. Let X = [x1, x2, ..., xn]
denote a sentence which contains n words, and

xi ∈ R
d is word embedding which can be learned

by a neural language model (Bengio et al., 2003;

Mikolov et al., 2013). Let Y = [y1, y2, ..., yn] de-

note the aspect term labels of sentence X where

yi ∈ {B, I,O}. we call X and Y as source and

target sequence respectively.

The sequence-to-sequence learning method is

composed of two basic components: encoder and

decoder. The encoder reads the embeddings of

the source sequence and learns the hidden states

H = [h1, h2, ..., hn] for all words, and the com-

monly used method is the Recurrent Neural Net-

works (RNN). In our model, we use a bidirectional

gated recurrent unit (Bi-GRU) (Cho et al., 2014b)

to obtain the hidden states:

ht = Bi-GRU(xt, ht−1), (1)

where Bi-GRU represents the operations of bidi-

rectional GRU. ht ∈ R
se represents the hidden

state of word t, and se is the hidden state size of

the encoder.

The decoder is also a RNN which generates the

target sequence Y based on X , and predicts the

next label yt based on the context vector ct and all

previous labels [y1, y2, ..., yt−1] predicted by the
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Figure 1: The overall architecture of our model.

same decoder. Therefore, the joint probability of

the target sequence is defined as:

P (Y |X) =

n∏

t=1

P (yt|y[1:t−1], ct), (2)

where y[1:t−1] = [y1, ..., yt−1] and the conditional

probability of label yt can be modeled by the de-

coder, and defined as:

P (yt|y[1:t−1], ct) = softmax(Wost + bo), (3)

where Wo ∈ R
|V |×sd , bo ∈ R

|V |, |V | is the tar-

get vocabulary size, and sd is the hidden state size

of decoder. st ∈ R
sd is the hidden state in the

decoder at time step t, and computed as:

st = GRU(st−1, y
e
t−1 ⊕ ct), (4)

where GRU is a unidirectional GRU. ⊕ is the con-

catenation operation, and yet−1 is label embedding

for label yt−1. The context vector ct will be ex-

plained in the next section. It is noticed that the

initial hidden state of the decoder is the last hidden

state of the encoder. This means that the decoder

can be aware of the meaning of the whole source

sequence during the decoding process.

The encoder and the decoder are jointly trained

by minimizing the negative log-likelihood loss:

Loss = −
1

n

n∑

t=1

lt log(Pθ(yt|y[1:t−1], ct)), (5)

where lt is the ground truth label of word t, and

θ denotes the parameters of the encoder and the

decoder.

From Eq. (3) and (4), we can see that the pre-

vious label is regarded as input when decoding the

label for the current word. However, existing neu-

ral network based sequence labeling methods first

compute the label scores of each word simultane-

ously, and obtain the globally optimized label se-

quence (Collobert et al., 2011). Therefore, they do

not know the label of previous word when comput-

ing the label scores for the current word. By con-

trast, our proposed model generates the label for

current word based on the label of previous word.

This is the main difference between our proposed

model and existing methods in solving label de-

pendencies for ATE task.

2.2 Position-Aware Attention

In ATE task, the adjacent words of each word have

important effects on predicting its label, while

the distant words make less contribution to its

label. The reason is that aspect terms are of-

ten surrounded by their modifiers. To the best

of our knowledge, the current widely-used atten-

tion mechanism usually ignores the influence of

positions when measuring the weights of each

word. Therefore, we propose a Position-Aware

Attention (PAA) model which regularly decreases

the weight of word i with respect to the distance

between word i and word t. Supposing that we

compute the context vector ct at position t, PAA

first computes the weight for each word by:

αi
t =

exp(f(st−1, hi))∑n
j=1 exp(f(st−1, hj))

, (6)

where f(st−1, hi) is the score function which

computes the weight of hi given previous decoder

hidden state st−1 and the corresponding distance.
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The score function is defined as:

f(st−1, hi) =
1

d(wi, wt)
(Ws[st−1, hi] + bs)v

T
s ,

(7)

where 1
d(wi,wt)

calculates the weight decay rate for

word i, Ws ∈R
(sd+se)×(sd+se), vs ∈ R

(sd+se) and

bs ∈ R
(sd+se) are weight matrix, weight vector

and bias separately. vTs means the transpose of

vs. In our model, we set d(wi, wt) as the func-

tion log2(2 + l), where l is the distance between

word wi and current word wt. As the example in

Figure 1, when computing the context vector for

rings, the d(union, rings) is log2(2 + 1).
Finally, the context vector ct is computed as a

weighted sum of these encoder hidden states:

ct =
n∑

i=1

αi
thi. (8)

We can see that PAA can tune the weights of

each word according to the distance. Therefore,

compared with vanilla attention, our model can

pay more attention to its adjacent words given a

word.

2.3 Gated Unit Networks

When solving ATE by our proposed method, there

exists a consistent one-to-one mapping between

source sequence and target sequence. This means

that the word representation can be used to help

the decoder to generate its label. For example,

some kinds of words (e.g. food, place, and peo-

ple) tend to be aspect term, while other words (e.g.

verb, adjective and adverb) have less opportunity

to be a part of aspect term. Therefore, we design

the Gated Unit Networks (GUN) to incorporate

word information into our model.

The main component of GUN is a merge gate

which integrates information from encoder hidden

state ht and decoder hidden state st. To make st
and ht have the same dimension sg, we apply full-

connection layers on st and ht to obtain new rep-

resentations s′t ∈ R
sg and h′t ∈ R

sg . The merge

gate is defined as:

gt = σ(Wgh
′
t + Ugs

′
t + bg), (9)

where σ is sigmoid function. Wg, Ug ∈ R
sg×sg

are weight matrices and bg ∈ R
sg is bias.

The merge gate automatically controls how

much information should be taken from ht and st

Dataset
Training Testing

#Sent #Aspect #Sent #Aspect

Laptop 3045 2358 800 654

Restaurant 2000 1743 676 622

Table 1: The statistics of two datasets. #Sent and #As-

pect mean the number of sentence and aspect term sep-

arately.

for decoding the label for word t by:

rt = gth
′
t + (1− gt)s

′
t. (10)

Finally, we feed rt to softmax rather than st
used in Eq. (3) to obtain the label distribution for

word t. h′t plays a more important role than s′t if

gt is greater than 0.5, and vice versa. In such way,

GUN can make full use of the corresponding word

representation to help the decoder to generate its

label.

3 Experiments

In this section, we first introduce the datasets and

hyper-parameters used in our experiments. Then,

we show the baselines for comparison. Finally, we

compare the performance of our model with the

baselines and analyze the reason why our model

work.

3.1 Dataset & Hyperparameter Setting

We conduct experiments on two widely used

datasets of the ATE task (Li and Lam, 2017; Li

et al., 2018; Xu et al., 2018), which are the laptop

dataset from SemEval 2014 Task 4 (Pontiki et al.,

2014)1 and the restaurant dataset from SemEval

2016 Task 5 (Pontiki et al., 2016)2 respectively.

The details of the two datasets are shown in Table

1. All sentences are tokenized by NLTK3. In our

experiments, we randomly split 10% of the train-

ing data as validation data. We adopt F1-Measure

to evaluate the performance of the baselines and

our model.

In our experiments, all word embeddings are

initialized by pre-trained GloVe embeddings (Pen-

nington et al., 2014)4. We also use fastText (Joulin

1http://alt.qcri.org/semeval2014/

task4/
2http://alt.qcri.org/semeval2016/

task5/
3https://www.nltk.org/
4Pre-trained GloVe embeddings can be downloaded from

https://nlp.stanford.edu/projects/glove/

http://alt.qcri.org/semeval2014/task4/
http://alt.qcri.org/semeval2014/task4/
http://alt.qcri.org/semeval2016/task5/
http://alt.qcri.org/semeval2016/task5/
https://www.nltk.org/
https://nlp.stanford.edu/projects/glove/
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et al., 2016)5 to compute word vector for out-

of-vocabulary (OOV) words. The label embed-

dings are initialized randomly. The word and la-

bel embedding size are set as 300 and 50 respec-

tively. The parameters of our model are initial-

ized by uniform distribution u ∼ (−0.1, 0.1).
Both the encoder and decoder have two layers of

GRU, and their hidden size is set to 300. We

use Adam (Kingma and Ba, 2014) to optimize our

model with the learning rate of 0.001, and two mo-

mentum coefficients are set to 0.9 and 0.999 re-

spectively. The batch size is set to 8. To avoid

overfitting, we use dropout on word embedding

and label embedding, and the dropout rate is set

to 0.5.

3.2 Baselines

To evaluate the effectiveness of our approach, we

compare our model with three groups of baselines.

The first group of baselines utilizes conditional

randomly fields (CRF):

• CRF trains a CRF model with basic feature

templates6 and word embeddings (Penning-

ton et al., 2014) for ATE.

• IHS R&D is the best system of laptop do-

main, and uses CRF with features extracted

using named entity recognition, POS tagging,

parsing, and semantic analysis (Chernyshe-

vich, 2014).

• NLANGP utilizes CRF with the word, name

list and word cluster feature to tackle the task

and obtains the best results in the restaurant

domain. It also uses the output of a Recurrent

Neural Network (RNN) as additional features

to enhance their performances (Toh and Su,

2016).

• WDEmb first learns embeddings of words

and dependency paths based on the optimiza-

tion objective formalized as w1 + r ≈ w2,

where w1, w2 are words, r is the correspond-

ing dependency path. Then, the learned em-

beddings of words and dependency paths are

utilized as features in CRF for ATE (Yin

et al., 2016).

5https://github.com/facebookresearch/

fastText
6https://sklearn-crfsuite.readthedocs.

io/en/latest/

The second group of baselines employs neural

networks methods to address the ATE problem:

• Bi-LSTM applies different kinds of Bi-

RNN (Elman/Jordan-type RNN) with differ-

ent kinds of embeddings in the ATE task (Liu

et al., 2015).

• GloVe-CNN7 uses multi-layer Convolution

Neural networks (CNN) model with GloVe

embeddings to extract aspect-term (Xu et al.,

2018).

• BiLSTM-CNN-CRF is the state-of-the-art

system for named entity recognition task,

which adopts CNN and Bi-LSTM to learn

character-level and word-level features re-

spectively, and CRF is used to avoid the il-

legal transition between labels (Reimers and

Gurevych, 2017).

The third group of baselines are joint methods

for aspect term and opinion term extraction, and

they take advantages of opinion label information

to improve their performances.

• MIN is an LSTM-based deep multi-task

learning framework for ATE, opinion word

extraction and sentimental sentence classifi-

cation. It has two LSTMs equipped with ex-

tended memories, and neural memory oper-

ations are designed for jointly handling the

extraction tasks of aspects and opinions via

memory interactions (Li and Lam, 2017).

• CMLA is made up of multi-layer atten-

tion network, where each layer consists of

a couple of attention with tensor operators.

One attention is for extracting aspect terms,

while the other is for extracting opinion

terms (Wang et al., 2017).

• RNCRF 8 learns structure features for each

word from parse tree by Recursive Neural

Networks, and the learned features are fed to

CRF to decode the label for each word (Wang

et al., 2016).

• HAST tackles ATE by exploiting two useful

clues, namely opinion summary and aspect

detection history (Li et al., 2018).
7To make it fair, we compare our method with GloVe-

CNN which only uses GloVe embeddings because our model
just uses Glove embeddings but DE-CNN uses additional do-
main embeddings trained with large domain corpus.

8They also use handcraft features to improve their perfor-
mances.

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
https://sklearn-crfsuite.readthedocs.io/en/latest/
https://sklearn-crfsuite.readthedocs.io/en/latest/
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Method Laptop Restaurant

CRF 74.01 69.56

IHS RD 74.55 -

NLANGP - 72.34

WDEmb 75.16 -

Bi-LSTM 75.25 71.26

GloVe-CNN 77.67 72.08

BiLSTM-CNN-CRF 77.80 72.50

MIN♯ 77.58 73.44

CMLA♯ 77.80 72.77∗

RNCRF♯ 78.42 69.72∗

HAST♯ 79.52 73.61

Seq2Seq4ATE 80.31 75.14

Table 2: The performances (F1:%) of all baselines and

our model. All results of baselines are taken from their

papers, and “-” means that the result is not available.

The model with ♯ means that it uses opinion informa-

tion. The result with ∗ is from HAST.

3.3 Results Discussion

In this section, we report the performances of all

models and analyze the advantages and disadvan-

tages of them. The results of baselines and our

model are displayed in Table 2.

From the first part, we can see that CRF model

obtains the worst performances on both datasets.

Compared with the CRF model, IHS RD and

NLANGP achieves better performances because

they add more handcraft features to CRF. This

shows that useful features are key factors for CRF

based methods. Different from three previous ap-

proaches, WDEmb only uses word embeddings as

inputs and performs better than IHS RD model. In

fact, the CRF model also uses GloVe embeddings,

but its results are much worse than WDEmb. The

reason may be that embeddings used in WDEmb

are trained with parsing information which plays

important roles in ATE task. For example, the sub-

ject and object have a higher probability to be an

aspect term than other components. We can find

that the CRF based methods are heavily dependent

on the quality of features. However, it is hard to

extract effective features, and this prevents CRF

based methods from improving their results.

From the second part, we can observe that

the Bi-LSTM model obtains the worst perfor-

mances on both datasets compared with the other

neural networks based methods. Although Bi-

LSTM model only takes embeddings as features,

it achieves comparable results compared with the

best CRF based methods. The main reason is

that Bi-LSTM can learn dependencies between

words, and this phenomenon demonstrates that

neural networks based methods have bigger ad-

vantages than CRF-based methods in solving the

ATE task. Compared with Bi-LSTM, the GloVe-

CNN model improves 2.42% and 0.82% on lap-

top and restaurant datasets respectively. It is no-

ticed that the GloVe-CNN just extracts features in

a fixed-size window of each word for predicting

its label. That is to say, the adjacent words are

key factors for ATE, and this important informa-

tion is also incorporated into our model by PAA.

The BiLSTM-CNN-CRF model takes advantages

of Bi-LSTM and CNN and achieves better perfor-

mances than both systems. This shows that Bi-

LSTM and CNN can complement each other.

From the third part, we can see that MIN,

CMLA, RNCRF and HAST achieve good perfor-

mances on both datasets. This implies that joint

learning is a new direction for ATE task. How-

ever, they take advantage of opinion information

to improve their performances, and the opinion in-

formation is not accessible in many situations. It is

noticed that HAST also use the information of pre-

vious words to predict the current label, and they

find that previous word information (not the pre-

dicted label of the previous word) is important to

model the label dependencies.

Finally, we can see that Seq2Seq4ATE raises

its performances about 0.79% and 1.53% on

two datasets compared with HAST. In addition,

Seq2Seq4ATE does not take advantage of any ex-

tra features such as handcraft/syntactic features

and opinion information. This demonstrates the

effectiveness of our model.

In a word, our proposed method can make use of

the overall meaning of the sentence to better deal

with polysemous words (e.g. memory) and remedy

the label dependencies through decoding current

word conditioned on previous label. In addition,

we propose the PAA and GUN to make Seq2seq

learning method better suit the ATE task.

3.4 Ablation Study

In this section, we study the effectiveness of the

key components (e.g. PAA and GUN) in our pro-

posed model and conduct an extensive ablation

study. There are two main ablation baselines:

(1)Seq2Seq4ATE-w/o-PAA removes the PAA

from the Seq2Seq4ATE, (2)Seq2Seq4ATE-w/o-
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Method Laptop Restaurant

Seq2Seq4ATE-w/o-GUN 75.43 71.93

Seq2Seq4ATE-w/o-PAA 74.45 72.66

Seq2Seq+VAM 77.39 72.47

Seq2Seq4ATE 80.31 75.14

Table 3: The performances (F1:%) of our model’s vari-

ants on two datasets.

GUN removes the GUN from the Seq2Seq4ATE.

In addition, we also use vanilla attention mecha-

nism (VAM) to compute the context vector (named

Seq2Seq+VAM) for verifying the advantage of

PAA. Table 3 reports the results of Seq2Seq4ATE

and its variants.

From Table 3, we can first observe that both

PAA and GUN are important components in our

model because removing any of them from our

model would result in heavily drop in perfor-

mances on both datasets.

Secondly, we can see that Seq2Seq4ATE-w/o-

GUN performs better on the laptop dataset but

Seq2Seq4ATE-w/o-PAA performs better on the

restaurant dataset. The reason may be that the as-

pect terms in the laptop domain are fixed words

such as CPU, memory and etc. But the aspect

terms in the restaurant domain are more arbitrary

such as The Mom Kitchen, Hot Pizzeria and etc.

Therefore, GUN is more important in the laptop

domain because it can incorporate the word repre-

sentation into Seq2Seq by merge gate, but PAA is

more important for the restaurant domain because

it can leverage the adjacent words of each word to

help predict its label.

In addition, we also find that the Seq2Seq4ATE

removing both PAA and GUN performs very bad

in both datasets. We think the main reason is that

the number of aspect term is much smaller com-

pared with all words. Therefore, our model can

hardly learn useful information from data. We an-

alyze the datasets and find that the words of aspect

term make up 8.8% and 6.9% of the training data

of restaurant and laptop domain.

Finally, we can see that Seq2Seq4ATE im-

proves about 2.92% and 2.67% on laptop and

restaurant compared with Seq2Seq+VAM. The

great improvements again prove that the adjacent

words play important roles in ATE. The reason

is that the weights of distant words in VAM may

be large in VAM. However, the weights of distant

words in PAA will be heavily decayed by the posi-

tion information and the weights of adjacent words

Method
Laptop Restaurant

F1 IT-Rate F1 IT-Rate

BiLSTM 75.08 6.72 68.41 8.98

BiLSTM+CRF 77.72 3.97 71.94 3.69

Seq2Seq4ATE 80.31 0.02 75.14 0.03

Table 4: The performances (F1:%) and illegal transi-

tion rate (IT-Rate:%) of three models.

will be decayed little because d(wi, wt) is propor-

tional to the distance.

3.5 Analysis of Label Dependencies

In this section, we conduct experiments to validate

the effectiveness of our proposed model in han-

dling label dependencies.

Collobert et al. (2011) have demonstrated that

it is important to model label dependencies in se-

quence labeling task. To validate the effectiveness

of our model in addressing this problem, we com-

pare our model Seq2Seq4ATE with two models:

BiLSTM9 and BiLSTM+CRF. BiLSTM does not

take the label dependencies into account, and BiL-

STM+CRF uses transition matrix (Collobert et al.,

2011) to address label dependencies problem.

To evaluate the effectiveness of model in model-

ing label dependencies, we propose an evaluation

criterion: Illegal Transition Rate (IT-Rate) which

is computed by: IT-Rate = #illegal transition
#aspect term

× 100
where “#illegal transition” is the number of ille-

gal transition (e.g. O→I) occurrences in predicted

label sequence, and “#aspect term” is the number

of aspect term. Generally speaking, lower IT-Rate

means better performance in modeling label de-

pendencies.

Table 4 shows the results of three models on

testing data. First, we can observe that the higher

F1 is accompanied by lower IT-Rate. This once

again demonstrates the importance of modeling la-

bel dependencies. Secondly, we can observe that

BiLSTM+CRF decreases IT-Rate about 2.75%

and 5.29% on two datasets compared with the

BiLSTM model. This indicates that the transition

matrix is a good way to model label dependen-

cies. However, they also do not utilize the previ-

ous label to improve their performances directly.

The most impressive results are that the IT-Rate of

Seq2Seq4ATE is 0.02% and 0.03% which almost

can be ignored compared with BiLSTM and BiL-

9We only use GloVe embeddings for words and utilize the
same hyper-parameters used in Seq2Seq4ATE. Thus, its ATE
results are not the same with LSTM in Table 2.
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STM+CRF. The main reason is that Seq2Seq4ATE

leverages previous label information yt−1 to de-

code label yt for word t. Consequently, yt is com-

patible with yt−1. This indicates the advantages

of our model in handling label dependencies com-

pared with previous methods.

4 Related Work

Aspect-based sentiment analysis (ABSA) is a sub-

field of sentiment analysis (Hu and Liu, 2004;

Pontiki et al., 2014, 2015, 2016). In this paper,

we only focus on the ATE task, and we solve this

task by Seq2Seq learning which is often used in

the generative task. We will introduce the recent

study progresses in ATE and Seq2Seq learning.

4.1 Aspect Term Extraction

Hu and Liu (2004) first propose to evaluate the

sentiment of different aspects in a document, and

all aspects are predefined artificially. The key

step is to extract all possible aspects of a docu-

ment (Zhuang et al., 2006; Popescu and Etzioni,

2007; Mei et al., 2007; Titov and McDonald, 2008;

He et al., 2017). However, predefined aspects

may not cover all the aspects appearing in a doc-

ument. Therefore, many works turn to extract all

possible aspect terms in a document. The main-

stream methods for aspect term extraction include

the unsupervised method and supervised method.

The typical unsupervised methods include boot-

strapping (Wang and Wang, 2008), double prop-

agation (Qiu et al., 2011) and others. The super-

vised methods contain Hidden Markov Model (Jin

et al., 2009), Conditional Random Fields (Jakob

and Gurevych, 2010; Li et al., 2010; Yang and

Cardie, 2013; Chernyshevich, 2014; Toh and Su,

2016; Yin et al., 2016; Shu et al., 2017) and

other approaches (Wu et al., 2009; Ma and Wan,

2010; Liu et al., 2013). With the developments

of deep learning, neural networks based method

such as recurrent NN (Liu et al., 2015; Li and

Lam, 2017), recursive NN (Wang et al., 2016),

convolution NN (Poria et al., 2016; Xu et al.,

2018) and attention model (Wang et al., 2017)

have achieved good performances in ATE. In addi-

tion, many works utilize multi-task learning (Yang

and Cardie, 2013; Wang et al., 2016, 2017; Li

et al., 2018) and other resources (Xu et al., 2018)

to improve their performances.

4.2 Sequence-to-Sequence Learning

Sequence-to-sequence model is a generative

model which is proposed by (Cho et al., 2014b;

Sutskever et al., 2014), and first used in the field

of machine translation. In addition, Cho et al.

(2014a) improves the decoding by beam-search.

However, vanilla Seq2Seq model performs worse

in generating long sentences. The reason is that

the encoder needs to compress the whole sentence

into a fix length representation. To address this

problem, Bahdanau et al. (2014) introduce an at-

tention mechanism which selects important parts

of the source sentence with respect to the previous

hidden state in decoding the next state. Afterward,

some studies focus on improving attention mech-

anism (Luong et al., 2015). So far, Seq2Seq mod-

els and attention mechanism have been applied to

many fields such as dialog (Serban et al., 2016)

generation, text summarization (Nallapati et al.,

2016) and etc.

In this paper, we first attempt to formalize the

ATE as a sequence-to-sequence learning task be-

cause it can make full use of both the mean-

ing of the sentence and label dependencies com-

pared with existing methods. Furthermore, we de-

sign a position-aware attention model and gated

unit networks to make Seq2Seq model better suit

to this task. Generally, Seq2Seq model is time-

consuming in many fields because the target vo-

cabulary size is very large, but the time costs in

ATE is acceptable because the target vocabulary

size is 3.

5 Conclusion and Future Work

In this paper, we propose a sequence-to-sequence

learning based approach to address the ATE task.

Our proposed method can take full advantage of

the meaning of the whole sentence and the previ-

ous label during the decoding process. Further-

more, we find that each word’s adjacent words

and its own word representation are key factors

for its label, and we propose a PAA and GUN

model to incorporate two kinds of information into

our model. The experimental results demonstrate

that our approach can achieve comparable perfor-

mances on ATE task. In our future work, we plan

to apply our approach to other sequence labeling

tasks, such as named entity recognition, word seg-

mentation and so on.
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danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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