
Exploring software development at the very large-scale:

a revelatory case study and research agenda for agile

method adaptation

Torgeir Dingsøyr
1,2

& Nils Brede Moe
1
&

Tor Erlend Fægri
1
& Eva Amdahl Seim

3

Published online: 2 June 2017
The Author(s) 2017. This article is an open access publication

Abstract Agile development methods were believed to best suit small, co-located

teams, but the success in small teams has inspired use in large and very large-scale

software development. However, fundamental assumptions of agile development are

challenged when applying the methods at a very large scale. An interpretative revela-

tory case study on one of the largest software development programmes in Norway

shows how agile methods were adapted and complemented with practices from tradi-

tional methods to handle the scale. The programme ran over four years with 12 co-

located development teams and a total of 175 people involved. The case study was

conducted retrospectively using group interviews with 24 participants and documents.

Findings on key challenging areas are reported: customer involvement, software archi-

tecture, and inter-team coordination. The revelatory study also suggests refinements of

a research agenda for very large-scale agile development.

Empir Software Eng (2018) 23:490–520
DOI 10.1007/s10664-017-9524-2

Communicated by:Vittorio Cortellessa

* Torgeir Dingsøyr
torgeird@sintef.no

Nils Brede Moe
nils.b.moe@sintef.no

Tor Erlend Fægri
tor.e.faegri@sintef.no

Eva Amdahl Seim
eva.amdahl.seim@sintef.no

1 Department of Software Engineering, Safety and Security, SINTEF, Box 4760 Sluppen,
Trondheim 7465, Norway

2 Department of Computer Science, Norwegian University of Science and Technology, Trondheim,
Norway

3 Department of Industrial Management, SINTEF, Box 4760 Sluppen, Trondheim, PO, Norway

http://orcid.org/0000-0003-0725-345X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9524-2&domain=pdf

Keywords Very large-scale software development . Software engineering . Requirements

engineering . Projectmanagement . Portfoliomanagement .Knowledgemanagement .Customer

involvement . Agile software development . Multi team systems . Inter-team coordination .

Software architecture . Scrum . Extreme programming

1 Introduction

Since the formulation of the agile manifesto in 2001, agile methods have transformed software

development practice by strongly emphasizing change tolerance, evolutionary delivery, and

active end-user involvement (Dingsøyr et al. 2012). Rajlich (2006) describes agile develop-

ment as a paradigm shift in software engineering that Bbrings a host of new topics into the

forefront of software engineering research^. In the first special issue on agile development in

IEEE Computer, Williams and Cockburn (2003) stated that agile methods Bbest suit collocated

teams of about 50 people or fewer who have easy access to user and business experts and are

developing projects that are not life-critical^. Agile methods have been criticized for lack of

focus on architecture, the little scientific support for claims in the agile community, and for

being applicable only to small teams (Dybå and Dingsøyr 2008). Boehm argued that projects

need to find a Bsweet spot^ between traditional and agile development based on the level of

risk that the project is willing to take (Boehm 2002; Boehm and Turner 2003).

Since then, the success of agile methods for small, co-located teams has inspired use in new

domains, and companies increasingly apply agile practices to large-scale projects. Frameworks

for managing large agile development projects have started to appear, such as the Scaled Agile

Framework1 and Large Scale Scrum.2 New challenges arise as agile development techniques

are used on large-scale projects. BAgile in the large^ was voted Btop burning research

question^ by practitioners at the XP2010 conference (Freudenberg and Sharp 2010). Practi-

tioners ask questions like, "How do you scale up a large project over many months or even

years?" (Gregory et al. 2016).

Large-scale projects or programmes are also fraught with challenges in other industries such

as infrastructure, construction, water, and energy. Such Bmegaprojects^ typically use tradition-

al project management methods and are often associated with large cost overruns and delays as

the considerable complexities are difficult to manage effectively (Flyvbjerg 2014; Giezen

2012). For companies engaged in development programmes, effective portfolio management

is critical for managing the exponential growth of interdependencies and mitigating associated

risks (Blichfeldt and Eskerod 2008). However, the iterative nature of agile methods introduces

new challenges in portfolio management that necessitate different patterns of action (Nerur and

Balijepally 2007; Stettina and Horz 2015).

The term Blarge-scale agile development^ has been used to describe agile develop-

ment in a range of contexts – spanning large teams to large multi-team projects to

making use of principles of agile development in a whole organization. We define

large-scale agile development as agile development efforts that involve a large number

of actors, a large number of systems and interdependencies (Rolland et al. 2016), which

have Bmore than two teams^ and very large-scale as "agile development efforts with more

than ten teams" (Dingsøyr et al. 2014), These definitions exclude agile methods applied

1 See http://www.scaledagileframework.com/
2 See https://less.works/

Empir Software Eng (2018) 23:490–520 491

http://www.scaledagileframework.com
https://less.works

in large organizations (Barlow et al. 2011) from Blarge-scale agile^, which we consider to

be a research direction on its own. Many refer to this as Benterprise agile^ (Bass 2015;

Fitzgerald and Stol 2017).

Fundamental assumptions in agile development are severely challenged when using

these practices in large-scale projects. Self-management is a central principle in agile

methods, but studies from fields other than software development indicate that self-

management can reduce the ability to coordinate across teams effectively (Ingvaldsen

and Rolfsen 2012). Also, while the teams need to self-manage, team members need to

have an effective knowledge network and collaborate closely with experts outside the

team in large-scale agile environments (Moe et al. 2014; Šmite et al. 2017). Having an

emerging architecture (Eckstein 2014) could hamper project progress when many teams

are working in parallel. Nord et al. (2014) argue that the tools needed to handle

architectural decisions in large projects do not exist in agile methods. Many agile teams

working towards the same goal requires much coordination and management effort

(Petersen and Wohlin 2010). Practices like Scrum of Scrum have been found to be

inefficient in large projects (Paasivaara et al. 2012) as is it hard to find the right level of

detail in discussions to keep the forum interesting for many participants. Knowledge

sharing focuses on tacit knowledge in agile methods, which is challenged when the

number of participants in a project or programme increases. Large-scale programmes

often have a high number of stakeholders and users of the product, and their needs need

to be communicated to a number of developers. This intensifies the challenges with

customer involvement.

The workshop on large-scale agile development at the International Conference on

Agile Software Development (XP) has worked to define a research agenda where topics

with high priority include Borganization of large development efforts^, Bvariability

factors in scaling^, Binter-team coordination^, and Brelease planning and architecture^

(Dingsøyr and Moe 2014).

This article presents an interpretative revelatory case study of a very large-scale develop-

ment programme with extensive use of the agile method Scrum. We raise the following

research question: How can agile methods be adapted in the very large scale, regarding

programme organization, customer involvement, software architecture and inter-team coordi-

nation? Arguments for the chosen topic areas are provided in section 3. The main contribution

is a thorough description of method adaptation and identification of key characteristics of

adaptation, for example by showing how customer involvement was organized to adapt to both

a large number of customer representatives and a large number of developers. Based on these

findings, we suggest directions for future research in the form of novel research questions that

extend the research agenda on large-scale agile development.

In the following, Section 2 provides an introduction to very large-scale development, first

outlining differences between traditional and agile development and then providing back-

ground on three focus areas: customer involvement, software architecture and inter-team

coordination. Section 3 provides a description of how we conducted the interpretative revela-

tory case study, selection criteria for the case as well as methods for data collection and

analysis. Section 4 describes results, first through a thick description of how the large-scale

programme was organized, then providing details on customer involvement, software archi-

tecture and inter-team coordination. Section 5 contrasts findings with previous work identified

in Section 2 and discusses the main limitations of the study. Section 6 concludes by formu-

lating novel research questions based on our study.

492 Empir Software Eng (2018) 23:490–520

2 Very Large-Scale Development

Boehm and Turner (2003) suggested that programmes should find a Bsweet spot^ combining a

mixture of traditional and agile methods. Previous research on the use of development methods

suggests that methods need to be adapted to the work context (Fitzgerald et al. 2006). We first

describe some of the main differences between traditional and agile development before

focusing on three aspects of adaptation that are critical in very large scale development:

customer involvement, software architecture, and inter-team coordination.

2.1 Traditional and Agile Development

Nerur et al. (2005) described the fundamental assumption behind traditional methods to be that

information systems are fully specifiable and built through meticulous and extensive planning.

Agile methods, on the other hand, assume that information systems can be built through

continuous design, improvement, and testing based on rapid feedback and change. Learning

and adaptation should be embraced (Conboy 2009). Adapting the method to the context will

involve balance in a number of areas (Vinekar et al. 2006), as illustrated in Table 1. Very large-

scale projects involve great risk and management attention. Boehm and Turner (2003) argued

that traditional and agile methods should be balanced when facing risk such as increases in

programme size.

The transition from traditional plan-driven development to a more agile method with

iterations and development conducted in small teams was the focus of a study by

Petersen and Wohlin (2010). They examined the development of three large subsystem

components in an Ericsson product involving 117 people and found that many of the

issues raised in traditional development were not raised after the transition to agile

development. This suggests that agile methods can also work well in large-scale

product development. Another study from Ericsson finds that agile principles in large

scale contributed to knowledge-sharing, and led to increased project visibility and

effectiveness in coordination (Lagerberg et al. 2013).

One of the very few studies on large projects combining traditional and agile

methods examined a project to develop a web-based customer booking engine for an

American cruise company (Batra et al. 2010). The study describes a $15 million project

that lasted for 28 months. The project was distributed and combined Scrum with the

Table 1 Traditional versus agile development (excerpt from (Nerur et al. 2005))

Traditional development Agile development

Management style Command and control Leadership and collaboration
Knowledge management Explicit Tacit
Communication Formal Informal
Development model Life-cycle model (waterfall,

spiral or some variation)
The evolutionary-delivery model

Desired organizational
form/ structure

Mechanistic (bureaucratic
with high formalization),
aimed at large organizations

Organic (flexible and participative
encouraging cooperative social
action), aimed at small and
medium-sized organizations

Quality control Heavy planning and strict
control. Late, heavy testing

Continuous control of
requirements, design and
solutions. Continuous testing

Empir Software Eng (2018) 23:490–520 493

Project Management Body of Knowledge3 framework. Customers were available but did

not work together with developers on a daily basis. The iteration length was two weeks.

Some of the challenges identified in the study were due to the size and involvement of a

high number of internal business sponsors, users, project managers, analysts, and exter-

nal developers from the UK and India; Customer involvement. The communications

were mainly formal, and formal documents were needed for changes. However, the

project was considered a success, and the study describes the balance between traditional

and agile methods as essential in achieving both project control and agility.

A model organizing development as chains of Scrum teams (the output of one team

is the input of the next) is described in a study of three cases of organizations with 150,

34, and 5 Scrum teams (Vlietland and van Vliet 2015). The study investigated strategy,

structure, collaboration, coordination, communication, mind-set, and competence of

people. The dependence of teams on the results from other teams introduces a number

of challenges. The three cases illustrate challenges that include a lack of coordination in

the chain, mismatch of backlog priority between teams, challenges in alignment be-

tween teams, and unpredictability in delivering on commitments, this suggests chal-

lenges with inter-team coordination and main design decisions as expressed in the

software architecture.

2.2 Customer Involvement

Agile methods are people-centric and recognize the value that competent people and

their relationships bring to software development (Nerur and Balijepally 2007). A key

pillar in any agile method is the close and continual collaboration between clients and

developers (Maiden and Jones 2010). Therefore, agile methods are highly dependent on

the on-site customer identifying and prioritizing features, providing feedback, and

guiding change in the course of the development (Vinekar et al. 2006). In their study

on a large-scale agile project, Bjarnason et al. (2012) found that low customer involve-

ment in near-development roles in combination with weak awareness of overall goals

may result in an unrealistically large project scope. Further, overscoping can lead to a

number of negative effects, including quality issues, delays, and failure to meet

customer expectations. A study on large-scale and distributed projects found that

understanding requirement dependencies is of paramount importance in such projects

(Daneva et al. 2013).

Active participation and constant involvement of the customer in systems develop-

ment yields greater benefits, but this reliance on the customer can fail if the on-site

customer goals are misaligned with the goals of other stakeholders. Having multiple

on-site customers in a large-scale project increases the risk of failure because of the

challenge of establishing a common understanding among all customer representatives.

A fragmented view of the system that each customer may have is likely to have a

negative impact on the project (Ramesh et al. 2010). Further, when different stake-

holder groups have different priorities, there is a need for open and transparent

dialogue and cross stakeholder group communication in large-scale agile projects

(Barney and Wohlin 2009).

3 See http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

494 Empir Software Eng (2018) 23:490–520

http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

2.3 Software Architecture

The software architecture is the fundamental technical organization of a system. How and

when to make architectural decisions have been the subject of major debate in the software

engineering field (Abrahamsson et al. 2010). In traditional development, the architecture is

defined prior to implementation and testing, whereas the architectural design emerges as a

result of on-going clarification in ‘purist’ agile development. Traditionally, software architec-

ture is associated with up-front designs and stable structures that accommodate pre-defined,

non-functional requirements. The assumption is that the value of good architectural decisions

will surface at a later point in time in forms such as more easily maintainable code and

scalability (Faber 2010). Also, a sound architecture is largely invisible and provides an

effective structure for subsequent functionality. It is interesting to note that software

architecture has meaning and significance for a wide variety of stakeholders. Different

stakeholders are also likely to associate different meanings to software architecture.

Smolander (2002) suggested that the four metaphors blueprints, literature, language, and

decisions capture the meaning of software architecture for different actors involved in software

development. This underlines the pervasive role of software architecture.

Several approaches to architecture work have been taken in large agile projects. Some start

with the architecture (‘big up-front design‘) and then use agile methods. Others spend the first

iteration focusing on architecture. Others again start directly on development and let the

architecture emerge. To construct a large software system developed by a number of teams,

it is vitally important for the architecture to be agreed upon and communicated without

introducing the bureaucracy and overhead associated with traditional methods. In a study on

software product companies, Unphon and Dittrich (2010) found that architectural knowledge

was transferred by face-to-face communication with chief architects taking the role of a

Bwalking architecture^.

Awareness and social protocols are important perspectives on how architecture is commu-

nicated. Unphon and Dittrich do not discuss the increased challenges of architectural work at a

large scale. In their study of a large-scale agile approach at Ericsson, Petersen and Wohlin

(2010) found a need for a high-level architectural design to facilitate planning. Nord et al.

(2014) argued that for large-scale agile projects, agility is enabled by architecture, and

architecture is enabled by agility. They suggested several tactics for handling architecture in

large-scale projects, including making use of a matrix structure and focusing on the production

infrastructure.

2.4 Inter-Team Coordination

Coordination can be defined as Bthe managing of dependencies^ (Malone and Crowston

1994), where dependencies can be related to tasks, knowledge, resources, or technology.

The central challenge in coordination is identifying the right form or artefacts, arenas, and

degree of formalization in large projects with high uncertainty. In small agile projects, the

development team coordinates work through frequent informal interaction among themselves

and with customers, as in the customer-on-site practice in eXtreme Programming. Scrum has

dedicated meetings for planning, review, and retrospectives. Many teams use visual boards,

like in Kanban, to show who is working on what and the status of work tasks. Strode et al.

(2012) explain coordination at the team level in agile teams and propose a model for

coordination strategy and coordination effectiveness.

Empir Software Eng (2018) 23:490–520 495

For large-scale projects, there is less support. Scrum prescribes regular meetings between

Scrum teams (BScrum of Scrums^) in order to manage the interfaces between teams. Eckstein

shows techniques that are applicable to large projects in order to facilitate planning, status

information, integration, and retrospectives in her book with recommendations to practitioners

(Eckstein 2004). Some large-scale agile frameworks have been suggested by practitioners

(Larman and Vodde 2013; Larman and Vodde 2017; Leffingwell et al. 2017) that describe roles

and arenas for inter-team coordination. Visual boards was the primary form of inter-team

coordination in a project in Sweden described in an experience report by Kniberg (2011).

There is a small body of studies on inter-team coordination. Vlietland and van Vliet (2015)

propose that embedded coordination practices within and between Scrum teams positively

impact delivery predictability in large projects. A study of BScrum of Scrums^ (Paasivaara

et al. 2012) suggests that this forum did not lead to satisfactory coordination: feature-specific

or site-specific fora were better, but coordination at the project level was still a challenge.

Researchers working closely with SAP (Scheerer et al. 2014; Scheerer and Kude 2014) have

developed models of coordination called Bcoordination configurations^ and are exploring how

coordination configuration influences coordination effectiveness. Paasivaara and Lassenius

(2014) describe a very large-scale development initiative at Ericsson with 40 teams where four

types of communities of practice (Wenger 1998) are used to coordinate teams. A survey on

coordination in large-scale software teams found that respondents wished more effective and

efficient communication, as well as the importance of good personal relationships for coordi-

nation (Begel et al. 2009).

A management science study (Ingvaldsen and Rolfsen 2012) suggests that inter-group

coordination is a major challenge when groups are self-managing. Self-management involves

giving teams authority to decide how to 1) execute tasks, and 2) monitor and manage their

work process (Hackman 1986). Moe et al. (2009) describe challenges to self-management at

the team level and highlight challenges at the organizational level, such as shared resources,

organizational control, and specialist culture.

3 Method

We have chosen an interpretative embedded revelatory case study (Klein and Myers

1999; Runeson and Höst 2009; Yin 2014) to investigate the research question of how

agile methods can be adapted in the very large scale. There are few empirical studies on

how agile methods are adapted at the very large scale, and we seek new insights to

generate ideas for research agendas on agile approaches in very large-scale development.

We focus on one case that was described by practitioners as a particularly successful very

large programme with extensive use of agile methods.4 We selected a case where the

whole development programme was co-located in order to remove effects due to distri-

bution of teams. In the following, we refer to the case as the Perform programme, which

aimed to develop a new office automation system for the Norwegian Public Service

Pension Fund (the BPension Fund^). This programme ran from 2008 to 2012 and had at

most 12 development teams working in parallel. The development project was divided in

4 The programme is known for presenting their model at national agile development conferences, and is a

programme that was completed on time and budget.

496 Empir Software Eng (2018) 23:490–520

three parts: one carried out by an internal development unit (6 teams) and two other parts

conducted by consulting companies Accenture and Steria.5 We provide more details of

the project in the results section. After an initial meeting with the manager of the

development project from the Pension Fund, we met with project managers from

Accenture and Steria and were granted access to collect data from all three parties.

We chose an embedded study to gain further insight in topics described in section 2 which

are challenging in very large-scale programmes:

1. Customer involvement, because a very-large programme involves a number of require-

ments, stakeholders and developers.

2. Software architecture, because a very-large programme involves many developers and it is

a challenge to adjust main design decisions given many stakeholders.

3. Inter-team coordination, as very-large programmes involve a number of teams who handle

tasks with interdependencies and thus need methods that facilitate coordination.

Before starting data collection, we studied public presentations and an official report from

the programme in order to increase our understanding. We quickly realized that the programme

had a very complex organization with 175 people involved and a number of projects and

subprojects. Our data collection started after the project was finished, and all programme

personnel were then allocated to new projects. This created challenges in gaining access to

people and in that it had been over a year since some had worked on the project.

3.1 Data Collection

We chose to use two types of data for this revelatory study: Group interviews and documents:

First, for each topic in the embedded case study design (customer involvement, software

architecture, inter-team coordination), we organized three group interviews (Myers and

Newman 2007), one for each organization. The reason for three interviews on each topic

was that we knew from introductory meetings that there would be slightly different approaches

in the three development subprojects, and having meetings in each organization might have led

to more openness (and trust as discussed by Myers and Newman (2007)) than in joint group

meetings. Due to the explorative character of the study we primarily wanted groups in order to

facilitate a broader discussion.

We asked the three organizations to invite the most relevant people to attend each group

interview. This involved people with responsibility for the topic, for example from team level,

subproject level and programme level. At Accenture, the key persons working on architecture

were no longer working at the company. Table 2 gives an overview of the interview groups and

lists the number of participants for each group. In total, 24 people participated. At Steria and

the Pension Fund, some participated in several groups, making a total of 19 individuals. These

people had a number of roles in Perform, from project management, subproject management,

technical architecture, functional architecture, testing, development leadership, GUI, informa-

tion security, Scrum masters, and developers (See Table 2). Note that there is a bias in

participation towards employees in management positions (discussed in the limitations sec-

tion). However, many of the participants had started in the programme as developers and

assumed other roles during the programme. The participants selected where the ones who had

5 Now Sopra Steria.

Empir Software Eng (2018) 23:490–520 497

responsibility for the topics we discuss, but we do not claim to represent all views of stakeholders

on the topics. At the time of the data collection, all participants were seniors, with at least four

years of experience in development, architecture or management positions, and at least four years

of experience from their own organization. Intervieweeswere informed that the study is registered

by and performed according to specifications by the Norwegian Data Protection Official for

Research, which regulates collection and use of personal data material.

Two researchers participated in each group interview, and there was one interview guide per

topic (see Appendix A). We developed a timeline for the project, which was shown to the

participants so that they could remember key events in the project. The researchers had roles of

leading and moderating the discussion and taking notes. All interviews would start with

participants explaining their role in the project. One meeting at Accenture included only one

person and was conducted as a semi-structured interview (Myers and Newman 2007). One group

interview at Steria included six persons, and we used brainstorming techniques to ensure

contribution from everyone invited. Participants brainstormed on key events, on what they

thought was conducted well in the programme within the topic of discussion, and on what they

thought could be improved. All nine meetings lasted two hours and were recorded and tran-

scribed. We took pictures of drawings on whiteboards. This produced a total of 247 pages of

transcribed material. The transcripts were sent to participants for information and for comments.

Second were three documents: the official report after project completion, the internal

experience report (both from 2012), and the quality assurance report for the project, which was

written by an external consulting company in 2010. We chose to include these documents as

they provide overall descriptions of the programme such as planned organization, processes

and roles. The internal experience report provides main lessons learned by the programme, the

quality assurance report provides an assessment of main risks. In total, these reports contained

277 pages of text.

3.2 Data Analysis

We imported all interview transcripts and documents into a tool for qualitative analysis and did

a descriptive and holistic coding (Saldaña 2009) of the topic inter-team coordination. Three

Table 2 Participants in group interviews and interviews. In total, 24 project members participated in interviews

Theme Organisation Participants Roles present

Customer involvement Accenture 1 Functional architect
Steria 6 Functional architect, GUI

responsible, subproject
manager, technical
architects, test responsible

Pension Fund 3 Functional architects
Software architecture Accenture 0

Steria 3 Technical architects
Pension Fund 3 Chief architect, technical

architects
Inter-team coordination Accenture 2 Subproject managers

Steria 3 Functional architect, subproject
manager, technical architect

Pension Fund 3 Scrum master, subproject
manager, technical architect

498 Empir Software Eng (2018) 23:490–520

researchers read the relevant documents and did individual coding, and then we agreed on

coding in joint meetings. Units of text ranged from sentences to whole pages and were coded

into topics such as BScrum of Scrums^ and BMetascrum^. The results of this pilot was

presented and discussed with the rest of the research team, and we set up two research teams

with two persons each to code the material on customer involvement and software architecture.

Given the various topics and backgrounds of researchers, the level of detail in the coding

varied between the research teams.

As an example, the statement, "On an overall level, the teams worked quite similarly after

exchanging experience. So the Scrum boards were used quite similarly across the teams. There

were differences in colours, but the function was quite similar", was coded as Bboard

discussions^ and grouped with 37 other concepts under Binter-team coordination^. The

following passage was coded as Bresponsibility ,̂ "it was important that when teams got user

stories and were to detail test conditions… that everyone contributed to detailing, then it was

sent to project business for approval, and when you had the stamp from the business resource,

you had agreed on scope". This was coded with six other concepts under the category

Bparticipation^, which was one of seven concepts under Bpractice^, which again was one of

four main categories under Bcustomer involvement^. In total, there were 29 concepts related to

this topic and 17 concepts related to software architecture.

After coding the material, we discussed what the most interesting findings were in the

material. This was then made into a slide presentation, and feedback meetings were conducted

with all three organizations Accenture, Steria, and the Pension Fund for member checking.

These meetings were recorded and partially transcribed to add further data material, which led

to small revisions of the first findings. Reactions to findings included surprise with the number

of coordination arenas identified in the study, and comments on the thorough description of the

architectural work in the programme.

4 Results

We first provide a description of the Perform programme before presenting results on our four

areas of data collection: programme organization, customer involvement, software architec-

ture, and inter-team coordination.

4.1 The Perform Programme

The Perform programme was conducted by the public department the Norwegian Public

Service Pension Fund (the BPension Fund^), which needed a new office automation system.

The main arguments for initiating the programme were public reform that required new

functionality in office automation, and the existing office automation system was on a platform

that was to be abandoned. When the programme started, the content of the public reform was

not known. This was the main reason for choosing agile development practices for the project.

The public department has about 380 employees and provides 950,000 customers with several

types of services. The department integrates heavily with one other public department.

Perform was initiated to enable the department to provide accurate and timely services to

customers and ensure a cost-effective implementation of the reform. Because of the reform, the

programme had a strict deadline. It is one of the largest IT programmes in Norway, with a final

budget of about EUR 140 million. The programme started in January 2008 and lasted until

Empir Software Eng (2018) 23:490–520 499

March 2012. The project involved 175 people, of whom 100 were external consultants from

five companies.6 The programme used both time and material and target price contracts for

subcontractors. About 800,000 person-hours were used to develop around 300 epics, with a

total of about 2500 user stories. These epics were divided into 12 releases as in Fig. 1.

As an example, release R8 contained coupling of workflow in the office automation system

to the archive solution, a self-service solution for new legislation, simulation of services

towards external public departments, and first data warehouse reports on new data warehouse

architecture. Most user stories were identified prior to the first release but were supplemented

and reprioritised for every release.

The existing office automation system was client/server-based and written in C. The new

system is a service-oriented system written in Java and provides a richer interface using Flex.7

The database from the old system was kept, but the data model was changed. The regulations

and legislations are implemented in the new system as rules using JRules. The system is

integrated with a new document archive and with systems from another public department.

Figure 2 gives an overall description of the existing solution and the new solution.

The programme was managed by a programme director who mainly focused on external

relations, a programme manager focusing on the operations, and a controller and four project

managers responsible for the business, construction, architecture, and test projects (see Fig. 3):

& Business - Responsible for analysis of needs through defining and prioritizing epics and

user stories in a product backlog. This project was manned with product owners and a total

of 30 employees8 from the line organization in the department. Functional and technical

architects from development teams also contributed to this project.

& Architecture - Responsible for defining the overall architecture in the programme and for

detailing user stories in the solution description phase. Consisted of a lead architect and

technical architects from the feature teams. Suppliers Accenture and Steria participated on

a time & material basis.

& Development - Divided into three subprojects: one led by the Pension Fund (6 teams) with

their own people and people from five consulting companies, and the two other subproj-

ects led by Accenture (3 teams) and Steria (3 teams). The feature teams worked according

to Scrum with three-week iterations, delivering on a common demonstration day. The

feature teams had roles such as Scrum master, as listed in Table 3. In addition to the 12

feature teams, the project had an environment team responsible for development and test

environments.

& Test - Responsible for testing procedures and approving deliverables from the development

teams. Consisted of a lead tester and test resources from development teams.

There were also projects for communication and adoption to prepare users for the new

systems, in total six projects.

6 Accenture and Steria were the main external consulting companies, with responsibility for their own subproj-

ects on development as well as providing personnel to other projects.
7 Flex was developed by Adobe as a framework for Bexpressive web application^ and is now an open source

product.
8 The number of people involved in the project varied; we use numbers in the peak period in the project from

2009 to 2011.

500 Empir Software Eng (2018) 23:490–520

As shown in Fig. 3, the programme used a matrix structure where the business and

development projects took part in the architecture and test projects. This matrix

structure meant that a feature team would then mainly take part in project development,

while also devoting resources to projects architecture (through the technical architect),

business (through the functional architect), and test (through the test responsible) as

shown in Table 3.

The programme started working at the main office of the public department, but in 2009, it

was moved to a separate office building located in the same city. Here, all teams were

organized around tables as shown in Fig. 4.

Initially, the development process included the four phases described in Fig. 5:

& Analysis of needs - This phase started with a walkthrough of the target functionality of a

release and identification of high-level user stories. Product owners prioritized the product

backlog.

& Solution description - The user stories were assigned to epics, and the user stories were

described in more detail, including design and architectural choices. User stories were

estimated and assigned to a feature team.

& Construction - Development and delivery of functionally tested solutions from the product

backlog. Five to seven iterations per release.

& Approval - A formal functional and non-functional test to verify that the whole release

worked according to expectations. This included internal and external interfaces as well as

interplay between systems.

Fig. 1 Timeline for the Perform programme, showing 12 releases during the four-year period from initiation in
January 2008 to completion in March 2012

Fig. 2 Overall systems description of old and new solutions. The database was kept, but the data model was
changed. The rules engine and the external web client were new

Empir Software Eng (2018) 23:490–520 501

To keep the schedule of the project, solution descriptions needed to be ready in time

for the feature teams. This meant that releases were constantly being planned, con-

structed, and tested. Thus, given the roles in Table 3, a feature team would constantly

be engaged in construction for release Bn^, approving delivered functionality in release

Bn-1^, and analysing needs for the next release (Bn + 1), as shown in Fig. 5. After

approval from the programme, new releases were acceptance tested, set in production,

and underwent an approval phase before being accepted by the operational IT section of

the department.

4.2 Customer Involvement

The main arena for customer involvement in Perform was the interface between business and

architecture subprojects and the analysis of needs and solution description phases. We found

Fig. 3 The Perform Programme with four main projects: Business, Architecture, Development, and Test. The
figure shows the matrix organization of the programme, with overlapping work between projects. 12 develop-
ment teams worked in the programme at the peak. From 2009 to 2011 more than 150 people were working in the
programme. The Development project was divided into three subprojects managed by the Pension Fund (6
teams), Accenture (3 teams) and Steria (3 teams)

Table 3 Roles in the feature teams and how the roles at team level connect to the main projects shown in Fig. 3

Role Description

Scrum master Facilitated daily meetings, iteration planning, demonstration and
retrospective

Technical architect Responsible for technical design, working 50% on this and 50%
on development. Participated in project architecture

Functional architect Responsible for detailing of needs. This role was usually
allocated 50% to analysis and design, and 50% to development.
Participated in project business

Test responsible Made sure that testing was conducted at team level: unit tests,
integration tests, system tests and system integration tests.
Delivered test criteria to the project test

Developers 4–5 developers were allocated to a team (a mixture of junior
and senior developers)

502 Empir Software Eng (2018) 23:490–520

three key characteristics of this work: first, that the solution description was developed using

teamwork; second, that it was conducted continuously and iteratively; and third, that the

boundaries between analysis of needs, solution description, and construction were blurred. We

describe each of these characteristics in the following.

Fig. 4 Open work area where the development programme was situated from 2009 until project end in 2012.
The figure shows the status when there were 11 development teams (Accenture 1–3, Steria 1–3, Pension Fund1–
5). Accenture and Steria had separate project management tables, while Pension Fund’s project management
(PM) was located with programme management. Separate tables for projects business, architecture, and test

Fig. 5 Initial development process. From early in the programme, while working on release Bn^, the teams
would also work with approving delivered functionality and analysing needs for the next release

Empir Software Eng (2018) 23:490–520 503

4.2.1 Solution Description Teams

The solution description team included people who participated in the construction and people

with relevant business skills from the customer organization. One informant described their

role as being^ in front of the development team, before they start Sprint planning, we make a

functional solution description with design of screens, error handling, services, conceptual

and logical data model^ (functional architect). Membership could also span contractors: BIf it

was only Steria that was involved, then it [solution description] was a business architect, the

business representative, and some representatives from the Steria construction teams. If the

work spanned contractors, we would involve people from Accenture, Steria, or the Pension

Fund^ (technical architect). In addition, other people believed to be particularly knowledge-

able for the work to be planned could be invited.

At least one member from the feature team (usually the functional architect) would

participate in the solution description team. Solution description work was spread among

construction team members: BIt wasn't one person's responsibility the whole time. It was

natural for one to do solution description for a while and then to change it to another from the

same team to ensure that everybody knew what we were working on^ (technical architect).

This practice of involvement reduced the need for overly detailed solution descriptions.

Another benefit was pointed out: BIt gave good continuity in the work and helped ensure that

the construction was smooth and easy^ (functional architect).

This was seen as an effective practice for the program regarding knowledge sharing and

collaboration, and was taken into account during iteration planning. However, it was chal-

lenging for the feature teams because they had to give up team members for a long period—

often the most skilled and often in the last phase of the iteration.

4.2.2 A Continuous and Iterative Process

Solution description was a continuous process in two dimensions. It was continuous

inside one release, and it was going on in several releases at the same time. Solution

description for release n would start while construction for release n-1 was still

underway (Fig. 5).

We learned that solution description work in Perform was characterized as Bfeeding

the machine^. The metaphor effectively conveys the property of the construction

project as a machine that requires raw material (user stories) to produce products

(construct the software system). The main purpose of solution description in Perform

was to ensure that the product backlog contained enough high priority work to fill

one to three iterations for the feature teams. Furthermore, it was essential to give the

machine sufficient raw materials to avoid idle time. Most of the development project

members were allocated full-time, and therefore, the cost of running the project

Bengine^ would be constant, whether the backlog was empty or filled.

The detailing level in solution description was subject to change during the project.

As the feature teams gained experience, they understood more about the problem

domain and less detail was required to convey the essential parts of the tasks. We

learned that solution description work became more efficient because Bthey [the feature

teams] understood what we wanted^ (functional architect). Informants expressed that it

is much easier to communicate effectively when you know the audience. Furthermore,

solution description was an iterative activity based on a pragmatic ambition to Bdetail

504 Empir Software Eng (2018) 23:490–520

as much as time permits^ (functional architect). Hence, the level of detail was limited

by the time available.

Tensions arose from working with a pipeline of completed solution descriptions with as few

as one to three iterations. There were noticeable differences between the three suppliers

Accenture, Steria, and the Pension Fund in terms of preferences for up-front planning.

Accenture had a preference for more detailed, up-front specifications. Accenture wanted

reduced risk: BRegarding Pension Fund, we had to ‘discipline’ the customer somewhat, to

clarify what they wanted before we took it into our list of committed work, so that we could get

the least amount of rework^ (functional architect). Steria, on the other hand, was comfortable

with more open specifications and continuous collaboration to resolve the details of the

software in construction. The Pension Fund had more up-front descriptions than Steria, but

less than Accenture.

4.2.3 Blurred Boundaries between Phases

Each release consisted of four consecutive phases: analysis of needs, solution description,

construction, and approval. BWe could talk to anyone who might have the answer^ (technical

architect). Customer representatives could approach the feature teams if they needed to discuss

or clarify some issues. As a result, the boundaries were blurred between high-level require-

ments, solution description, and construction: BIn practice, high-level requirements and

solution description merged more and more" (another technical architect). This enabled more

efficient collaboration. The same technical architect stated, "As the contractor starts to

understand more about the context, the customer's real problem is more visible, and this

means we can find a solution together. Fast.^ Blurring the boundaries also gave another

interesting result. It became possible for people working on solution description to question the

output from the high-level requirement work. A contractor could challenge the Pension Fund:

BBut could you do it this way instead? Why do it like this?^ (technical architect). Project

participants found that this way of working stimulated creativity.

The iterative style of detailing the solution descriptions also contributed to blurring the

boundaries. For example, the acceptance criteria were supposed to be defined in the solution

description phase but were in practice often defined during construction by the teams. Our

respondents were unable to agree on what phase the definition of acceptance criteria belonged

to. Sometimes, the solution descriptions were too vague to enable construction and were

passed back for revision.

We found pragmatism in the allocation of tasks to construction teams. We learned that

often, the most challenging tasks were given to the Pension Fund feature teams because they

had more domain knowledge and a more flexible contract model: BIf there were many changes,

if there were complicated modules, and we didn't quite know how to design them, then the

Pension Fund teams would get these tasks. I experienced the Pension Fund as being more

flexible … without the same constraints in relation to budgets and contracts^ (functional

architect).

4.3 Software Architecture

Two topics emerged as primary characteristics related to managing work on software archi-

tecture: the tension between up-front and emergent architecture, and the demanding role for

architects in large-scale agile projects.

Empir Software Eng (2018) 23:490–520 505

4.3.1 Up-Front Architecture

In February 2009, a new chief architect entered Perform. At this point in time, the architecture

of the new system was described in terms of architectural strategies but with little compliance

in the system under construction. The core principle of the initial architecture was Bservice

orientation^, but it resulted in a complex system with many dependencies and high vulnera-

bility in the event of changes. It was during this period that the decision was made to scale up

Perform to more teams. The chief architect’s most pressing concern was to create a system

architecture that allowed the maximum parallelism of work in the different teams by Bavoiding

people stepping on each other’s feet^.

To account for this need, the chief architect and his team created a simpler system

architecture focused around service modules and a horizontal unified Bwork surface^ on top.

The GUI layer—the Bwork surface^—made use of all the service modules. The architecture

also established rules of ownership to specific parts of the database. An important benefit of

the architecture was that it helped to separate the work of different teams into different parts of

the code. In Perform, we found that the software architecture for the most part allowed the

teams to work autonomously and effectively.

Even if this architecture manifested important decisions for the continued work in the

teams, there were tensions stemming from having too little up-front work. Our respon-

dents stated wishes for more Bproof of concept^ experiments before new technologies

were adopted. A notable example was that the Flex technology used in the GUI layer had

not been properly understood for it to be used effectively and establish sound

Bapplication architecture guidelines^. Our respondents argued that the lack of proof of

concepts was due to the contract model: BThis was partly governed by the payment

model and the program's execution. If they had allocated resources for concept trials

that possibly would have to be thrown away, or that resources had been allocated for the

development of multiple candidate solutions—but resources were not allocated for that.^

(subproject manager, from feedback session).

At the end of the program, there was much work in optimizing the GUI layer code to obtain

acceptable performance. Performance had been largely neglected for the main part of the

programme but received significant attention in the final stages. This triggered some re-work

for the architecture team: BWhen we started to use this technology [Flex], we established an

architecture that was fit only for small applications and small solutions. It was not appropriate

for us when we had to fill it up with more logic and GUI elements^ (functional architect). Also,

significant refactoring was done in the object-persistence layer9 on top of the relational

database management system for performance reasons. These refactoring efforts were pack-

aged into specific user stories for non-functional requirements.

The programme put emphasis on common architectural principles: BThere needs to be

openness with regard to suggesting architectural ideas from ‘below’ [in the teams], but you

must also be able to convey merits of these ideas to convince the people in the appropriate

forums so that it ends up as a unified architecture—so that each team does not use their own

solutions^ (technical architect, feedback session).

The main architectural structure of the new system remained stable throughout the project.

Mostly, the subsequent architectural work was local within the service modules.

9 Using the Hibernate technology.

506 Empir Software Eng (2018) 23:490–520

4.3.2 The Demanding Role of Architects in Very Large-Scale Programme

We learned that the architect role in very large agile projects is demanding because it requires

continuous coordination and negotiation between many stakeholders, including representatives

from the business side and the developers. The architect must be able to Bsell^ technically

sound designs and technologies that may have short-term negative impacts on project progress

and costs. Another tension was the approach to decision-making in the architecture project. For

the most agile-oriented participants, this top-down decision-model came into conflict with their

own ambitions to satisfy the business representatives. Team members pointed to a tendency of

project architecture to step away from the discussions with business representatives when

development teams pointed out that a particular architectural design had cost consequences for

the business representatives. When developers argued to the business representatives that a

proposed architectural approach would have penalties in terms of cost or performance,

subproject architecture responded that it was unfair of developers Bto hide behind the business

people^ instead of complying with architectural principles.

Architecture workwas increasinglymore difficult for project architecture as well. In the last half

of the second year, the pressure to deliver functionality increased: BAt this point, project manage-

ment and other management was concerned about progress … It became much more difficult to

promote improvements [in the architecture]^ (technical architect). BYes, more difficult. And then

came these issues regarding technical debt, you know? Issues that are horrible in an agile setting^

(technical architect). Over time, technical debt would accumulate because the pressure to deliver

functionality was so high. Due to the strict schedule in the programme, the business needs were

often given priority to long-term architecture. Functionality was given priority over refactoring.We

learned that team architects took steps ‘on their own’ to integrate refactoring into normal work

tasks: BFor me it was equally important to establish the right attitude in the teams regarding code

quality as it was to make the business side allocate resources for refactoring^ (technical architect,

feedback session).We see that architectural work in agile projects is more continuous, and requires

more integrative collaboration with a wider range of people.

The two suppliers Accenture and Steria used different approaches to architecture work during

the project. Accenture made many architectural decisions during the solution description phase,

while Steria delayed many such decisions until the construction. Accenture’s motive was to

ensure the highest possible efficiency of the teams’ work during the Iteration. The culture in

Steria appeared more flexible and collaborative, seeking rather to clarify issues as they emerged.

4.4 Arenas for Inter-Team Coordination

From our data material on coordination and knowledge-sharing between feature teams in the

development programme, we identify three main findings. First, there were a number of arenas

involved in order to achieve coordination and knowledge sharing. Second, the use of these

arenas changed over time, and third, many emphasize the importance of the informal coordi-

nation arenas, which were enabled by the open work area. We describe results from each of

these three areas in the following.

4.4.1 A Number of Coordination Arenas

Each feature team followed Scrum practices like having a planning meeting, daily stand-up

meetings, retrospectives, and demos for each three-week iteration. There were a number of

Empir Software Eng (2018) 23:490–520 507

arenas in use to coordinate work and share knowledge between the teams, as shown in Table 4.

This list includes mainly formal arenas such as the Scrum of Scrums and Metascrum at a level

above the Scrum of Scrum. There were also several informal arenas such as experience

forums, lunch seminars, and instant messaging. Some of the arenas were only used within a

subproject, such as the Bexperience forum^ at Accenture and the Btechnical corner^ at Steria.

4.4.2 Changing Arenas Over Time

A characteristic of the Perform programme was that arenas for coordination changed over

time. "There were meetings that came and disappeared and some that remained" (functional

Table 4 Coordination arenas used in the Perform project

Arena Description

Board discussions Every team had a board with tasks and status on one side and free space for
drawing on the backside. The backside was used frequently for informal
discussions

Demo Demonstration of developed user stories after every iteration, from morning until
lunch. Everyone could participate. 10 min devoted to each team. For rapid
feedback, feature teams started organizing Bmini demos^ for participants in the
business project within iterations

Experience forum A meeting forum at subcontractor Accenture for Scrum masters, development
manager and agile coach focusing on development method

Instant messaging Instant messaging to all participants was set up after a need was identified in an
open space session. Was used for open technical questions but also for social
activities such as wine lottery

Lunch seminars Seminar where 2–3 people gave short presentations during lunch on topics such
as new architectural components, project management or on how to follow up
on a team

Masterplan The programme established a common product backlog as a master plan, with the
2500 user stories organized into 300 epics. The master plan was maintained in
an issue tracker

Metascruma Two meetings per week with project managers from the development,
architecture, test and the business projects, as well as subproject managers
from the development projects

Open space technology A process where all participants suggested topics for discussion, which is made
into an agenda and participants are free to join discussion groups of interest.
Used per release during parts of the project

Open work area From 2009, the project with all teams and project management was situated in an
open-plan office space on one floor

Retrospectives Mainly used on team level, but a few times on subproject level. All retrospectives
were documented in the programme wiki

Rotation of team members Members sometimes rotated between teams, in particular in build-up phase when
existing teams were split and new members added to all teams for a subproject

Scrum of Scrums All three subprojects had Scrum of Scrum meetings with their teams, 2–3 times a
week. Scrum masters and project manager attended, and sometimes others
such as product owners and test managers

Technical corner Architectural briefings in the subproject at Steria, where team architects briefed
the teams. About 1.5 h, used in the beginning of the project

Wiki Architectural guidelines, team routines, cross-team routines, system
documentation, reports from retrospectives, solution descriptions and func-
tional tests were documented on the project wiki

aNote that the forum Metascrum is used here with another meaning than the definition by the Agile Alliance,
where "meta Scrum" and Scrum of Scrums are synonymous. Metascrums was at project level, while Scrum of
Scrums were at subproject-level

508 Empir Software Eng (2018) 23:490–520

architect). There were information needs that the programme saw was not covered, and new

arenas such as the instant messaging were then established. Also, arenas were abandoned

because the programme found that they were no longer useful. Open space is an example of an

arena that existed for a while and then was abandoned. Some state that this arena had an effect:

"During a phase, I felt it had a mission, in particular to motivate people" (subproject

manager). Others were more critical of the practice: " …But in total, I feel that we did not

get much out of it. Maybe we got to know each other better. Maybe." (another subproject

manager).

Several commented on the change from formal mechanisms to informal mechanisms. Over

time there was "more usage of boards, more common coffee breaks, more lunches" (subproject

manager). Some arenas changed function over time. Internal meetings within the Accenture

subproject developed over time into an arena for sharing technical knowledge. This illustrates

that there was a change in both the arenas and in how the arenas functioned over time.

4.4.3 Open Work Area

Beginning in 2009, the project was co-located on an open-plan office floor. The teams were

organized around tables, and project management for the whole programme and for the

projects were on the same floor (see Fig. 5). Many stated that being in one open work area

contributed to efficient coordination and knowledge sharing: "It was the best possible solution

that the project managers were at one table, in immediate reach of the development teams"

(subproject manager). Another subproject manager stated, "I think being on the same floor is

important. That is something I notice now being at [another large development programme],

where we are not located on the same floor. It is much harder to know what is going on.".

We learned that many of the decisions made in the project were discussed between relevant

stakeholders informally and then officially decided upon in one of the formal arenas, the daily

Scrums, Scrum of Scrums, or the Metascrum. Although mainly seen as vital to coordination

and knowledge sharing, loud discussions on team tables in the open landscape led to some

starting to use earphones in order to avoid noise and to indicate that they were not to be

disturbed while working.

5 Discussion

Our research question is, BHow can agile methods be adapted in the very large scale,

regarding programme organization, customer involvement, software architecture and inter-

team coordination?^ We defined very large scale as projects or programmes involving more

than ten development teams, with a high number of actors, and a large number of systems and

interdependencies. The scale of such programmes leads to challenges including involving the

customer, maintaining software architecture, and coordinating a large number of teams,

projects, and subprojects. The Perform case shows some of the characteristics of the study

by Batra et al. (2010), who describe making use of both traditional and agile methods. We give

an overview of our findings in Table 5.

The Pension Fund decided to employ agile methods in the Perform programme because the

content and extent of the public reform that the software system would support were unknown.

We have provided a thorough description of the method adopted in the Perform programme

and elaborated on some of the tensions that we propose are especially interesting themes for

Empir Software Eng (2018) 23:490–520 509

future research on large-scale development projects. Based on our findings, we formulate

research questions that should be addressed further in future research in three areas: customer

involvement, learning and change, and inter-team coordination:

5.1 Customer Involvement

Agile methods describe the on-site customer to identify and prioritize features, provide

feedback, and guide change through the course of the development (Vinekar et al. 2006).

Customer involvement is a challenge in large-scale development efforts (Batra et al. 2010).

Many representatives are needed, the representatives need to be aligned, and they must be

available to all the teams. In large-scale projects the alignment challenge is considerable

because different stakeholder groups have been found to have different priorities (Barney

and Wohlin 2009). Further, a fragmented view of the system that each customer representative

may have is likely to impact the project negatively (Ramesh et al. 2010), and the dependence

on the on-site customer may cause project failure if the on-site customer is misaligned with the

stakeholder goals (Vinekar et al. 2006). While each project in a large-scale effort may have

success at the project level, there could still be overall failure at the program level if the

projects are not aligned. The Perform program consisted of six subprojects and 175 people,

which made alignment a challenge.

The issue of scale and availability was addressed by including 30 product owners and

customer representatives from the Pension Fund that worked full time in the program. They

were all in the Bbusiness^ project and responsible for analysing needs through defining and

prioritizing epics and user stories in a product backlog. Locating them in the same office space

as the construction teams ensured their availability. Further, alignment among the on-site

customers and between on-site customers and construction were supported throughout the

whole program by 1) a number of arenas, 2) a continuous and iterative solution description

process, and 3) the blurred boundaries between the phases of analysis and needs, solution

description, and construction. Our findings are consistent with Barney and Wohlin (2009) who

found that open and transparent dialogue and cross group communication as essential for

aligning the different stakeholder groups.

Alignment within and across the six projects grew from the formal and informal arenas,

continuous cooperation, and the constant opportunities to ask anyone about clarifications. Both

customer representatives and developers could exchange and diffuse shared insights and

knowledge through their network; that is, they could use their social capital (Wohlin et al.

Table 5 Main findings in the Perform programme

Area Finding

The Perform programme Matrix structure
Development phases

Customer collaboration Solution description teams
A continuous and iterative process
Blurred boundaries between phases

Software architecture Up-front architecture
Demanding role of architects in large programme

Inter-team coordination A number of coordination arenas
Changing arenas over time
Open work area

510 Empir Software Eng (2018) 23:490–520

2015) when aligning on all levels. Involving the teams in the solution description was

important for the program success because it ensured alignment between teams and gave them

end-to-end responsibility for features by involving them in the formulation of its requirement

until the release. The importance of end-to-end responsibility in large-scale agile development

is also consistent with Olsson et al. (2014) in their study of 30 teams in a large-scale program at

Ericsson. Because there was always solution description work going on in the Perform

program, the process can be understood as a continuous planning activity involving construc-

tion and business. Such continuous planning ensures alignment between the needs of the

business and software development (Fitzgerald and Stol 2017).

While the programme under study enabled the concept of the on-site customer in practice,

further research is needed to better understand the challenge of alignment between the on-site

customer representatives and between on-site customer and construction in large-scale pro-

jects. Especially when co-location is not possible or feasible, if there is a high degree of

uncertainty of what the customer wants, or there is a need for continuous deployment. We

therefore propose the following research question for further investigation:

How can alignment be ensured among customer representatives and between customer

representatives and developers in very large-scale programmes?

5.2 Learning on Architecture and Process

The system architecture and the development process are two vital areas of software devel-

opment that could undergo changes during a development programme. For architects, it is

difficult to balance concerns with delivering early customer value and taking care of over-

arching quality requirements (Hopkins and Harcombe 2014). The Pension Fund had to strike a

balance and support both change and stability simultaneously (Vinekar et al. 2006). A system

architecture defined up-front gave individual teams a stable working environment with room

for teams to design their own local sub-architectures that probably contributed to team

efficiency. Still, there were tensions from challenges that occurred because there had been

few proof-of-concepts with core technology. With respect to the development process, many

aspects remained unaltered. Team roles and iteration lengths are examples of this. Also, we

found few changes in the larger-scale structures in Perform. The masterplan (Table 4)—the

general matrix structure of the programme as well as the overall system architecture—

remained largely unchanged during the programme period (Table 5).

Learning and change were evident at both the inter-team and programme levels in

the Perform programme. At the inter-team level, we described that the coordination

arenas changed over time, and there was a degree of autonomy regarding local

architectural designs within the service modules. Further, deficiencies in information

dissemination were met with active experimentation with new arenas for communica-

tion and coordination. Those arenas that did not bring value were abandoned. The open

work area supported fast communication in informal meetings. Another example of

learning that led to change is that the level of detail in solution descriptions was

gradually reduced. The mutual understanding of the domain grew so that solution

descriptions could be expressed more succinctly. At the programme level, Perform

had mechanisms in place that enabled learning through numerous arenas for coordina-

tion and knowledge sharing. Perform gradually transformed towards an organizational

culture with more trust and collaborative relationships. For example, the contractors

Empir Software Eng (2018) 23:490–520 511

took on a more collaborative role later in the programme where they were free and

invited to question the assumptions underlying Pension Fund’s requirements.

Perform was a learning-centric programme, yet its overall architecture and main develop-

ment process remained unchanged for the bulk of the programme’s duration. It is unclear how

a more technically complex software system would impact the use of agile methods at such a

large scale. An interesting research question is:

How can large-scale agile programmes enable learning and change in architecture and

processes at inter-team and programme levels?

5.3 Inter-Team Coordination

Self-managing teams offer potential advantages over traditionally managed teams because they

bring decision-making authority to the level of operational problems and increase the speed

and accuracy of problem solving (Moe et al. 2009). In large projects, there are a number of

problems that span development teams as well as decisions that affect a number of teams.

Perform found a balance between self-management and a centralized structure. In the results

section, we described how the matrix structure in the programme enabled coordination of

development teams through roles in the teams and special arenas for the project’s business,

architecture, and test. This enabled direct communication between business and development,

which we called blurred boundaries between phases.

A number of arenas in the early phase of the programme established communication andmade

it easy for team members to mutually adjust to activities in other teams. The open work area

enabled quick oral coordination, but the extra roles (such as functional architect) and arenas (such

as the Open Space) led to less autonomy for the team. The introduction of extra roles is a threat to

self-management as the teams are instructed to establish certain roles, which Hackman (1986)

refers to as managing their own work process. Further, teams needed to provide resources for

projects other than development and had to engage in and accept decisions made in the projects

that affected all team members. An example is the architectural guidelines and the overall

architecture, which we have described as mainly being decided up-front. The standardization

of roles and arenas across the project was primarily done to ensure needs at the programme level.

Contrary to findings reported by Paasivaara et al. (2012), we found that the Scrum of

Scrums was perceived as a well-functioning coordination mechanism, but we could speculate

that this could be because of the size or the focus on a large number of total arenas. We did not

find use of Communities of Practice, which is described as a successful characteristic of an

even larger development effort at Ericsson (Paasivaara and Lassenius 2014). We do not have

insight on the total effectiveness of the coordination arenas in the Perform programme beyond

knowing that the programme was recognized as a success. We could speculate that the

dynamic nature of coordination with a large number of arenas made coordination efficient

(Jarzabkowski et al. 2012).

It seems the programme found a good balance between inter-team coordination and self-

management. However, this is a topic that deserves further research in describing other

approaches and also examining the matrix structure applied in the Perform case in further

detail. We pose the following research question for further investigation:

How do multi-team development programmes balance inter-team coordination and self-

management?

512 Empir Software Eng (2018) 23:490–520

5.4 Limitations

We use the most relevant principles for interpretative field research from Klein and

Myers (1999) in discussing limitations of this study. Given the revelatory nature of this

study, we have not put emphasis on limitations related to theory.

A main challenge in studying very large-scale programmes is the size of the case,

and thus a challenge to understand both whole and parts (principle of hermeneutic

circle). We have sought to address this by building an understanding of the whole

through a thick description of method adaptation, and building understanding of three

critical themes in an embedded case study design. Given the choice of three themes,

there are a number of other areas that we have left unexplored, such as how quality

was handled at the very large scale.

We have sought to satisfy the principle of contextualization by providing a thick

description of the adapted development method in the programme, describe the

development of key ideas on agile development in small teams in the theory and

show how these ideas are present in the very large programme in presenting the

empirical results.

Another limitation is related to the interaction between researchers and subject. We

relied on group interviews and documents and as two data sources. For the group

interviews, there is a potential elite bias (Myers and Newman 2007) in our data

collection as the people involved in the programme at the end had technical or leader

roles. We have avoided asking questions to evaluate the programme outcome but

asked participants to reflect critically on practices and concrete events. We also had

fewer participants from Accenture than from the other companies, which could have

given us less variety of opinions. Further, the internal authors of documents could

have an interest in portraying the programme as successful.

With the focus on three themes, we have aimed at identifying multiple interpreta-

tions by the different groups who participated in the programme, for example how

architects and business project participants had different opinions on what was im-

portant at stages in the programme.

To discover biases and distortions in our findings (principle of suspicion), we have

separated group interviews and presentation of findings to Accenture, the Pension Fund

and Steria. Further, we have conducted workshops between researchers where all have

had particular insight in one of the three main topics, thus sought to identify miscon-

ceptions from several angles.

Table 6 Items from research agenda (Dingsøyr and Moe 2014) and suggested research directions based on
findings in the Perform programme

Research agenda Suggested research direction

Customer collaboration How can alignment be ensured among customer representatives and between
customer representatives and developers in very large-scale programmes?

Knowledge sharing and
improvement

How can large-scale agile programmes enable learning and change in architecture
and processes at inter-team and programme levels?

Inter-team coordination How do multi-team development programmes balance inter-team coordination and
self-management?

Empir Software Eng (2018) 23:490–520 513

6 Conclusion

The first main contribution of this study is a thorough description of a very large development

programme that used a combination of agile and traditional methods. We believe this is an

important contribution for practitioners seeking to conduct very large programmes in order to

qualify advice in approaches such as agile methods. Our description of the Perform pro-

gramme shows one model to organize very large-scale development, which to our knowledge

is by far the most rich and detailed description available. We show how agile methods are

adopted with additional processes such as the ones focusing on customer involvement and

software architecture, and how inter-team coordination was organized with a number of extra

arenas and extra roles at feature team level. This description will be valuable for students to

learn how methods have been adopted to a specific context in very large scale.

The second contribution is showing some phenomena in organizing large programmes that

are challenging at a very large scale. For the research community, we suggest questions to

explore in the future in Table 6, and we hope that there will be more case studies to provide

industry practitioners with research-based advice that can complement the practitioner-based

advice that is available today. Topics of interest include how practices are adopted to scale, and

how the context of development programmes influence the scaling approach. In future studies

of very large-scale development programmes, we hope that researchers will be able to perform

longitudinal studies to focus on variations over time and use a larger set of data collection

methods such as participant observation to address the limitations that we have listed.

Acknowledgements We are very grateful to all participants in the group interviews. Further, we would like to
thank colleagues Svein Hallsteinsen for taking part in data collection and analysis of software architecture and
Tore Dybå for taking part in data collection and analysis of inter-team coordination, and both for taking part in
discussions of the case. Thanks to master student Espen Andreassen at the Norwegian University of Science and
Technology for conducting an independent analysis on parts of the material used in this article. We also thank
Knut Rolland at SINTEF and Saskia Bick at the University of Mannheim for comments on earlier versions of this
manuscript. Darja Smite at SINTEF provided great assistance in redesigning the figures to improve clarity. We
would also like to thank anonymous reviewers for a number of suggestions for improvements. The work was
supported by strategic internal projects at SINTEF on large-scale agile development and the project Agile 2.0
supported by the Research council of Norway through grant 236759 and by the companies Kantega, Kongsberg
Defence & Aerospace, Sopra Steria, and Sticos.

Appendix: Interview Guides

Customer Involvement

<Introduction>

Which role and tasks did you carry out in the programme?

What was your responsibility?

<Timeline exercise to place main events>

Brainstorm: What worked well in the programme? What could have been better?

How do you define Bsolution description^?

What were the inputs and outputs to the Bsolution description^?

Who was involved in solution description and what were their roles?

What activities were carried out?

When were these activities carried out?

514 Empir Software Eng (2018) 23:490–520

How did you coordinate work?

What kind of decisions were made?

Which role did the customer have in these decisions?

How were participants from construction involved?

How were architects and others involved?

How did you handle uncertainties in requirements and technology?

Software Architecture

<Introduction>

Which tasks did you have in the programme?

How would you describe the overall architecture in the programme?

<Timeline exercise focusing on the architecture>

How do you define Bsoftware architecture^?

How do you see the relationship between architecture and product characteristics?

What triggered events in the timeline with respect to architecture? (practices? meetings?

decisions?)

Who were the architects in the programme (static role/dynamic?)

Who were the main stakeholders?

How were decisions made? Who made decisions?

How were trade-offs handled?

Who gave premises for architectural work? How did you obtain Binput^ for architectural

work?

How was the architecture documented?

Did architectural decisions have an impact on the programme?

How was architecture communicated?

How did developers relate to the architecture?

What main architectural decisions were made?

Were there changes to the architecture over time?

Inter-Team Coordination

<Introduction>

Organization

* Draw teams and communication arenas between teams

* Who was sitting where?

Timeline exercise

* Important events in the project (in general).

Retrospective

* What worked well?

* What was challenging?

Inter-team coordination:

* How was the work organized in your part of the project?

* What kinds of dependencies were there between the teams in your part of the project?

(examples?)

* How were dependencies managed? (examples?)

Empir Software Eng (2018) 23:490–520 515

* What was managed in established fora and what was managed outside of the fora?

(examples?)

* Who were involved in managing dependencies between teams? (examples?)

* Did you encounter challenges with managing dependencies? (examples?)

* Did you change the way you managed dependencies during the project? (examples?)

* What practices do you think were most important in order to manage dependencies

between teams? (examples?)

* Are there any practices you think had little importance for managing dependencies?

* How did the division of the project into three main parts influence the coordination

between teams?

* Were there differences in inter-team coordination across the subprojects?

* Scrum of Scrum

* Metascrum

* Architecture forum

* Test forum

* Requirement forum

* Open space meetings

* Unofficial fora? Direct contact

* Documents?

Frequency of meetings/persons involved/time spent

Knowledge sharing:

* What type of knowledge was important to share between teams in this project?

* What kinds of practices were used to share knowledge?

* How would you evaluate the different practices used?

* Was there any knowledge that was difficult to share?

* Is it possible to identify Bknowledge communities^ within the project?

* Which of these communities were official and which were unofficial?

* How was the work organized within the communities?

* How was knowledge sharing influenced by having several companies working together

on the project?

* Which knowledge sharing arenas would you argue were most important for the project?

* Did a team know what other teams were working on?

* Were you able to shift workload across teams? Why was this easy/hard?

* Tool support?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Abrahamsson P, Babar MA, Kruchten P (2010) Agility and architecture: can they coexist? Introduction. IEEE
Softw 27:16–22

Barlow JB, Giboney J, Keith MJ, Wilson D, Schuetzler R, Lowry PB, Vance A (2011) Overview and guidance
on agile development in large organizations. Commun Assoc Inf Syst 29:25–44

516 Empir Software Eng (2018) 23:490–520

Barney S, Wohlin C (2009) Software product quality: ensuring a common goal. In Wang Q, Garousi V, Madachy
R, Pfahl D (eds) Trustworthy software development processes. ICSP 2009. Lecture notes in computer
science, vol 5543. Springer, Berlin, Heidelberg

Bass JM (2015) How product owner teams scale agile methods to large distributed enterprises. Empir Softw Eng
20:1525–1557

Batra D, Xia W, Vander Meetr D, Dutta K (2010) Balancing agile and structured development approaches to
successfully manage large distributed software projects: a case study from the Cuise line industry. Commun
Assoc Inf Syst 27:379–394

Begel A, Nagappan N, Poile C. Layman, L (2009) Coordination in large-scale software teams, in Proceedings of
the 2009 ICSE Workshop on Cooperative and Human Aspects on Software Engineering, pp. 1–7

Bjarnason, E., Wnuk, K., and Regnell, B., (2012) "Are you biting off more than you can chew? A case study on
causes and effects of overscoping in large-scale software engineering," Inf Softw Technol, vol. 54, pp. 1107–
1124, 10// 2012.

Blichfeldt BS, Eskerod P (2008) Project portfolio management – There’s more to it than what management
enacts. Int J Proj Manag 26:357–365 5// 2008

Boehm B (2002) Get ready for agile methods, with care. IEEE Computer 35:64–69
Boehm B, Turner R (2003) Balancing Agility and Discipline: A Guide for the Perplexed: Addison-Wesley
Conboy K (2009) Agility from first principles: reconstructing the concept of agility in information systems

development. Inf Syst Res 20:329–354 Sep 2009
Daneva M, van der Veen E, Amrit C, Ghaisas S, Sikkel K, Kumar R, Ajmeri N, Ramteerthkar U, Wieringa R

(2013) Agile requirements prioritization in large-scale outsourced system projects: an empirical study. J Syst
Softw 86:1333–1353

Dingsøyr, T. and Moe, N. B., (2014) "Towards Principles of Large-Scale Agile Development: A Summary of the
workshop at XP2014 and a revised research agenda," in Agile Methods. Large-Scale Development,

Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe, S. Counsell, R. Tonelli, C.
Gencel, and K. Petersen, Eds., ed Berlin: Springer, pp. 1–8.

Dingsøyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile methodologies: towards explaining agile
software development. J Syst Softw 85:1213–1221

Dingsøyr T, Fægri T, Itkonen, J (2014) What Is Large in Large-Scale? ATaxonomy of Scale for Agile Software
Development, in Product-Focused Software Process Improvement. vol. 8892, A. Jedlitschka, P. Kuvaja, M.
Kuhrmann, T. Männistö, J. Münch, and M. Raatikaineen, Eds., ed: Springer International Publishing, pp.
273–276

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw
Technol 50:833–859

Eckstein J (2004) Agile software development in the large. Dorset House, New York
Eckstein, J., (2014) "Architecture in Large Scale Agile Development," in Agile Methods: Large-Scale

Development, Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe, R. Tonelli, S.
Counsell, C. Gencel, and K. Petersen, Eds., ed Berlin: Springer-Verlag Berlin, 2014, pp. 21–29.

Faber R (2010) Architects as service providers. IEEE Softw 27:33–40 Mar-Apr 2010
Fitzgerald B, Stol K-J (2017) Continuous software engineering: a roadmap and agenda. J Syst Softw:176–189
Fitzgerald B, Hartnett G, Conboy K (2006) Customizing agile methods to software practices at Intel Shannon.

Eur J Inf Syst 15:200–213
Flyvbjerg B (2014) What you should know about megaprojects and why: an overview. Proj Manag J 45:6–19
Freudenberg S, Sharp H (2010) The top 10 burning research questions from practitioners, IEEE Software, pp. 8-

9, 2010.
Giezen, M., (2012) "Keeping it simple? A case study into the advantages and disadvantages of reducing

complexity in mega project planning," International Journal of Project Management, vol. 30, pp. 781–
790, 10// 2012

Gregory, P., Barroca, L., Sharp, H., Deshpande, A., and Taylor, K., (2016) "The challenges that challenge: Engaging
with agile practitioners’ concerns," Information and Software Technology, vol. 75, pp. 26–38, 7// 2016.

Hackman JR (1986) The psychology of self-management in organizations: American Psychological Association
Hopkins R, Harcombe S (2014) Agile architecting: enabling the delivery of complex agile systems development

projects, in Agile Software Architecture, M. A. Babar, A. W. Brown, and I. Mistrik, Eds., ed Boston: Morgan
Kaufmann, pp. 291-314

Ingvaldsen JA, Rolfsen M (2012) Autonomous work groups and the challenge of inter-group coordination.
Human Relations 65:861–881 Jul 2012

Jarzabkowski PA, Le JK, Feldman MS (2012) Toward a theory of coordinating: creating coordinating mecha-
nisms in practice. Organ Sci 23:907–927 Jul-Aug 2012

Klein HK, Myers MD (1999) A set of principles for conducting and evaluating interpretative field studies in
information systems. MIS Q 23:67–88

Empir Software Eng (2018) 23:490–520 517

Kniberg H (2011) Lean from the trenches: Managine Large-Scale Projects with Kanban: the pragmatic
bookshelf

Lagerberg L, Skude T, Emanuelsson P, Sandahl K, Ståhl D (2013) "The impact of agile principles and practices
on large-scale software development projects: a multiple-case study of two projects at ericsson," in 2013

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 348-356

Larman C, Vodde B (2013) "Scaling agile development," CrossTalk, p 9
Larman, C. and Vodde, B., (2017) Large-Scale Scrum: More with LeSS: Addison-Wesley professional.
Leffingwell, D., Yakyama, A., Knaster, R., Jemilo, D., and Oren, I., (2017) SAFe reference guide: Scaled Agile

Framework for Lean Software and Systems Engineering: Addison Wesley.

Maiden N, Jones S (2010) Agile requirements can we have our cake and eat it too? Software, IEEE 27:87–88
Malone TW, Crowston K (1994) The interdisciplinary study of coordination. ACM Computing Surveys (CSUR)

26:87–119
Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-Management in Software Teams. IEEE Softw

26:20–26
Moe NB, Šmite D, Šāblis, A, Börjesson A.-L, Andréasson P (2014) "Networking in a large-scale distributed agile

project," in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, p. 12.

Myers, M. D. and Newman, M., (2007) "The qualitative interview in IS research: examining the craft," Inf
Organ, vol. 17, pp. 2–26.

Nerur S, Balijepally V (2007) Theoretical reflections on agile development methodologies. Commun ACM 50:
79–83

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies. Commun ACM 48:
72–78

Nord, R. L., Ozkaya, I., and Kruchten, P., (2014) "Agile in Distress: Architecture to the Rescue," in Agile

Methods: Large-Scale Development, Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe,
R. Tonelli, S. Counsell, C. Gencel, and K. Petersen, Eds., ed, 2014, pp. 43–57.

Olsson H, Sandberg A, Bosch J, Alahyari H (2014) Scale and responsiveness in large-scale software develop-
ment. IEEE Softw 31:87–93

Paasivaara M, Lassenius C (2014) Communities of practice in a large distributed agile software development
organization - case Ericsson. Inf Softw Technol 56:1556–1577 Dec 2014

Paasivaara, M., Lassenius, C., and Heikkila, V. T., (2012) "Inter-team Coordination in Large-Scale Globally
Distributed Scrum: Do Scrum-of-Scrums Really Work?," in Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ed New York: IEEE, 2012, pp. 235–238.

Petersen K, Wohlin C (2010) The effect of moving from a plan-driven to an incremental software development
approach with agile practices. Empir Softw Eng 15:654–693 Dec 2010

Rajlich V (2006) Changing the paradigm of software engineering. Commun ACM 49:67–70
Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering practices and challenges: an empirical

study. Inf Syst J 20:449–480
Rolland, K. H., Fitzgerald, B., Dingsøyr, T., and Stol, K.-J (2016) "Problematizing agile in the large: alternative

assumptions for large-scale agile development," in International Conference on Information Systems, Dublin
Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering.

Empir Softw Eng 14:131–164

Saldaña J (2009) The coding manual for qualitative researchers. Sage Publications Ltd, Second ed
Scheerer, A. and Kude, T., (2014) "Exploring coordination in large-scale agile software development: a

Multiteam systems perspective," in Thirty Fifth International Conference on Information Systems,
Auckland, 2014.

Scheerer, A., Hildenbrand, T., and Kude, T., (2014) "Coordination in Large-Scale Agile Software Development:
A Multiteam Systems Perspective," in 2014 47th Hawaii International Conference on System Sciences, R.
H. Sprague, Ed., ed New York: Ieee, 2014, pp. 4780–4788.

Šmite D, Moe NB, Šāblis A, Wohlin C (2017) Software teams and their knowledge networks in large-scale
software development. Inf Softw Technol 86:71–86

Smolander K (2002) Four metaphors of architecture in software organizations: finding out the meaning of
architecture in practice. In: Proceedings 2002 International Symposium on Empirical Software Engineering,
ed Nara. IEEE Computer Society, Japan, pp 211–221

Stettina CJ, Horz J (2015) Agile portfolio management: an empirical perspective on the practice in use. Int J Proj
Manag 33:140–152 Jan 2015

Strode DE, Huff SL, Hope BG, Link S (2012) Coordination in co-located agile software development projects. J
Syst Softw 85:1222–1238

Unphon, H. and Dittrich, Y., (2010) "Software architecture awareness in long-term software product evolution,"
Journal of Systems and Software, vol. 83, pp. 2211–2226, 11// 2010.

518 Empir Software Eng (2018) 23:490–520

Vinekar, V., Slinkman, C. W., and Nerur, S., (2006) "Can Agile and traditional systems development approaches
coexist? An ambidextrous view," Information Systems Management, vol. 23, pp. 31–42, Sum 2006.

Vlietland J, van Vliet H (2015) Towards a governance framework for chains of Scrum teams. Inf Softw Technol
57:52–65 Jan 2015

Wenger E (1998) Communities of practise : learning, meaning and identity. Cambridge University Press,
Cambridge

Williams L,CockburnA (2003)Agile software development: It’s about feedback and change. IEEEComputer 36:39–43
Wohlin, C., Šmite, D., and Moe, N. B., 2015 "A general theory of software engineering: Balancing human, social

and organizational capitals," Journal of Systems and Software, vol. 109, pp. 229–242, 11// 2015.
Yin RK (2014) Case Study Research: design and methods, 5th ed.: sage publications

Torgeir Dingsøyr focuses on software process improvement and knowledge management as chief scientist at the
SINTEF research foundation. In particular, he has studied agile software development through a number of case
studies, co-authored the systematic review of empirical studies, co-edited the book Agile Software Development:
Current Research and Future Directions, and co-edited the special issue on Agile Methods in the Journal of
Systems and Software. He wrote his doctoral thesis on Knowledge Management in Medium-Sized Software

Consulting Companies at the Department of Computer and Information Science, Norwegian University of
Science and Technology, where he is adjunct professor.

Nils Brede Moe works with software process improvement, intellectual capital, and agile and global software
development as a senior scientist at SINTEF. His research interests are related to organizational, socio-technical, and
global/distributed aspects. His publications include several longitudinal studies on self-management, decision making,
innovation, and teamwork. He has co-edited the books Agile Software Development: Current Research and Future

Empir Software Eng (2018) 23:490–520 519

Directions andAgility Across Time and Space: Implementing AgileMethods inGlobal Software Projects.His thesis was,
BFrom Improving Processes to Improving Practice - Software Process Improvement in Transition from Plan-driven to
Change-driven Development^. He holds an adjunct position at the Blekinge Institute of Technology in Sweden.

Tor Erlend Fægri works as a researcher at SINTEF, where he specializes in software process improvement and
enabling practice-based group-wise learning. His research interests are in socio-technical aspects of learning and
knowledge in software practice. His publications span learning practices in agile development and flexibility in
software architectures. He wrote his thesis on collaborative learning in software development at the Norwegian
University of Science and Technology.

Eva Amdahl Seimworks with organizational and knowledge process improvement, agile software development,
and ICT-based process and decision support as a senior scientist at the SINTEF research foundation. Her research
is related to socio-technical, organizational, and project/portfolio aspects in ICT-related industries and traditional
industries in general. Her publications include studies on project management, lean construction, and operational
integration. She has participated in projects on creating real-time transparency and situation awareness in
operational processes. She has a PhD in project management and has co-edited two books on interdisciplinarity
in the knowledge of economics.

520 Empir Software Eng (2018) 23:490–520

	Exploring...
	Abstract
	Introduction
	Very Large-Scale Development
	Traditional and Agile Development
	Customer Involvement
	Software Architecture
	Inter-Team Coordination

	Method
	Data Collection
	Data Analysis

	Results
	The Perform Programme
	Customer Involvement
	Solution Description Teams
	A Continuous and Iterative Process
	Blurred Boundaries between Phases

	Software Architecture
	Up-Front Architecture
	The Demanding Role of Architects in Very Large-Scale Programme

	Arenas for Inter-Team Coordination
	A Number of Coordination Arenas
	Changing Arenas Over Time
	Open Work Area

	Discussion
	Customer Involvement
	Learning on Architecture and Process
	Inter-Team Coordination
	Limitations

	Conclusion
	Appendix: Interview Guides
	Customer Involvement
	Software Architecture
	Inter-Team Coordination

	References

