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Exploring space separation techniques for 3D elastic waves 
simulations 

Dimitri Goutaudier 1 • Laurent Berthe 1 • Francisco Chinesta2 

Abstract 

This paper explores numerical methods dedicated to 3D elastic waves simulations in spatially separable domains such as 

plates. The objective is to reduce the computation time and the memory requirements associated to these large simulations 

involving fine space and time discretizations. The 3D problem is decomposed into a sequence of lower dimensional problems 

with the Proper Generalized Decomposition. The spatial discretization is performed with the Spectral Element Method to 

provide more compact separated representations compared to the ones obtained with a finite element discretization. Following 

previous works on space separation in elastodynamics, we explore hybrid explicit/implicit time marching schemes to improve 

the solution through one direction as needed, without decreasing the time step due to stability constraints. Large 3D numerical 

problems with several millions of degrees of freedom are efficiently solved with memory requirements characteristic of 2D 

problems. 

Keywords Elastodynamics • Elastic waves • Proper generalized decomposition (PGD) • Spectral element method (SEM) • 

Hybrid time integration • Composite laminate 

1 Introduction 

The accurate description of wave propagation phenomena is 

important in many applications. Laser shock adhesion tests, 

for instance, consist in applying intense pressures, highly 

concentrated both in space and in time, on two opposite 

faces of a laminate target [1-3]. This latter consists in a 

stacking of Carbon Fiber Reinforced Polymer (CFRP) plies 

with different orientations, bonded together with epoxy resin. 

The scattered propagation of elastic waves in such a layered 

medium is complex, and numerical simulations are neces­

sary to understand experimental measurements embedding 

many phenomena (material behavior, scattering patterns, 

edge effects etc.). 

Unfortunately, significant numerical difficulties arise when 

it cornes to solve a wave propagation problem. First, 

an important computational effort is required with three-
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dimensional spatial domains. A fine spatial discretization is 

indeed necessary to capture excited waves with small wave­

length (spatial resolution), and a fine time discretization must 

be used to observe high speed propagation (time resolution). 

These requirements easily lead to costly simulations, espe­

cially if the applied loading has very short duration (the 

frequency content is broader hence excited wavelengths are 

smaller), for instance when addressing laser shocks. Sec­

ond, standard solvers based on the finite element method 

exhibit poor dispersion properties [4]. Numerical solutions 

computed with the finite element method may be polluted 

with spurious high frequency oscillations [5,6]. These latter 

are then bard to distinguish from physical waves when the 

medium is complex, especially in layered media that scatter 

the wave field at each interface crossing [7]. To circum­

vent this limitation, specific time marching schemes can be 

used to introduce numerical dissipation with tunable param­

eters [8,9]. Other numerical methods can be used to solve 

wave propagation problems with reduced dispersion, such as 

boundary integral methods [10, 11], space-time fini te element 

methods [ 12, 13], or the spectral element method [ 14--17]. 

As mentioned above, numerous numerical methods solve 

wave propagation problems with controlled accuracy and 

good convergence properties. Yet, even if the spatial domain 



is as simple as a plate, the computational effort remains pro­
hibitive if appropriate numerical resources are not available. 
Different approaches have been developed to tackle large­
scale simulations with parallel computing strategies [ 18-20]. 
For instance, Zhang et al. presented in [20] a parallel explicit 
solver based on the scaled boundary finite element method, 
with an efficient pre-computation approach and element-wise 
operations. 

In practice, it is common situation that restriction accesses 
to intensive calculation centres slow down the research 
efforts. It is then difficult to use efficient solvers performing 
massively parallel calculations. The objective of the present 
work is to provide a numerical method dedicated to 3D 
wave propagation problems, compatible with standard com­
puting and prograrnming platforms generally available in 
research teams. The main limitation of the presented method 
is the restriction to simple spatial domains with at least 
one extrusion direction (e.g. plate, cylinder). This paper is 
a continuation of our previous work [21] validated on two­
dimensional configurations. 

This paper is organized as follows. In Sect. 2, we recall 
the variational formulation of the three-dimensional elastic 
waves equation and its time discretization. Then we present 
our proposa! to reduce the computational effort. The three­
dimensional spatial domain is decomposed into a sequence 
of lower dimension problems with the Proper Generalized 
Decomposition [22]. The spectral element method is imple­
mented in this space separation framework to improve the 
accuracy and reduce numerical dispersion compared to the 
finite element method. An original time marching scheme, 
originally introduced in [23], is presented to improve the 
solution through one direction as needed, without decreas­
ing the time step and affecting the computation time. In this 
framework, the spectral element method enables a true hybrid 
explicit/implicit scheme with promising behavior on the 
computation time. Section 3 is devoted to numerical exper­
iments with space separation techniques. The convergence 
properties are first discussed on a simple two-dimensional 
example. Then three-dimensional test cases, in isotropie and 
anisotropie elastic media, are considered to evaluate the 
numerical performances of the proposed approach. Simula­
tions are carried out with a standard programrning software 
(Matlab) on a laptop to evidence the reduction of the com­
putation time and the memory needs. 

2 Space separation of 3D elastic waves 
equations 

We consider an elastic inhomogeneous medium occupying 
a spatially separable domain Q c JR;3 , namely either of the 
form Q = rlxy x rlz (plate, cylinder etc.) or Q = rlx x 
rly x rlz (hexahedral domain). Space separation methods 
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are therefore limited to domains with an extrusion direction, 
although domains with appropriate geometrical properties 
can be considered [24]. 

2.1 Governing equations 

We adopt in this paper the notations employed in [15]. The 
displacement vector at a point x E Q at time t E / = [O, T]

is denoted by u(x, t), where / is the time interval of interest. 
The velocity and acceleration fields are denoted by ü and 
ü, respectively. We consider the equations of elastic wave 
propagation given by: 

pü = div[u] + f 

with the initial conditions: 

u(x, 0) = uo(x) 

ü(x, 0) = vo(x) 

(1) 

(2) 

(3) 

where p(x) is the mass density, u(x, t) is the stress tensor, 
f(x, t) is the body force, uo(x) and vo(x) are the initial dis­
placement and velocity fields, respectively. The stress tensor 
is determined by Hooke's law: 

(4) 

where C(x) is the fourth order elastic tensor and where 
the strain tensor E is given by: 

(5) 

In components form, the stress-strain relation is then 

Œij (x, t) = C;Jkl (x)Ek,/ (x, t).
The boundary of Q is decomposed into three distinct 

portions r N, r D and r abs where we impose, respectively, 
tractions, displacements and fictitious tractions to absorb 
incident waves: 

u(x, t) • n(x, t) = t(x, t) on rN 

u(x, t) = g(x, t) on rD 

u(x, t) • n(x, t) = -r(x, t) on rabs 

(6) 

(7) 

(8) 

where n is the unit outward normal to the surface, t(x, t) 
is the prescribed boundary traction vector, g(x, t) is the 
prescribed displacement field, and -r(x, t) is the absorbing 
boundary traction. In this study, we use the absorbing bound­
ary conditions (ABCs) based on a paraxial approximation of 
the elastic waves equation introduced in [25]. These ABCs, 
denoted P-ABCs in the following, are exact for incident 
waves normal to the surface and less accurate as the angle 



T = PCn [Ü · n] · n + pet, [Ü · ti] · ti + PCt2 
[Ü · h] · h (9) 

where en is the velocity of P-waves (longitudinal) propagat­
ing in the direction of the normal n of the surface, c11 

and 
ci2 are velocities of S-waves (transverse) also propagating 
in direction n, but with polarizations along unit orthogonal 
vectors t1 and t2 tangential to the surface, respectively. This 
P-ABC is therefore limited to orthotropic materials whose
principal axes are aligned with the normal and tangential 
directions of the surface boundaries, otherwise such P- and 
S-waves would not exist [26].

More efficient AB Cs could be implemented within a space
separation framework, such as Perfectly Matched Layers 
(PML, [27]) or Absorbing Layers using Increasing Damp­
ing (ALID, [28]), but they would increase the computational 
effort. The purpose of this study is not to minimize spurious 
reflections, but to resort to space separation techniques to 
significantly reduce the computation time while preserving a 
satisfactory accuracy. In addition, stability issues should be 
addressed with more advanced AB Cs. PMLs are indeed very 
effective with isotropie elastic materials but are unstable in 
general with orthotropic materials [29]. ALID should be used 
in this case, and asynchronous strategies could be considered 
in future works to alleviate the computational cost by using 
a larger time step in the ALID domain [30]. 

2.2 Variational formulation 

The solution u is searched in the space of kinematically 
admissible displacements: 

Ui = {u(x, t) E H 1 (Q); u(x, t) = g(x, t) on rv x I} (10) 

and a fonction space of test fonctions u* is introduced: 

V= {u*(x) E H 1 (r?.); u*(x) = 0 on rv} (11) 

The variational formulation of the elastodynarnic problem 
(1-8) then reads: find u E Ur , such that for any t E J and any 
u* EV: 

Lpu* ·ÜdV + L Vsu*: C: VsudV 

= [ u* · fdV + i u* • tdr + f u* . -rdr (12) 
Q rN lrabs 

with: 

Lu* · u(x, O)dV = Lu* . u0(x)dV (13) 

Lu* · ü(x, O)dV = Lu* • v0(x)dV 

2.3 Discretization in time 

(14) 

We discretize the time interval of interest with a constant 
time step 11t. The time increments are then denoted by fk = 
k11t. We use a hybrid time integration scheme (see Sect. 2.7) 
inspired from the widely employed Newmark schemes based 
on the following approximations [31]: 

where the superscript C.i refers to an evaluation at time 
tk . These relations lead to unconditionally stable schemes if, 
and only if, œ 2: 1/4. For instance, œ = 0 is the central 
difference method (explicit, conditionally stable) and œ = 
1/4 is the trapezoidal rule (implicit, unconditionally stable). 
The variational formulation is discretized in time by using 
the above relations with a linear combination of equation 
(12) evaluated at times tk-l, tk and tk+l· Given the solution
known at times fk-1 and fk, the problem is now to find the 
solution at time fk+ 1 satisfying the following relation: 

+ { u*. Tadr 
lrabs 

(17) 

where we adopted the notation (.)° = œ(.i+1 + (1 -
2œ) (. i + œ (. l-1 for the sake of clarity. More advanced time 
marching schemes could be considered to control numerical 
dissipation and dispersion [9]. 

2.4 Time adaptive space separation 

Separation of variables consists in approximating the solu­
tion under separated form to break down a high dimensional 
problem into a sequence of problems of lower dimension, 
much cheaper to be solved. In 3D statics, there is no other 
possibility than performing an in-plane/out-of-plane space 
separation, or a full space separation, by approximating the 
solution with one of the following relations [32], respec­
tively: 

M 

ui(x, y, z) � L<PiJ(x, y)1/liJ(Z) 
j=l 

(18) 



M 

Ui(X, y, z) � L, </Jij(X)Xij(y)i/Jij(Z) 
j=l 

(19) 

where Ui denotes a component of the 3D displacement 
field u = (u1, u2, u3). Such a separated form is built up 
on the fly, directly from the variational formulation of the 
problem, with a Proper Generalized Decomposition (PGD) 
solver [22]. 

In elastodynamics, however, the time variable must be 
taken into account and several alternatives can be consid­
ered. In low and medium frequency domains, the space-time 
separation has been successfully validated with standard 
PGD techniques [33,34]. It consists in introducing sepa­
rated fonctions depending on the time variable in (18) or 
(19). Regarding wave propagation problems, however, con­
vergence difficulties have been reported with the space-time 
separation (M » 100). Boucinha et al. [35,36] circumvented 
this issue by developing a PGD sol ver based on a Time Dis­
continuous Galerkin framework with a compression strategy 
to enforce a low-rank approximation of the solution. Yet, 
even if their method achieves important memory gains, the 
computation time is as high as the one obtained with standard 
sol vers without separation of variables. 

As an alternative, Quaranta et al. [23] proposed perform­
ing a space separation, either with (18) or (19), at each time 
step to compute a space separated form of the solution within 
a PGD-based time incremental solver. In our previous work 
[21], we evidenced that this time incremental procedure is 
in fact well adapted to wave propagation problems. Indeed, 
the propagation of a planar wave is mathematically described 
with a phase variable of the form k • x - wt, with w the wave 
frequency and k the propagation vector [37]. It informs that 
space and time variables are linked to efficiently describe the 
propagative behavior of the solution. In addition, we empha­
sized that an adaptive number of terms shall be introduced 
to get a wave propagation friendly separated form of the 
solution. The number of terms is then capable of evolving 
through time as needed, depending on the applied loading 
and the expansion of the waves in the medium. In particu­
lar, we showed that the number of terms stabilizes when the 
waves reach the boundaries of the domain. As a continuation 
of this work, validated on 2D test cases only, we consider 
herein the following time adaptive separated forms: 

Mk 

Ui(X,Y,Z,tk) � L,</JiJ(X,y,tk)i/Jij(Z,tk) 
J=l 
Mk 

Ui(X, Y, Z, fk) � L, </Jij(X, fk)Xij(Y, tk)i/Jij(Z, tk) 
j=l 

(20) 

(21) 

In contrast to the work of Quaranta et al., we use effi­
cient pre-operators in the PGD solver (Sect. 2.5), we resort 
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to spectral elements instead of finite elements (Sect. 2.6), and 
we introduce a parameter in the hybrid explicit/implicit time 
marching scheme (Sect. 2.7). 

2.5 Enrichment procedure with the proper 
generalized decomposition 

In standard solvers, the unknowns of the 3D problem are 
the nodal values of the three components of the displace­
ment field. A seemingly simple discretization grid with 100 
nodes in each direction results in 106 unknowns at each time 
step (for each component of the displacement field), which 
already is a challenging numerical problem. In the proposed 
framework, however, the unknowns are the nodal values of 
the 2D or 1D fonctions involved in the separated represen­
tations (20) or (21). This problem is solved with a PGD 
algorithm as described in the following. 

For generality, we present herunder the mathematical 
developments with the full space separation. The develop­
ments for the in-plane/out-of-plane separation can easily be 
deduced. Let P, Q and R be vectors gathering shape fonc­
tions associated to each spatial direction. The choice for the 
shape fonctions will be discussed in next section. Then we 
employ a nodal approximation: 

</Jij(x, tk) � P(x) • 4»71
XiJ(Y, tk) � Q(y) · xt 
1/JiJ (z, tk) � R(z) · '11'7J 

(22) 

(23) 

(24) 

where •t, xt and wt denote the vectors of the nodal 
values of </Jij, Xi} and 1/Jij at time tk, respectively. 

The PGD solver computes the separated form with an 
enrichment procedure at each time step, by adding new terms 
to the solution at time tk+ 1 until a convergence criterion is 
satisfied. Assuming the first n - I terms of (21) are known, 
the solution is enriched with a new term: 

(25) 

where the superscript (.)k+1 is omitted on </Jin, Xin and 
1/Jin for the sake of clarity. With the nodal approximation, the 
unknowns are the following vectors of nodal values: 

4»n = ( 4» ln, 4»2n, 4»3n) (26) 
Xn = (X1n, X2n, X3n) (27) 
\Jin = (Win, \112n, W3n) (28) 

The enriched solution must satisfy the weak formulation 
discretized in time (17), which results in a nonlinear prob­
lem. The unknowns 4»n, Xn and \Jin are computed with a 
fixed point method as follows. First, the nodal values of the 



fonctions Xin and o/in are assumed known, and the com­
ponents of the arbitrary test field are taken under the form 
u7 = </J7

n Xin o/in • Upon substituting (22-25) in (17), and by 
assurning separated forms of all the fields, we find the fol­
lowing linear system to be solved (see Appendix): 

llB 

= LBl i[B{iXn o B§;\Jln] (29) 
i=l 

where o denotes the component-wise product defined by (u o 
V)i = U i Vi .

Then the fonctions </Jin are assumed known with the pre­
viously calculated nodal values, and the components of the 
arbitrary test field are taken under the form u7 = </Jin Xi

: o/in • 
The same methodology now leads to the following linear 
system to be solved: 

llB 

= LBzi[B[;cI>n o B§;\Jln] (30) 
i=l 

Eventually, the fonctions Xin are assumed known with 
the previously calculated nodal values, and the components 
of the arbitrary test field are taken under the form u7
</Jin Xin o/;:- The linear system to be solved is: 

llB 

= LB3ï[B[cI>n o BiiXn] 
i=l 

(31) 

This iteration repeats until convergence. More precisely, 
by denoting cI>�

s

), X�s), \Jl�s) the nodal values computed at 
iteration s, the stagnation criterion reads: 

(32) 

where 8 is a threshold value selected by the user. Altema­
tively, a maximum number of iterations can be implemented 
instead in the stagnation loop (see Sect. 3.2.1). The enrich­
ment loop over the number of terms n is stopped when the 

enrichment criterion is reached: 

(33) 

where E is another threshold value selected by the user. This 
criterion leads to a different length of the sum (21) depend­
ing on the complexity of the solution at the considered time 
increment. The selection of its value is discussed in Sect. 3.1. 

Relations (29-31) evidence that the same pre-operators 
AiJ and B iJ are used throughout the fixed point method to 
compute the left and right hand sides of the linear systems. 
Many of them can be computed outside the enrichment loop, 
and the PGD sol ver proposed in this paper takes advantage of 
this property. It then saves numerous operations compared to 
solvers entirely computing both the left and right hand sides 
at each iteration of the fixed point method. 

2.6 Spatial discretization with spectral elements 

In our previous work [21], we used low-order finite elements 
to salve 2D wave propagation problems with the time adap­
tive space separation. However, our numerical experiments 
showed unsatisfactory results for some problems, as pre­
sented in Sect. 3.1. It is indeed well known that low-order 
finite-element methods exhibit poor dispersion properties 
[ 4]. To overcome this issue, we employ spectral elements but 
other high-order discretization schemes (e.g. p-FEM, IGA) 
could be considered [38]. Spectral elements are high order 
Lagrangian elements with specific interior points. These lat­
ter lead to higher spatial accuracy and reduced dispersion 
error compared to low-order finite elements [15]. This is 
a property of primary importance, since spurious high fre­
quency oscillations due to spatial discretization would result 
in a large number of terms in the separated form. Besides, 
when the interior points defining the spectral elements are the 
same as the quadrature points used to numerically evaluate 
the integrals, the following matrices become diagonal [16]: 

'P = f P(x)P(x)T dx
Jnx 

Q = { Q(y)Q(y)T dy 
ln

y 

'R, = r R(z)R(zl dz
ln, 

(34) 

(35) 

(36) 

This is the so-called nodal quadrature technique, but other 
lumping strategies can be implemented in a spectral element 
framework, see for instance [39]. 

Consequently, the combination of spectral elements, 
defined on the quadrature points (Gauss-Lobatto-Legendre 
quadrature is here employed), with the central difference 



method, leads to a true explicit time marching scheme. Only 
trivial and cheap matrix inversions at each time step are then 
performed. The mass matrix is indeed exactly diagonal in 
sol vers based on spectral elements with the nodal quadrature 
technique. With standard low-order finite elements, however, 
the mass matrix must be lumped to get an actual explicit 
scheme, introducing errors in the numerical procedure [40]. 

In practice, a polynomial degree between 4 and 10 is 
employed for wave propagation problems. In order to obtain 
accurate results, the element size must be selected such that 
the average number of grid points in the element per mini­
mum wavelength is greater or equal than 5 [ 16]. As a rule 
of thumb, for 3D problems discretized in space with the 
spectral element method and in time with the central dif­
ference method, the time step l},.f must be selected lower 
than 0.61},.xjc, with l},.x the minimum spacing between two 
grid points and c the maximum wave velocity in the studied 
medium. 

2.7 Hybrid implicit/explicit time marching schemes 

The major limitation of explicit time marching schemes is the 
stability criterion on the time step l},.t which must be selected 
small enough. As a result, high spatial accuracy, obtained by 
increasing the number of elements or the polynomial degree, 
cornes with a price to pay in terms of number of time steps, 
hence of computational time. Implicit schemes, however, are 
unconditionally stable and the time step should be selected 
such that the so-called Courant number c l},.t / l},.x minimizes 
the dispersion error introduced by the time discretization [8]. 
However, implicit schemes involve consistent matrices to be 
inverted at each time step (the ones related to intemal forces), 
which may become computationally expensive. Moreover, 
increasing too much the time step can impact the solution 
accuracy. 

To overcome this issue, Quaranta et al. [23] proposed 
a hybrid implicit/explicit time marching scheme within 
an in-plane/out-of-plane space separation framework. Their 
approach consists in simultaneously mimicking an implicit 
scheme for the out-of-plane 1D problems and an explicit 
scheme for the in-plane 2D problems. This procedure is illus­
trated on Fig. 1. The time step is then only constrained by the 
in-plane spatial discretization. As a result, the solution can be 
refined through the thickness as needed, without significantly 
decreasing the time step and affecting the computation time 
(since only cheap 1D problems are implicit). This numerical 
behavior is of particular interest for the wave propagation 
problem we will be dealing with in Sect. 3.3. 

In this paper, we slightly improve their hybrid scheme by 
introducing a parameter a � 0 which controls amplitude 
decays and period elongations, as in Newmark's schemes 
presented in Sect. 2.3. The hybrid scheme, explicit in-plane 
and implicit out-of-plane, is obtained by selecting a 

(17), except for the out-of-plane derivatives of the displace­
ment field that are treated implicitly: 

u� +-- auk+l + (1 - 2a)u� + auk-l
l,Z l,Z l,Z l,Z 

(37)

Consequently, the matrix operators Ali and A2i are
diagonal, as with the central difference method, hence the 
resolution of the linear systems (29-30) is explicit. On the 
other band, the matrix operators A3i related to the terms u7.z 
are not diagonal, and the resolution of the linear system (31) 
is implicit, as with a Newmark's scheme with a f= O. These 
latter are unconditionally stable if a � 1/4, but our numeri­
cal experiments showed that the proposed hybrid scheme is 
unconditionally stable if a > 1/4. 

3 Numerical results 

Three numerical tests are considered in order to validate 
the method. In the first test, a two dimensional prob­
lem is studied to check the spectral convergence with the 
space separation. In the second, a three dimensional Lamb's 
test in an isotropie linear elastic medium is studied. The 
numerical performances of the in-plane/out-of-plane and full 
space separations are compared. In the last test, a laser 
shock configuration on a CFRP target is studied with the 
in-plane/out-of-plane separation. The performances of the 
hybrid explicit in-plane/implicit out-of-plane time marching 
scheme are illustrated. All the simulations are run with Mat­
lab R2018a on a laptop with a single core Intel i7-5500U 
2.40 GHz CPU and 8 GB RAM. Spectral elements are imple­
mented from an open-source package [41]. 

3.1 Spectral convergence and enrichment criterion 

Spectral elements provide higher accuracy than low-order 
finite elements for the same number of discretization points. 
In order to check this property within the proposed space sep­
aration framework, the two dimensional test case extensively 
studied in [ 42] is considered. lt consists in a linear elastic 
medium, initially at rest, occupying a rectangular geometry 
with dimensions 2m x lm. Dummy mechanical properties 
are used: the shear modulus is G = 1Pa, the density is 
p = lkg/m3 and the Poisson's ratio is v = 1/3. The left 
edge of the domain is subjected to a uniformly distributed 
pressure: 

p(t) = sin(2n fot) exp(-(t - to)2 /(2r2)) (38) 

with fo = lHz, to = ls and r = 4s. All other edges are free 
of traction. The time interval of interest is [Os, 25s]. Initial 
conditions are null. 
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3D problem 
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lD problem 
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tk-1 : tk 
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fixed 
point 
method 

wk+l 
1:n-1 

t 

Fig. 1 Illustration of the explicit in-plane/implicit out-of-plane hybrid scheme with the 2D/1D time adaptive space separation. See Appendix for 
notations 

An observation point A is considered at the middle of 

the right edge of the domain. The objective is to compare 

the horizontal displacement u1 (A, t) for different numerical 

solutions with a reference solution. This latter is computed 

with a standard 2D SEM solver with a grid of 20 x 10 spec­

tral elements of degree 10 (60,903 degrees offreedom). FEM 

simulations are carried out with fully integrated 4-nodes 

elements and a lumped mass matrix. All the solutions are 

computed with 32, 000 time steps with the central difference 

method. The time step is then small enough to ensure that 

numerical errors are mainly due to spatial discretization or 

space separation. The error indicator considered in this study 

1s: 

(39) 

where u1 and u1
ef are the numerical and reference solutions

(observed at point A) discretized in time, respectively. 

Figure 2 compares the errors obtained with a 2D FEM 

solver or a 2D SEM solver (without space separation). The 

FEM solutions are computed by refining the mesh with more 

square elements. The SEM solutions are computed with a 

4 x 2 grid of spectral elements by increasing the polynomial 

degree of the shape functions. The 2D SEM solver outper­

forms the 2D FEM solver on this example. An error of 10-2

is obtained with 273 degrees offreedom (DOFs) with the 2D 

SEM solver, while 60, 903 DOFs are required with the 2D 

FEM solver to reach the same error level. However, it must 

be mentioned that the discrepancy between FEM and SEM 

error levels is usually less severe in more complex situations 
[42]. 

The influence of the space separation is then investigated 

depending on the enrichment criterion given by relation (33). 

Figure 3 compares the errors obtained with PGD solutions 

computed with a 1D/1D space separation and spectral ele­

ments. It can be seen that the rate of convergence depends on 

the selection of the enrichment criterion. This latter can be 

viewed as an a priori error indicator. Spectral convergence is 

indeed recovered (superposition with the 2D SEM curve) 

up to polynomial degree P if the enrichment criterion is 

selected lower or equal than 10-P. The value E = 10-P is 

then selected for all our numerical tests presented hereunder. 

A consequence of the faster convergence rate with spectral 

elements is that a smaller number of terms is computed to 

reach a given error level. For instance, 10 terms are computed 

(in average) to reach the error level of 10-2 with 1D/1D

SEM (with an equivalent grid of 4 x 2 spectral elements of 

degree 5 and E = 10-5), while 80 terms are computed (in

average) with 1D/1D FEM to reach the same error level (with 

an equivalent grid of 100 x 50 4-nodes finite elements and 

E = 10-4). As a result, more accurate solutions are computed

with less computational effort. 

3.2 3D Lamb's test 

Lamb's problem is an important numerical test to validate a 

solver for elastic wave propagation. It consists in applying 

a transient concentrated loading on the surface of an infi­

nite half-space occupied with an isotropie elastic material. 

This configuration generates P-waves (longitudinal) and S­

waves (transverse) in the volume, and R-waves in the surface 

(Rayleigh waves). The analytical solution of this problem 

shows that R-waves are non dispersive and have a strong 

amplitude with respect to volume waves [43]. To simulate 
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Lamb's problem, a Ricker's source is applied: 

f(t) = -A(2rr2(t - ts }2 /t� - l) exp(-rr2(t - ts )2 /t�) 
(40) 

with A = 2.106N, ts = 2.9s, and tp = 3s (see Fig. 4). 
The material characteristics are E = lOMPa, v = 0.24 
and p = 1700kg/m3 , as in [30] for comparison purposes. 
The numerical domain is a hexahedron with dimensions 
300m x 300m x 300m. Due to the problem's symmetry, 
the 3D solutions are actually computed on one fourth of the 
physical domain by prescribing appropriate Dirichlet bound­
ary conditions (u • n = 0 on a truncated surface with normal 
n). Either free surface boundary conditions or P-ABCs are 

2 
x106 

�1 

ê 
u. 0 

-1 � -- - - -�- - - - - -�- - - - -� 
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Time[s] 

Fig. 4 Ricker's source applied at (0m, 0m, 300m) 

implemented on the side and bottom surfaces of the numeri­
cal model. Initial conditions are null. 

3.2.1 Comparison of space separation techniques 

First we compare the results obtained with the in-plane/out­
of-plane and full space separation. Two observation points A
and B are considered: A is located on the surface at position 
(50m, 0m, 300m), and B is located in the volume at posi­
tion (0m, 0m, 250m). The time interval of interest is such 
that spurious wave reflections at numerical boundaries do 
not reach the observation points. Under this condition and 
given the symmetry of Lamb's problem, a 2D axisymmetric 
numerical reference solution is computed with LS-DYNA 
Explicit v7 .1. A sufficiently converged mesh of 300 x 300 4-
node axisymmetric finite elements is used (270,000 DOFs), 
and the time step is equal to 7.46ms. 

Figure 5 compares the solutions obtained with the in­
plane/out-of-plane separation (2D/1D curves) and the full 
separation (lD/lD/lD curves). In each case, the spatial dis­
cretization is equivalent to a uniform grid of 729 3D spectral 
elements of degree 4 (151, 959 DOFs). In the full separa­
tion, a 9 x 9 x 9 grid of lD spectral elements is used. In the 
in-plane/out-of-plane separation, a 9 x 9 grid of 2D spec­
tral elements is used for the in-plane problems, and a grid 
of 9 lD elements is used for the out-of-plane problems. Fol­
lowing the guideline provided in the previous section, the 
enrichment criterion is selected equal to 10-4

. A maximum 
number of 10 iterations is implemented in the stagnation loop 
as recommended in our previous work [21]. The central dif­
ference method is employed for the time integration (a = 0) 
and a uniform time step of 34.6ms is used. The number of 
time steps is 212. The two space separation techniques pro­
vide very sirnilar results, with a relative error with respect to 
the reference solution around 1 % on the vertical component 
of the displacement field. 

Figure 6 shows 3D snapshots of a numerical solution com­
puted with the 2D/1D separation and P-ABCs, on a longer 
time interval. As expected, we observe both volume and sur­
face waves. The surface wave is non dispersive and stronger 
in magnitude than the volume waves. The P-ABCs perform 
well and reduce spurious reflections. 
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Surprisingly, the full space separation demands much 

more computation time than the 2D/1D separation. Even 

if only cheap 1D problems are solved, it appears that the 

large number of terms involved in the solution increases 

the memory needs, which slows down the computation with 

the employed calculation ressources. Figure 7 presents the 

evolution of the number of terms in the numerical solutions 

throughout the simulation. An average number of 206 terms 

is required in the 1D/1D/1D solution with a total compu­

tation time of 4145s (17.8s per time step in average). On 

the other hand, the 2D/1D separation achieves satisfactory 

performances, with only 14 terms in average and a total com­

putation time of 248s (1.07s per time step in average). As 

reported in [21], the number of terms increases as the waves 

expand in the domain (up to 527 with the full separation and 

up to 19 with the in-plane/out-of-plane separation). 

3.2.2 Computation time 

The numerical performances of the 2D/1D separation are 

now explored by enlarging the numerical domain while keep­

ing the same grid point spacing. In contrast to standard 3D 

solvers, the way of increasing the number of grid points 

with a space separation technique has an effect on the com­

putation time. Three spatial enlargements are considered: 

enlargement in z-direction (out-of-plane), enlargement in 

x, y-directions (in-plane), and enlargement in all directions 

(volume). Numerical solutions are computed with the param­

eters of previous section, on the same time interval, but with 

different spatial domain sizes. As a result, all the simulations 

compute the same solutions with the same spatial resolution, 

but within spatial domains of different sizes. 

Figure 8 summarizes the evolution of the average com­

putation time (CPU time) per time step depending on the 

way of enlarging the spatial domain (out-of-plane, in-plane 

or volume enlargements). First, it can be appreciated that 

large simulations with more than one million of DOFs are 

efficiently computed with Matlab and a personal laptop. Full 

3D calculations with as many DOFs simply cannot be con­

ducted with Matlab and the laptop used in this study. Yet, 

with the proposed approach the CPU time per time step is 

at most equal to 5.7s for the largest simulation (1,594,320 

DOFs). It must be mentioned that the average CPU time per 

time step would increase for the largest domains if the sim­

ulation time was increased. lt is indeed reported in [21] that 

the number of terms in the solution (hence the CPU time per 

time step) increases as the waves expand in the domain and 

then it stabilizes. 

Second, the curve obtained with the out-of-plane enlarge­

ment is linear and below the polynomial curve obtained with 

the in-plane enlargement. It means that the CPU time per 

time step linearly increases with the number of DOFs when 

the domain is enlarged in the out-of-plane direction. This 

would not be the case with a standard 3D solver since the 

way of increasing the DOFs does not have an influence (the 

curve would be polynomial). The curve associated to the vol­

ume enlargement is polynomial and in between the two other 

curves. This can easily be explained as follows. In the out­

of-plane enlargement, only the size of the 1D problems is 

increased, while in the in-plane enlargement it is the size of 

the 2D problems that is increased. In the volume enlarge­

ment, the sizes of both the 1D and 2D problems is increased, 

which leads to a polynomial curve as well, but below the 

curve of the in-plane enlargement since for a same number 

of DOFs the size of the 2D problems is smaller. 

As a conclusion, the 2D/1D separation allows enlarging 

the domain in the out-of-plane direction without significantly 

affecting the computation time. The number of terms in the 

solution remained moderate for all the numerical tests per­

formed on this test case (below 20). The resolution of the 



Fig. 6 Snapshots of the 
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in-plane problems is fast thanks to the spectral discretiza­

tion enabling a true explicit scheme. However, the 1D/1D/1D 

separation is less effective on this test case. The concentrated 

loading generates radial waves challenging the full space sep­

aration. It results in a large number of terms in the numerical 

solution (roughly the square of the number of terms obtained 

with the 2D/1D separation). Consequently, more memory is 

needed to handle the numerous pre-operators to be stored to 

compute the right hand sides of the linear systems (29-31), 

which demands more computation time. 

3.3 Laser shock on a composite laminate target 

The last numerical test is inspired from a laser shock config­

uration on a composite laminate target. The target consists 

in a stacking sequence offive (0° , 90°) CFRP plies (140µm 
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Fig. 7 Evolution of the number of terms in the numerical solutions 
throughout the simulation depending on the space separation technique 

thick) separated with epoxy interplies (30µ,m thick), see Fig­
ure 9a. The dimensions of the target are 8mm x 8mm x 1. 7mm 
and the material properties are given in Tables 1-2. A sudden 
pressure pulse of lS0MPa is applied on a circular spot on the 
top surface of the target, see Figure 9b. The bottom and side 
surfaces are free of traction. The time interval of interest is 
[0,1.95]µ,s to avoid spurious reflections on the side surfaces 

of the target (to assume free surface boundary conditions). 
Initial conditions are null. It must be mentioned that P-ABCs 
would not perform well with this layered medium, because 
of the numerous crossings of interfaces and corners that are 
known to deteriorate absorbing performances [ 44]. More effi­
cient ABCs should be implemented to improve the accuracy 
on larger time intervals of interest, see Sect. 2.1. 

We solve this problem with the hybrid explicit in-plane/ 
implicit out-of-plane scheme with a = 0.3. The 2D/1D space 
separation is employed. The numerical model is designed as 
follows. Frequencies up to 4.5MHz are significantly excited 
with this time loading (at least 3% of maximum spec­
trum amplitude). The minimum wave speed in this layered 
medium is 598m/s (transverse wave propagating perpendic­
ular to fiber orientation), hence the minimum wavelength we 
want to resolve is 133µ,m. As mentioned in Sect. 2.7, at least 
5 grid points per minimum wavelength must be used in order 
to have enough spatial resolution. With spectral elements of 
degree 4, this criterion results in an element size of maximum 
106µ,m. To comply with this criterion, the in-plane mesh is 
a grid of 80 x 80 spectral elements of degree 4 (174,243 
in-plane DOFs). The in-plane problems are treated explicitly 
hence the time step is selected equal to 1.82ns to satisfy the 
stability condition (Courant number equal to 0.5). In the out­
of-plane direction, 3 spectral elements of degree 4 are used 
per CFRP ply, and 1 spectral element of degree 2 is used per 
Epoxy interply (417 out-of-plane DOFs). The out-of-plane 
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domain 300m x 300m x 300m discretized with a grid of 5 x 5 x 5 spec­
tral elements of degree 4 (27,783 DOFs). The same spatial resolution 
is used for each simulation 
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Fig. 9 a Stacking configuration. CFRP plies thickness is 140µ,m and Epoxy interplies thickness is 30µ,m. b Time and spatial profiles of the applied 
loading 

Table 1 Mechanical properties 
of epoxy interplies E (GPa) 

5.2 

spatial resolution is richer than the in-plane spatial resolution 
(5 points per minimum wavelength for the in-plane problems 
and 13 for the out-of-plane problems). The total number of 
DOFs ofthis 3D problem is 24,219,777. Thanks to the hybrid 
scheme, the out-of-plane problems are treated implicitly with 
the coarser time step imposed by the in-plane discretization. 
If the central difference method (a = 0) was used instead 
of the hybrid scheme, the stability condition would impose 
a finer time step equal to 0.53ns, hence to 3,676 time steps 
instead of 1, 072 with the hybrid scheme. Table 3 summarizes 
the model parameters. 

Figure 10 displays snapshots of the propagating stress 
fields at different instants. As expected, the applied pressure 

Table 2 Mechanical properties of CFRP plies. Data extracted from [ 45] 

E1 (GPa) E2 (GPa) 

72.9 22.9 

Table 3 2D/lD model 
parameters 

9.70 

v12 

0.77 

#DOFs 

Number of time steps 
In-plane mesh 
Out-of-plane mesh 

v12 

0.0187 

Enrichment criterion 
Stagnation criterion 
Time marching scheme 

V 

0.35 1260 

of 150MPa generates a compressive a33 wave propagating 
through the thickness. The nature of this wave ( compressive 
or tensile) is reverted at each reflection on the top or bot­
tom faces of the target which are free of traction ( the loading 
is null before the retum of this wave on the top face). The 
inspection of a11 and a22 stress fields reveal the anisotropy of 
the CFRP plies: waves are stronger and faster along fiber ori­
entation (fi bers on top of the target are aligned in y-direction). 
Edge effects are also clearly visible on the top face of the 
target with au and a22 ripples propagating from the discon­
tinuity of the spatial loading. It is observed that the reflection 
of the a33 main wave on the top face reloads au and a22 
waves. 

v12 G1 (GPa) 

0.218 48.4 

G2 (GPa) G3 (GPa) 

0.873 0.558 1563 

24,219,777 

1,072 
80 x 80 spectral elements of degree 4 
CFRP ply: 3 spectral elements of degree 4 
Epoxy interply: 1 spectral element of degree 2 

E = 10-4

10 iterations 
hybrid scheme with a = 0.3 
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Fig. 11 Back face velocity computed with a 1D model and a 2D/1D 
model 

Eventually, Figure 11 compares the back face velocities 
(observation at the middle of bottom face) computed with 
the 2D/1D model and a 1D model using the same spectral 
discretization along z-axis. This latter is based on a 1D scalar 
wave equation with varying mechanical properties: 

p(z)ü(z, t) = E(z)a;u(z, t) (41) 

where E(z) and p(z) are the Young modulus and density 
fields of the 3D model along z-axis, respectively. 

The peak amplitude of the 3D calculation is slightly lower 
because of the three-dimensional expansion of the waves. 
The scattering patterns due to the plies (visible from t =

1.2µ,s) are different because edge effects are not taken into 
account in the 1D model. The ripples following the main 
peak would be larger if the width of the a33 wave was smaller 
compared to the plies thicknesses. 

In terms of numerical performances, the average number 
of terms throughout the simulation is 14.4 and the compu­
tation time is 17.9 hours (50s per time step in average). The 
number of terms in the solution stabilizes around 18, see 
Figure 12. It can be appreciated that such a large simulation 
(24,219,777 DOFs and 1,072 time steps) has been success­
fully conducted with Matlab R2018a and a persona! laptop. 

4 Conclusion 

In this work, we presented space separation techniques to 
speed up wave propagation simulations in three-dimensional 
plate domains. High order spectral elements are employed 
instead of low-order finite elements to improve the conver­
gence and dispersion properties that are of primary impor­
tance for such problems. Spectral convergence is retriev
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Fig. 12 Evolution of the number of terms through the simulation with 
the 2D/1D model 

with an adequate selection of the enrichment criterion in the 
Proper Generalized Decomposition algorithm. More com­
pact separated representations are then obtained to reach 
a given error level. The full space separation is found 
less effective in terms of computation time than the in­
plane/out-of-plane separation for the considered test cases. 
The proposed framework enables true hybrid time march­
ing schemes, simultaneously implicit or explicit throughout 
the fixed point method depending on the spatial directions. 
The solution can then be improved through one direction 
as needed, without decreasing the time step or affecting 
the computation time. This behavior is promising for wave 
propagation simulations in composite laminate media char­
acterized by strong material properties variations through the 
thickness. Numerical experiments on three-dimensional test 
cases confirm the desired behavior of the proposed method: 
3D problems with millions of degrees offreedom are solved 
with computational ressources characteristic of2D problems. 
Future work will be devoted to the implementation of accu­
rate absorbing boundary conditions for composite laminate 
media. 
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Appendix 

Particular attention is required on the manipulation of the 
PGD matrix operators for wave propagation problems. The 
number of terms in the solutions is indeed generally larger 
than with other elastodynamic problems, since small wave­
lengths are significantly excited by the applied loading 
generating the waves. As a result, many matrix-vector prod-



ucts must be computed in the terms involving u�+ 1, uk and
uk-l in relation (17). It is even worse if the medium is
anisotropie since more elastic coefficients are non null in 
the elastic tensor C. As proposed in [21], we avoid unneces­
sary operations by computing Aij and Bij in (29-31) outside 
the enrichment loop of the fixed point method. 

The component-wise product between two vectors u and 
vis defined by (u o v)i = UiVi. The following vectorization 
property is employed: 

M 

I)•r Ac);)(XrBX;)(\llr C\11;) = c•r A)[Br x o cr \Ill
i=I 

(42) 

where A, B, C are matrices and ♦, ♦i, X, Xi, \JI, \Ili are 
vectors of appropriate dimensions, and: 

A= A♦i=l:M 
B = BXi=l:M 
C = C\Jli=l:M 

(43) 

(44) 

(45) 

where we noted •i=l:M = [♦11 ... l♦M], Xi=l:M =

[X1I ... IXM] and \Jli=l:M = [\1111 ... I\JIM]-
We present hereunder how is computed one of the terms 

of (17) with u7 = <1>7n Xin ifiïn • For simplicity we assume p =
p(z). First we use the separated form of the solution: 

lpu* -ukdV

3 Mk 

� L L [ <1>7n<f>tdx [ Xinxtdy [ P1/fin1/ftdz
i=l j=l f.lx f.ly n, 

Then we use the nodal approximations (22-24): 

lpu* ·Ukdv

3 Mk 

(46) 

� I:I:c•7,;P•t)cxT,,Qxt)cw;,,R(p)wt) (47)
i=l j=l 

where matrices 1' and Q are given by relations (34-
35), respectively, and 'R,(p) = fnz p(z)R(z)R(z)T dz. Then
property (42) leads to the desired form: 

3 

f pu*· ukdV � L(♦�T Bli)[Bi;Xn o B[\Jln]
ln i=l 

(48) 

with ♦� = (♦În• ♦2n, ♦3n). The expressions of the
matrices B li, B 2i and B 3i for i = l are: 

where Ox, Oy, Oz are null matrices with appropriate dimen­
sions. For i = 2, 3 the expressions are sirnilar with shifted 
diagonal blocks. 
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