
Exploring Simple Siamese Representation Learning

Xinlei Chen Kaiming He

Facebook AI Research (FAIR)

Abstract

Siamese networks have become a common structure in

various recent models for unsupervised visual representa-

tion learning. These models maximize the similarity be-

tween two augmentations of one image, subject to certain

conditions for avoiding collapsing solutions. In this paper,

we report surprising empirical results that simple Siamese

networks can learn meaningful representations even using

none of the following: (i) negative sample pairs, (ii) large

batches, (iii) momentum encoders. Our experiments show

that collapsing solutions do exist for the loss and structure,

but a stop-gradient operation plays an essential role in pre-

venting collapsing. We provide a hypothesis on the impli-

cation of stop-gradient, and further show proof-of-concept

experiments verifying it. Our “SimSiam” method achieves

competitive results on ImageNet and downstream tasks. We

hope this simple baseline will motivate people to rethink the

roles of Siamese architectures for unsupervised representa-

tion learning. Code is made available.1

1. Introduction

Recently there has been steady progress in un-/self-

supervised representation learning, with encouraging re-

sults on multiple visual tasks (e.g., [2, 17, 8, 15, 7]). Despite

various original motivations, these methods generally in-

volve certain forms of Siamese networks [4]. Siamese net-

works are weight-sharing neural networks applied on two or

more inputs. They are natural tools for comparing (includ-

ing but not limited to “contrasting”) entities. Recent meth-

ods define the inputs as two augmentations of one image,

and maximize the similarity subject to different conditions.

An undesired trivial solution to Siamese networks is

all outputs “collapsing” to a constant. There have been

several general strategies for preventing Siamese networks

from collapsing. Contrastive learning [16], e.g., instantiated

in SimCLR [8], repulses different images (negative pairs)

while attracting the same image’s two views (positive pairs).

The negative pairs preclude constant outputs from the solu-

tion space. Clustering [5] is another way of avoiding con-

stant output, and SwAV [7] incorporates online clustering

1https://github.com/facebookresearch/simsiam

encoder f

similarity

encoder f

predictor h stop-grad

image x

x1 x2

Figure 1. SimSiam architecture. Two augmented views of one

image are processed by the same encoder network f (a backbone

plus a projection MLP). Then a prediction MLP h is applied on one

side, and a stop-gradient operation is applied on the other side. The

model maximizes the similarity between both sides. It uses neither

negative pairs nor a momentum encoder.

into Siamese networks. Beyond contrastive learning and

clustering, BYOL [15] relies only on positive pairs but it

does not collapse in case a momentum encoder is used.

In this paper, we report that simple Siamese networks

can work surprisingly well with none of the above strategies

for preventing collapsing. Our model directly maximizes

the similarity of one image’s two views, using neither neg-

ative pairs nor a momentum encoder. It works with typical

batch sizes and does not rely on large-batch training. We

illustrate this “SimSiam” method in Figure 1.

Thanks to the conceptual simplicity, SimSiam can serve

as a hub that relates several existing methods. In a nut-

shell, our method can be thought of as “BYOL without the

momentum encoder”. Unlike BYOL but like SimCLR and

SwAV, our method directly shares the weights between the

two branches, so it can also be thought of as “SimCLR

without negative pairs”, and “SwAV without online cluster-

ing”. Interestingly, SimSiam is related to each method by

removing one of its core components. Even so, SimSiam

does not cause collapsing and can perform competitively.

We empirically show that collapsing solutions do exist,

but a stop-gradient operation (Figure 1) is critical to pre-

vent such solutions. The importance of stop-gradient sug-

gests that there should be a different underlying optimiza-

tion problem that is being solved. We hypothesize that there

are implicitly two sets of variables, and SimSiam behaves

like alternating between optimizing each set. We provide

15750

https://github.com/facebookresearch/simsiam

proof-of-concept experiments to verify this hypothesis.

Our simple baseline suggests that the Siamese architec-

tures can be an essential reason for the common success

of the related methods. Siamese networks can naturally

introduce inductive biases for modeling invariance, as by

definition “invariance” means that two observations of the

same concept should produce the same outputs. Analo-

gous to convolutions [24], which is a successful inductive

bias via weight-sharing for modeling translation-invariance,

the weight-sharing Siamese networks can model invariance

w.r.t. more complicated transformations (e.g., augmenta-

tions). We hope our exploration will motivate people to

rethink the fundamental roles of Siamese architectures for

unsupervised representation learning.

2. Related Work

Siamese networks. Siamese networks [4] are general mod-

els for comparing entities. Their applications include sig-

nature [4] and face [32] verification, tracking [3], one-shot

learning [23], and others. In conventional use cases, the in-

puts to Siamese networks are from different images, and the

comparability is determined by supervision.

Contrastive learning. The core idea of contrastive learn-

ing [16] is to attract the positive sample pairs and repulse the

negative sample pairs. This methodology has been recently

popularized for un-/self-supervised representation learning

[34, 29, 20, 35, 21, 2, 33, 17, 28, 8, 9]. Simple and effective

instantiations of contrastive learning have been developed

using Siamese networks [35, 2, 17, 8, 9].

In practice, contrastive learning methods benefit from a

large number of negative samples [34, 33, 17, 8]. These

samples can be maintained in a memory bank [34]. In a

Siamese network, MoCo [17] maintains a queue of negative

samples and turns one branch into a momentum encoder

to improve consistency of the queue. SimCLR [8] directly

uses negative samples coexisting in the current batch, and it

requires a large batch size to work well.

Clustering. Another category of methods for unsupervised

representation learning are based on clustering [5, 6, 1, 7].

They alternate between clustering the representations and

learning to predict the cluster assignment. SwAV [7] incor-

porates clustering into a Siamese network, by computing

the assignment from one view and predicting it from an-

other view. SwAV performs online clustering under a bal-

anced partition constraint for each batch, which is solved by

the Sinkhorn-Knopp transform [10].

While clustering-based methods do not define negative

exemplars, the cluster centers can play as negative proto-

types. Like contrastive learning, clustering-based methods

require either a memory bank [5, 6, 1], large batches [7], or

a queue [7] to provide enough samples for clustering.

Algorithm 1 SimSiam Pseudocode, PyTorch-like

f: backbone + projection mlp
h: prediction mlp

for x in loader: # load a minibatch x with n samples
x1, x2 = aug(x), aug(x) # random augmentation
z1, z2 = f(x1), f(x2) # projections, n-by-d
p1, p2 = h(z1), h(z2) # predictions, n-by-d

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

L.backward() # back-propagate
update(f, h) # SGD update

def D(p, z): # negative cosine similarity
z = z.detach() # stop gradient

p = normalize(p, dim=1) # l2-normalize
z = normalize(z, dim=1) # l2-normalize
return -(p*z).sum(dim=1).mean()

BYOL. BYOL [15] directly predicts the output of one view

from another view. It is a Siamese network in which one

branch is a momentum encoder.2 It is hypothesized in [15]

that the momentum encoder is important for BYOL to avoid

collapsing, and it reports failure results if removing the mo-

mentum encoder (0.3% accuracy, Table 5 in [15]).3 Our

empirical study challenges the necessity of the momentum

encoder for preventing collapsing. We discover that the

stop-gradient operation is critical. This discovery can be

obscured with the usage of a momentum encoder, which is

always accompanied with stop-gradient (as it is not updated

by its parameters’ gradients). While the moving-average

behavior may improve accuracy with an appropriate mo-

mentum coefficient, our experiments show that it is not di-

rectly related to preventing collapsing.

3. Method

Our architecture (Figure 1) takes as input two randomly

augmented views x1 and x2 from an image x. The two

views are processed by an encoder network f consisting of

a backbone (e.g., ResNet [19]) and a projection MLP head

[8]. The encoder f shares weights between the two views.

A prediction MLP head [15], denoted as h, transforms the

output of one view and matches it to the other view. Denot-

ing the two output vectors as p1,h(f(x1)) and z2,f(x2),
we minimize their negative cosine similarity:

D(p1, z2) = −
p1
‖p1‖2

·
z2
‖z2‖2

, (1)

2MoCo [17] and BYOL [15] do not directly share the weights between

the two branches, though in theory the momentum encoder should con-

verge to the same status as the trainable encoder. We view these models as

Siamese networks with “indirect” weight-sharing.
3In BYOL’s arXiv v3 update, it reports 66.9% accuracy with 300-epoch

pre-training when removing the momentum encoder and increasing the

predictor’s learning rate by 10×. Our work was done concurrently with

this arXiv update. Our work studies this topic from different perspectives,

with better results achieved.

15751

0 100
-1

-0.5

epochs

tr
ai

n
in

g
 l

o
ss

w/ stop-grad

w/o stop-grad

0 100
0

1
√

d

epochs

o
u
tp

u
t

st
d

w/ stop-grad

w/o stop-grad

0 100
0

50

epochs

k
N

N
 a

cc
.

w/ stop-grad

w/o stop-grad

acc. (%)

w/ stop-grad 67.7±0.1

w/o stop-grad 0.1

Figure 2. SimSiam with vs. without stop-gradient. Left plot: training loss. Without stop-gradient it degenerates immediately. Middle

plot: the per-channel std of the ℓ2-normalized output, plotted as the averaged std over all channels. Right plot: validation accuracy of a

kNN classifier [34] as a monitor of progress. Table: ImageNet linear evaluation (“w/ stop-grad” is mean±std over 5 trials).

where ‖·‖
2

is ℓ2-norm. This is equivalent to the mean

squared error of ℓ2-normalized vectors [15], up to a scale

of 2. Following [15], we define a symmetrized loss as:

L =
1

2
D(p1, z2) +

1

2
D(p2, z1). (2)

This is defined for each image, and the total loss is averaged

over all images. Its minimum possible value is −1.

An important component for our method to work is a

stop-gradient (stopgrad) operation (Figure 1). We im-

plement it by modifying (1) as:

D(p1,stopgrad(z2)). (3)

This means that z2 is treated as a constant in this term. Sim-

ilarly, the form in (2) is implemented as:

L=
1

2
D(p1,stopgrad(z2))+

1

2
D(p2,stopgrad(z1)).

(4)

Here the encoder on x2 receives no gradient from z2 in the

first term, but it receives gradients from p2 in the second

term (and vice versa for x1).

The pseudo-code of SimSiam is in Algorithm 1.

Baseline settings. Unless specified, our explorations use

the following settings for unsupervised pre-training:

• Optimizer. We use SGD for pre-training. Our method

does not require a large-batch optimizer such as LARS

[36] (unlike [8, 15, 7]). We use a learning rate of

lr×BatchSize/256 (linear scaling [14]), with a base lr=
0.05. The learning rate has a cosine decay schedule

[26, 8]. The weight decay is 0.0001 and the SGD mo-

mentum is 0.9.

The batch size is 512 by default, which is friendly to typi-

cal 8-GPU implementations. Other batch sizes also work

well (Sec. 4.3). We use batch normalization (BN) [22]

synchronized across devices, following [8, 15, 7].

• Projection MLP. The projection MLP (in f) has BN ap-

plied to each fully-connected (fc) layer, including its out-

put fc. Its output fc has no ReLU. The hidden fc is 2048-d.

This MLP has 3 layers.

• Prediction MLP. The prediction MLP (h) has BN applied

to its hidden fc layers. Its output fc does not have BN

(ablation in Sec. 4.4) or ReLU. This MLP has 2 layers.

The dimension of h’s input and output (z and p) is d =
2048, and h’s hidden layer’s dimension is 512, making h
a bottleneck structure (ablation in supplement).

We use ResNet-50 [19] as the default backbone. Other im-

plementation details are in supplement. We perform 100-

epoch pre-training in ablation experiments.

Experimental setup. We do unsupervised pre-training on

the 1000-class ImageNet training set [11] without using la-

bels. The quality of the pre-trained representations is evalu-

ated by training a supervised linear classifier on frozen rep-

resentations in the training set, and then testing it in the val-

idation set, which is a common protocol. The implementa-

tion details of linear classification are in supplement.

4. Empirical Study

In this section we empirically study the SimSiam behav-

iors. We pay special attention to what may contribute to the

model’s non-collapsing solutions.

4.1. Stop­gradient

Figure 2 presents a comparison on “with vs. without

stop-gradient”. The architectures and all hyper-parameters

are kept unchanged, and stop-gradient is the only difference.

Figure 2 (left) shows the training loss. Without stop-

gradient, the optimizer quickly finds a degenerated solution

and reaches the minimum possible loss of−1. To show that

the degeneration is caused by collapsing, we study the stan-

dard deviation (std) of the ℓ2-normalized output z/‖z‖
2
. If

the outputs collapse to a constant vector, their std over all

samples should be zero for each channel. This can be ob-

served from the red curve in Figure 2 (middle).

As a comparison, if the output z has a zero-mean

isotropic Gaussian distribution, we can show that the std of

z/‖z‖
2

is 1√
d

.4 The blue curve in Figure 2 (middle) shows

4Here is an informal derivation: denote z/‖z‖
2

as z′, that is, z′i =

zi/(
∑d

j=1
z2j)

1

2 for the i-th channel. If zj is subject to an i.i.d Gaussian

distribution: zj ∼N (0, 1), ∀j, then z′i≈zi/d
1

2 and std[z′i]≈1/d
1

2 .

15752

pred. MLP h acc. (%)

baseline lr with cosine decay 67.7

(a) no pred. MLP 0.1

(b) fixed random init. 1.5

(c) lr not decayed 68.1

Table 1. Effect of prediction MLP (ImageNet linear evaluation

accuracy with 100-epoch pre-training). In all these variants, we

use the same schedule for the encoder f (lr with cosine decay).

that with stop-gradient, the std value is near 1√
d

. This indi-

cates that the outputs do not collapse, and they are scattered

on the unit hypersphere.

Figure 2 (right) plots the validation accuracy of a k-

nearest-neighbor (kNN) classifier [34]. This kNN classifier

can serve as a monitor of the progress. With stop-gradient,

the kNN monitor shows a steadily improving accuracy.

The linear evaluation result is in the table in Figure 2.

SimSiam achieves a nontrivial accuracy of 67.7%. This

result is reasonably stable as shown by the std of 5 trials.

Solely removing stop-gradient, the accuracy becomes 0.1%,

which is the chance-level guess in ImageNet.

Discussion. Our experiments show that there exist collaps-

ing solutions. The collapse can be observed by the mini-

mum possible loss and the constant outputs.5 The existence

of the collapsing solutions implies that it is insufficient for

our method to prevent collapsing solely by the architecture

designs (e.g., predictor, BN, ℓ2-norm). In our comparison,

all these architecture designs are kept unchanged, but they

do not prevent collapsing if stop-gradient is removed.

The introduction of stop-gradient implies that there

should be another optimization problem that is being solved

underlying. We propose a hypothesis in Sec. 5.

4.2. Predictor

In Table 1 we study the predictor MLP’s effect.

The model does not work if removing h (Table 1a), i.e.,

h is the identity mapping. Actually, this observation can

be expected if the symmetric loss (4) is used. Now the loss

is 1

2
D(z1,stopgrad(z2)) +

1

2
D(z2,stopgrad(z1)). Its

gradient has the same direction as the gradient ofD(z1, z2),
with the magnitude scaled by 1/2. In this case, using stop-

gradient is equivalent to removing stop-gradient and scaling

the loss by 1/2. Collapsing is observed (Table 1a).

We note that this derivation on the gradient direction is

valid only for the symmetrized loss. But we have observed

that the asymmetric variant (3) also fails if removing h,

while it can work if h is kept (Sec. 4.6). These experiments

suggest that h is helpful for our model.

If h is fixed as random initialization, our model does not

work either (Table 1b). However, this failure is not about

5We note that a chance-level accuracy (0.1%) is not sufficient to indi-

cate collapsing. A model with a diverging loss, which is another pattern of

failure, may also exhibit a chance-level accuracy.

batch size 64 128 256 512 1024 2048 4096

acc. (%) 66.1 67.3 68.1 68.1 68.0 67.9 64.0

Table 2. Effect of batch sizes (ImageNet linear evaluation accu-

racy with 100-epoch pre-training).

proj. MLP’s BN pred. MLP’s BN

case hidden output hidden output acc. (%)

(a) none - - - - 34.6

(b) hidden-only X - X - 67.4

(c) default X X X - 68.1

(d) all X X X X unstable

Table 3. Effect of batch normalization on MLP heads (Ima-

geNet linear evaluation accuracy with 100-epoch pre-training).

collapsing. The training does not converge, and the loss

remains high. The predictor h should be trained to adapt to

the representations.

We also find that h with a constant lr (without decay) can

work well and produce even better results than the baseline

(Table 1c). A possible explanation is that h should adapt to

the latest representations, so it is not necessary to force it

to converge (by reducing lr) before the representations are

sufficiently trained. In many variants of our model, we have

observed that h with a constant lr provides slightly better

results. We use this form in the following subsections.

4.3. Batch Size

Table 2 reports the results with a batch size from 64 to

4096. When the batch size changes, we use the same linear

scaling rule (lr×BatchSize/256) [14] with base lr = 0.05.

We use 10 epochs of warm-up [14] for batch sizes ≥1024.

Note that we keep using the same SGD optimizer (rather

than LARS [36]) for all batch sizes studied.

Our method works reasonably well over this wide range

of batch sizes. Even a batch size of 128 or 64 performs de-

cently, with a drop of 0.8% or 2.0% in accuracy. The results

are similarly good when the batch size is from 256 to 2048,

and the differences are at the level of random variations.

This behavior of SimSiam is noticeably different from

SimCLR [8] and SwAV [7]. All three methods are Siamese

networks with direct weight-sharing, but SimCLR and

SwAV both require a large batch (e.g., 4096) to work well.

We also note that the standard SGD optimizer does not

work well when the batch is too large (even in supervised

learning [14, 36]), and our result is lower with a 4096 batch.

We expect a specialized optimizer (e.g., LARS [36]) will

help in this case. However, our results show that a special-

ized optimizer is not necessary for preventing collapsing.

4.4. Batch Normalization

Table 3 compares the configurations of BN on the MLP

heads. In Table 3a we remove all BN layers in the MLP

heads (10-epoch warmup [14] is used specifically for this

15753

entry). This variant does not cause collapse, although the

accuracy is low (34.6%). The low accuracy is likely because

of optimization difficulty. Adding BN to the hidden layers

(Table 3b) increases accuracy to 67.4%.

Further adding BN to the output of the projection MLP

(i.e., the output of f) boosts accuracy to 68.1% (Table 3c),

which is our default configuration. In this entry, we also

find that the learnable affine transformation (scale and off-

set [22]) in f ’s output BN is not necessary, and disabling it

leads to a comparable accuracy of 68.2%.

Adding BN to the output of the prediction MLP h does

not work well (Table 3d). We find that this is not about

collapsing. The training is unstable and the loss oscillates.

In summary, we observe that BN is helpful for optimiza-

tion when used appropriately, which is similar to BN’s be-

havior in other supervised learning scenarios. But we have

seen no evidence that BN helps to prevent collapsing: actu-

ally, the comparison in Sec. 4.1 (Figure 2) has exactly the

same BN configuration for both entries, but the model col-

lapses if stop-gradient is not used.

4.5. Similarity Function

Besides the cosine similarity function (1), our method

also works with cross-entropy similarity. We modify D as:

D(p1, z2) =−softmax(z2)· log softmax(p1). Here the

softmax function is along the channel dimension. The out-

put of softmax can be thought of as the probabilities of be-

longing to each of d pseudo-categories.

We simply replace the cosine similarity with the cross-

entropy similarity, and symmetrize it using (4). All hyper-

parameters and architectures are unchanged, though they

may be suboptimal for this variant. Here is the comparison:

cosine cross-entropy

acc. (%) 68.1 63.2

The cross-entropy variant can converge to a reasonable re-

sult without collapsing. This suggests that the collapsing

prevention behavior is not just about the cosine similarity.

This variant helps to set up a connection to SwAV [7],

which we discuss in Sec. 6.2.

4.6. Symmetrization

Thus far our experiments have been based on the sym-

metrized loss (4). We observe that SimSiam’s behavior of

preventing collapsing does not depend on symmetrization.

We compare with the asymmetric variant (3) as follows:

sym. asym. asym. 2×

acc. (%) 68.1 64.8 67.3

The asymmetric variant achieves reasonable results. Sym-

metrization is helpful for boosting accuracy, but it is not

related to collapse prevention. Symmetrization makes one

more prediction for each image, and we may roughly com-

pensate for this by sampling two pairs for each image in the

asymmetric version (“2×”). It makes the gap smaller.

4.7. Summary

We have empirically shown that in a variety of settings,

SimSiam can produce meaningful results without collaps-

ing. The optimizer (batch size), batch normalization, sim-

ilarity function, and symmetrization may affect accuracy,

but we have seen no evidence that they are related to col-

lapse prevention. It is mainly the stop-gradient operation

that plays an essential role.

5. Hypothesis

We discuss a hypothesis on what is implicitly optimized

by SimSiam, with proof-of-concept experiments provided.

5.1. Formulation

Our hypothesis is that SimSiam is an implementation of

an Expectation-Maximization (EM) like algorithm. It im-

plicitly involves two sets of variables, and solves two un-

derlying sub-problems. The presence of stop-gradient is the

consequence of introducing the extra set of variables.

We consider a loss function of the following form:

L(θ, η) = Ex,T

[

∥

∥Fθ(T (x))− ηx
∥

∥

2

2

]

. (5)

F is a network parameterized by θ. T is the augmentation.

x is an image. The expectation E[·] is over the distribution

of images and augmentations. For the ease of analysis, here

we use the mean squared error ‖ · ‖22, which is equivalent

to the cosine similarity if the vectors are ℓ2-normalized. We

do not consider the predictor yet and will discuss it later.

In (5), we have introduced another set of variables which

we denote as η. The size of η is proportional to the number

of images. Intuitively, ηx is the representation of the image

x, and the subscript x means using the image index to ac-

cess a sub-vector of η. η is not necessarily the output of a

network; it is the argument of an optimization problem.

With this formulation, we consider solving:

min
θ,η
L(θ, η). (6)

Here the problem is w.r.t. both θ and η. This formulation

is analogous to k-means clustering [27]. The variable θ is

analogous to the clustering centers: it is the learnable pa-

rameters of an encoder. The variable ηx is analogous to the

assignment vector of the sample x (a one-hot vector in k-

means): it is the representation of x.

Also analogous to k-means, the problem in (6) can be

solved by an alternating algorithm, fixing one set of vari-

ables and solving for the other set. Formally, we can alter-

nate between solving these two subproblems:

θt ← argmin
θ
L(θ, ηt−1) (7)

ηt ← argmin
η
L(θt, η) (8)

Here t is the index of alternation and “←” means assigning.

15754

Solving for θ. One can use SGD to solve the sub-problem

(7). The stop-gradient operation is a natural consequence,

because the gradient does not back-propagate to ηt−1 which

is a constant in this subproblem.

Solving for η. The sub-problem (8) can be solved inde-

pendently for each ηx. Now the problem is to minimize:

ET

[

‖Fθt(T (x))− ηx‖
2
2

]

for each image x, noting that the

expectation is over the distribution of augmentation T . Due

to the mean squared error,6 it is easy to solve it by:

ηtx ← ET

[

Fθt(T (x))
]

. (9)

This indicates that ηx is assigned with the average repre-

sentation of x over the distribution of augmentation.

One-step alternation. SimSiam can be approximated by

one-step alternation between (7) and (8). First, we approxi-

mate (9) by sampling the augmentation only once, denoted

as T ′, and ignoring ET [·]:

ηtx ← Fθt(T ′(x)). (10)

Inserting it into the sub-problem (7), we have:

θt+1 ← argmin
θ

Ex,T

[

∥

∥Fθ(T (x))−Fθt(T ′(x))
∥

∥

2

2

]

.

(11)

Now θt is a constant in this sub-problem, and T ′ implies

another view due to its random nature. This formulation ex-

hibits the Siamese architecture. Second, if we implement

(11) by reducing the loss with one SGD step, then we can

approach the SimSiam algorithm: a Siamese network natu-

rally with stop-gradient applied.

Predictor. Our above analysis does not involve the predic-

tor h. We further assume that h is helpful in our method

because of the approximation due to (10).

By definition, the predictor h is expected to minimize:

Ez

[

∥

∥h(z1) − z2
∥

∥

2

2

]

. The optimal solution to h should sat-

isfy: h(z1)=Ez[z2]=ET
[

f(T (x))
]

for any image x. This

term is similar to the one in (9). In our approximation in

(10), the expectation ET [·] is ignored. The usage of h may

fill this gap. In practice, it would be unrealistic to actu-

ally compute the expectation ET . But it may be possible

for a neural network (e.g., the preditor h) to learn to pre-

dict the expectation, while the sampling of T is implicitly

distributed across multiple epochs.

6If we use the cosine similarity, we can approximately solve it by ℓ2-

normalizing F ’s output and ηx.

Symmetrization. Our hypothesis does not involve sym-

metrization. Symmetrization is like denser sampling T in

(11). Actually, the SGD optimizer computes the empiri-

cal expectation of Ex,T [·] by sampling a batch of images

and one pair of augmentations (T1, T2). In principle, the

empirical expectation should be more precise with denser

sampling. Symmetrization supplies an extra pair (T2, T1).

This explains that symmetrization is not necessary for our

method to work, yet it is able to improve accuracy, as we

have observed in Sec. 4.6.

5.2. Proof of concept

We design a series of proof-of-concept experiments that

stem from our hypothesis. They are methods different with

SimSiam, and they are designed to verify our hypothesis.

Multi-step alternation. We have hypothesized that the

SimSiam algorithm is like alternating between (7) and (8),

with an interval of one step of SGD update. Under this hy-

pothesis, it is likely for our formulation to work if the inter-

val has multiple steps of SGD.

In this variant, we treat t in (7) and (8) as the index

of an outer loop; and the sub-problem in (7) is updated

by an inner loop of k SGD steps. In each alternation,

we pre-compute the ηx required for all k SGD steps using

(10) and cache them in memory. Then we perform k SGD

steps to update θ. We use the same architecture and hyper-

parameters as SimSiam. The comparison is as follows:

1-step 10-step 100-step 1-epoch

acc. (%) 68.1 68.7 68.9 67.0

Here, “1-step” is equivalent to SimSiam, and “1-epoch” de-

notes the k steps required for one epoch. All multi-step

variants work well. The 10-/100-step variants even achieve

better results than SimSiam, though at the cost of extra pre-

computation. This experiment suggests that the alternating

optimization is a valid formulation, and SimSiam is a spe-

cial case of it.

Expectation over augmentations. The usage of the pre-

dictor h is presumably because the expectation ET [·] in (9)

is ignored. We consider another way to approximate this

expectation, in which we find h is not needed.

In this variant, we do not update ηx directly by the

assignment (10); instead, we maintain a moving-average:

ηtx ← m ∗ ηt−1
x + (1−m) ∗Fθt(T ′(x)), where m is a mo-

mentum coefficient (0.8 here). This computation is similar

to maintaining the memory bank as in [34]. This moving-

average provides an approximated expectation of multiple

views. This variant has 55.0% accuracy without the predic-

tor h. As a comparison, it fails completely if we remove h
but do not maintain the moving average (as shown in Ta-

ble 1a). This proof-of-concept experiment supports that the

usage of predictor h is related to approximating ET [·].

15755

method
batch
size

negative
pairs

momentum
encoder

100 ep 200 ep 400 ep 800 ep

SimCLR (repro.+) 4096 X 66.5 68.3 69.8 70.4

MoCo v2 (repro.+) 256 X X 67.4 69.9 71.0 72.2

BYOL (repro.) 4096 X 66.5 70.6 73.2 74.3

SwAV (repro.+) 4096 66.5 69.1 70.7 71.8

SimSiam 256 68.1 70.0 70.8 71.3

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224×224 views. Evaluation

is on a single crop. All competitors are from our reproduction, and “+” denotes improved reproduction vs. original papers (see supplement).

VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.

pre-train AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask
50

APmask APmask
75

scratch 35.9 16.8 13.0 60.2 33.8 33.1 44.0 26.4 27.8 46.9 29.3 30.8

ImageNet supervised 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR (repro.+) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3

MoCo v2 (repro.+) 77.1 48.5 52.5 82.3 57.0 63.3 58.8 39.2 42.5 55.5 34.3 36.6

BYOL (repro.) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0

SwAV (repro.+) 75.5 46.5 49.6 81.5 55.4 61.4 57.6 37.6 40.3 54.2 33.1 35.1

SimSiam, base 75.5 47.0 50.2 82.0 56.4 62.8 57.5 37.9 40.9 54.2 33.2 35.2

SimSiam, optimal 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

Table 5. Transfer Learning. All unsupervised methods are based on 200-epoch pre-training in ImageNet. VOC 07 detection: Faster

R-CNN [30] fine-tuned in VOC 2007 trainval, evaluated in VOC 2007 test; VOC 07+12 detection: Faster R-CNN fine-tuned in VOC 2007

trainval + 2012 train, evaluated in VOC 2007 test; COCO detection and COCO instance segmentation: Mask R-CNN [18] (1× schedule)

fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone [13]. All VOC

results are the average over 5 trials. Bold entries are within 0.5 below the best.

5.3. Discussion

Our hypothesis is about what the optimization problem

can be. It does not explain why collapsing is prevented.

We point out that SimSiam and its variants’ non-collapsing

behavior still remains as an empirical observation.

Here we briefly discuss our understanding on this open

question. The alternating optimization provides a different

trajectory, and the trajectory depends on the initialization.

It is unlikely that the initialized η, which is the output of a

randomly initialized network, would be a constant. Starting

from this initialization, it may be difficult for the alternating

optimizer to approach a constant ηx for all x, because the

method does not compute the gradients w.r.t. η jointly for

all x. The optimizer seeks another trajectory (Figure 2 left),

in which the outputs are scattered (Figure 2 middle).

6. Comparisons

6.1. Result Comparisons

ImageNet. We compare with the state-of-the-art frame-

works in Table 4 on ImageNet linear evaluation. For fair

comparisons, all competitors are based on our reproduc-

tion, and “+” denotes improved reproduction vs. the original

papers (see supplement). For each individual method, we

follow the hyper-parameter and augmentation recipes in its

original paper.7 All entries are based on a standard ResNet-

50, with two 224×224 views used during pre-training.

7In our BYOL reproduction, the 100, 200(400), 800-epoch recipes fol-

low the 100, 300, 1000-epoch recipes in [15]: lr is {0.45, 0.3, 0.2}, wd is

{1e-6, 1e-6, 1.5e-6}, and momentum coefficient is {0.99, 0.99, 0.996}.

Table 4 shows the results and the main properties of the

methods. SimSiam is trained with a batch size of 256, using

neither negative samples nor a momentum encoder. Despite

it simplicity, SimSiam achieves competitive results. It has

the highest accuracy among all methods under 100-epoch

pre-training, though its gain of training longer is smaller. It

has better results than SimCLR in all cases.

Transfer Learning. In Table 5 we compare the represen-

tation quality by transferring them to other tasks, includ-

ing VOC [12] object detection and COCO [25] object de-

tection and instance segmentation. We fine-tune the pre-

trained models end-to-end in the target datasets. We use the

public codebase from MoCo [17] for all entries, and search

the fine-tuning learning rate for each individual method. All

methods are based on 200-epoch pre-training in ImageNet

using our reproduction.

Table 5 shows that SimSiam’s representations are trans-

ferable beyond the ImageNet task. It is competitive among

these leading methods. The “base” SimSiam in Table 5 uses

the baseline pre-training recipe as in our ImageNet experi-

ments. We find that another recipe of lr=0.5 and wd=1e-5

(with similar ImageNet accuracy) can produce better results

in all tasks (Table 5, “SimSiam, optimal”).

We emphasize that all these methods are highly success-

ful for transfer learning—in Table 5, they can surpass or

be on par with the ImageNet supervised pre-training coun-

terparts in all tasks. Despite many design differences, a

common structure of these methods is the Siamese network.

This comparison suggests that the Siamese structure is a

core factor for their general success.

15756

6.2. Methodology Comparisons

Beyond accuracy, we also compare the methodologies of

these Siamese architectures. Our method plays as a hub to

connect these methods. Figure 3 abstracts these methods.

The “encoder” subsumes all layers that can be shared be-

tween both branches (e.g., backbone, projection MLP [8],

prototypes [7]). The components in red are those missing in

SimSiam. We discuss the relations next.

Relation to SimCLR [8]. SimCLR relies on negative sam-

ples (“dissimilarity”) to prevent collapsing. SimSiam can be

thought of as “SimCLR without negatives”.

To have a more thorough comparison, we append the

prediction MLP h and stop-gradient to SimCLR.8 Here is

the ablation on our SimCLR reproduction:

SimCLR w/ predictor w/ pred. & stop-grad

66.5 66.4 66.0

Neither the stop-gradient nor the extra predictor is neces-

sary or helpful for SimCLR. As we have analyzed in Sec. 5,

the introduction of the stop-gradient and extra predictor is

presumably a consequence of another underlying optimiza-

tion problem. It is different from the contrastive learning

problem, so these extra components may not be helpful.

Relation to SwAV [7]. SimSiam is conceptually analogous

to “SwAV without online clustering”. We build up this

connection by recasting a few components in SwAV. (i)

The shared prototype layer in SwAV can be absorbed

into the Siamese encoder. (ii) The prototypes were

weight-normalized outside of gradient propagation in [7];

we instead implement by full gradient computation [31].9

(iii) The similarity function in SwAV is cross-entropy. With

these abstractions, a highly simplified SwAV illustration is

shown in Figure 3.

SwAV applies the Sinkhorn-Knopp (SK) transform [10]

on the target branch (which is also symmetrized [7]). The

SK transform is derived from online clustering [7]: it is

the outcome of clustering the current batch subject to a bal-

anced partition constraint. The balanced partition can avoid

collapsing. Our method does not involve this transform.

We study the effect of the prediction MLP h and stop-

gradient on SwAV. Note that SwAV applies stop-gradient

on the SK transform, so we ablate by removing it. Here is

the comparison on our SwAV reproduction:

SwAV w/ predictor remove stop-grad

66.5 65.2 NaN

Adding the predictor does not help either. Removing stop-

gradient (so the model is trained end-to-end) leads to diver-

gence. As a clustering-based method, SwAV is inherently

8We append the extra predictor to one branch and stop-gradient to the

other branch, and symmetrize this by swapping.
9This modification produces similar results as original SwAV, but it can

enable end-to-end propagation in our ablation.

encoder

similarity

encoder

predictor

image

SimSiam

encoder

similarity &

dissimilarity

encoder

image

SimCLR

encoder

similarity

encoder

Sinkhorn-Knopp

image

SwAV

encoder

similarity

momentum

encoder

predictor

image

moving

average

BYOL

grad grad

grad grad

grad

Figure 3. Comparison on Siamese architectures. The en-

coder includes all layers that can be shared between both branches.

The dash lines indicate the gradient propagation flow. In BYOL,

SwAV, and SimSiam, the lack of a dash line implies stop-gradient,

and their symmetrization is not illustrated for simplicity. The com-

ponents in red are those missing in SimSiam.

an alternating formulation [7]. This may explain why stop-

gradient should not be removed from SwAV.

Relation to BYOL [15]. Our method can be thought of as

“BYOL without the momentum encoder”, subject to many

implementation differences. The momentum encoder may

be beneficial for accuracy (Table 4), but it is not necessary

for preventing collapsing. Given our hypothesis in Sec. 5,

the η sub-problem (8) can be solved by other optimizers,

e.g., a gradient-based one. This may lead to a temporally

smoother update on η. Although not directly related, the

momentum encoder also produces a smoother version of

η. We believe that other optimizers for solving (8) are also

plausible, which can be a future research problem.

7. Conclusion

We have explored Siamese networks with simple de-

signs. The competitiveness of our minimalist method sug-

gests that the Siamese shape of the recent methods can be

a core reason for their effectiveness. Siamese networks are

natural and effective tools for modeling invariance, which is

a focus of representation learning. We hope our study will

attract the community’s attention to the fundamental role of

Siamese networks in representation learning.

References

[1] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and rep-

resentation learning. arXiv:1911.05371, 2019.

15757

[2] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information

across views. arXiv:1906.00910, 2019.

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional Siamese

networks for object tracking. In ECCV, 2016.

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger, and Roopak Shah. Signature verification using

a “Siamese” time delay neural network. In NeurIPS, 1994.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In ECCV, 2018.

[6] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Ar-

mand Joulin. Unsupervised pre-training of image features

on non-curated data. In ICCV, 2019.

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learn-

ing of visual features by contrasting cluster assignments.

arXiv:2006.09882, 2020.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv:2002.05709, 2020.

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv:2003.04297, 2020.

[10] Marco Cuturi. Sinkhorn distances: Lightspeed computation

of optimal transport. In NeurIPS, 2013.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009.

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The PASCAL Visual

Object Classes (VOC) Challenge. IJCV, 2010.

[13] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron, 2018.

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

[15] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi

Munos, and Michal Valko. Bootstrap your own latent: A new

approach to self-supervised learning. arXiv:2006.07733v1,

2020.

[16] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-

ality reduction by learning an invariant mapping. In CVPR,

2006.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. arXiv:1911.05722, 2019.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[20] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Adam Trischler, and Yoshua Bengio. Learn-

ing deep representations by mutual information estimation

and maximization. In ICLR, 2019.

[21] Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali

Razavi, Carl Doersch, S. M. Ali Eslami, and Aaron van den

Oord. Data-efficient image recognition with contrastive pre-

dictive coding. arXiv:1905.09272v2, 2019.

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015.

[23] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML deep learning workshop, 2015.

[24] Yann LeCun, Bernhard Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne Hubbard, and

Lawrence D Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural computation, 1989.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV. 2014.

[26] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-

ent descent with warm restarts. In ICLR, 2017.

[27] James MacQueen et al. Some methods for classification and

analysis of multivariate observations. 1967.

[28] Ishan Misra and Laurens van der Maaten. Self-

supervised learning of pretext-invariant representations.

arXiv:1912.01991, 2019.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-

resentation learning with contrastive predictive coding.

arXiv:1807.03748, 2018.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NeurIPS, 2015.

[31] Tim Salimans and Diederik P Kingma. Weight normaliza-

tion: A simple reparameterization to accelerate training of

deep neural networks. In NeurIPS, 2016.

[32] Yaniv Taigman, Ming Yang, MarcAurelio Ranzato, and Lior

Wolf. DeepFace: Closing the gap to human-level perfor-

mance in face verification. In CVPR, 2014.

[33] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv:1906.05849, 2019.

[34] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In CVPR, 2018.

[35] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang.

Unsupervised embedding learning via invariant and spread-

ing instance feature. In CVPR, 2019.

[36] Yang You, Igor Gitman, and Boris Ginsburg. Large batch

training of convolutional networks. arXiv:1708.03888, 2017.

15758

