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Abstract

Current CNN-based super-resolution (SR) methods pro-

cess all locations equally with computational resources be-

ing uniformly assigned in space. However, since missing

details in low-resolution (LR) images mainly exist in re-

gions of edges and textures, less computational resources

are required for those flat regions. Therefore, existing CNN-

based methods involve redundant computation in flat re-

gions, which increases their computational cost and lim-

its their applications on mobile devices. In this paper, we

explore the sparsity in image SR to improve inference effi-

ciency of SR networks. Specifically, we develop a Sparse

Mask SR (SMSR) network to learn sparse masks to prune

redundant computation. Within our SMSR, spatial masks

learn to identify “important” regions while channel masks

learn to mark redundant channels in those “unimportant”

regions. Consequently, redundant computation can be ac-

curately localized and skipped while maintaining compa-

rable performance. It is demonstrated that our SMSR

achieves state-of-the-art performance with 41%/33%/27%
FLOPs being reduced for ×2/3/4 SR. Code is available at:

https://github.com/LongguangWang/SMSR.

1. Introduction

The goal of single image super-resolution (SR) is to

recover a high-resolution (HR) image from a single low-

resolution (LR) observation. Due to the powerful feature

representation and model fitting capabilities of deep neu-

ral networks, CNN-based SR methods have achieved sig-

nificant performance improvements over traditional ones.

Recently, many efforts have been made towards real-world

applications, including few-shot SR [38, 39], blind SR

[12, 49, 42], and scale-arbitrary SR [15, 43]. With the pop-

ularity of intelligent edge devices (such as smartphones and

VR glasses), performing SR on these devices is highly de-

manded. Due to the limited resources of edge devices1, ef-

ficient SR is crucial to the applications on these devices.

1For example, the computational performance of Kirin 990 and RTX

2080Ti are 0.9 and 13.4 tFLOPS, respectively.
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Figure 1. Trade-off between PSNR performance, number of pa-

rameters and FLOPs. Results are achieved on Set5 for ×2 SR.

Since the pioneering work of SRCNN [8], deeper net-

works have been extensively studied for image SR. In

VDSR [19], SR network is first deepened to 20 layers.

Then, a very deep and wide architecture with over 60 lay-

ers is introduced in EDSR [29]. Later, Zhang et al. further

increased the network depth to over 100 and 400 in RDN

[51] and RCAN [50], respectively. Although a deep net-

work usually improves SR performance, it also leads to high

computational cost and limits the applications on mobile de-

vices. To address this problem, several efforts have been

made to reduce model size through information distillation

[17] and efficient feature reuse [2]. Nevertheless, these net-

works still involve redundant computation. Compared to an

HR image, missing details in its LR image mainly exist in

regions of edges and textures. Consequently, less computa-

tional resources are required in those flat regions. However,

these CNN-based SR methods process all locations equally,

resulting in redundant computation within flat regions.

In this paper, we explore the sparsity in image SR to im-

prove inference efficiency of SR networks. We first study

the intrinsic sparsity of the image SR task and then investi-

gate the feature sparsity in existing SR networks. To fully

exploit the sparsity for efficient inference, we propose a

sparse mask SR (SMSR) network to dynamically skip re-

dundant computation at a fine-grained level. Our SMSR

learns spatial masks to identify “important” regions (e.g.,

edge and texture regions) and uses channel masks to mark

redundant channels in those “unimportant” regions. These
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two kinds of masks work jointly to accurately localize re-

dundant computation. During network training, we soften

these binary masks using the Gumbel softmax trick to make

them differentiable. During inference, we use sparse con-

volution to skip redundant computation. It is demonstrated

that our SMSR can effectively localize and prune redun-

dant computation to achieve better efficiency while produc-

ing promising results (Fig. 1).

Our main contributions can be summarized as: 1) We

develop an SMSR network to dynamically skip redundant

computation for efficient image SR. In contrast to existing

works that focus on lightweight network designs, we ex-

plore a different route by pruning redundant computation

to improve inference efficiency. 2) We propose to local-

ize redundant computation by learning spatial and channel

masks. These two kinds of masks work jointly for fine-

grained localization of redundant computation. 3) Experi-

mental results show that our SMSR achieves state-of-the-art

performance with better inference efficiency. For example,

our SMSR outperforms previous methods on Set14 for ×2
SR with a significant speedup on mobile devices (Table 2).

2. Related Work

In this section, we first review several major works for

CNN-based single image SR. Then, we discuss CNN accel-

eration techniques related to our work, including adaptive

inference and network pruning.

Single Image SR. CNN-based methods have dominated the

research of single image SR due to their strong representa-

tion and fitting capabilities. Dong et al. [8] first introduced a

three-layer network to learn an LR-to-HR mapping for sin-

gle image SR. Then, a deep network with 20 layers was pro-

posed in VDSR [19]. Recently, deeper networks are exten-

sively studied for image SR. Lim et al. [29] proposed a very

deep and wide network (namely, EDSR) by cascading mod-

ified residual blocks. Zhang et al. [51] further combined

residual learning and dense connection to build RDN with

over 100 layers. Although these networks achieve state-of-

the-art performance, the high computational cost and mem-

ory footprint limit their applications on mobile devices.

To address this problem, several lightweight networks

were developed [22, 17, 2]. Specifically, distillation blocks

were proposed for feature learning in IDN [17], while a

cascading mechanism was introduced to encourage efficient

feature reuse in CARN [2]. Different from these manually

designed networks, Chu et al. [6] developed a compact ar-

chitecture using neural architecture search (NAS). Recently,

Lee et al. [24] introduced a distillation framework to lever-

age knowledge learned by powerful teacher SR networks to

boost the performance of lightweight student SR networks.

Although these lightweight SR networks successfully re-

duce the model size, redundant computation is still involved

and hinders them to achieve better computational efficiency.

In contrast to many existing works that focus on compact

architecture designs, few efforts have been made to exploit

the redundancy in SR networks for efficient inference.

Adaptive Inference. Adaptive inference techniques [44,

37, 36, 11, 26] have attracted increasing interests since they

can adapt the network structure according to the input. One

active branch of adaptive inference techniques is to dynam-

ically select an inference path at the levels of layers. Specif-

ically, Wu et al. [45] proposed a BlockDrop approach for

ResNets to dynamically drop several residual blocks for ef-

ficiency. Mullapudi et al. [36] proposed an HydraNet with

multiple branches and used a gating approach to dynami-

cally choose a set of them at test time. Another popular

branch is early stopping techniques that skip the computa-

tion at a location whenever it is deemed to be unnecessary

[46]. On top of ResNets, Figurnov et al. [9] proposed a

spatially adaptive computation time (SACT) mechanism to

stop computation for a spatial position when the features

become “good enough”. Liu et al. [31] introduced adap-

tive inference for SR by producing a map of local network

depth to adapt the number of convolutional layers imple-

mented at different locations. However, these adaptive in-

ference methods only focus on spatial redundancy without

considering redundancy in channel dimension.

Network Pruning. Network pruning [13, 32, 33] is widely

used to remove a set of redundant parameters for network

acceleration. As a popular branch of network pruning

methods, structured pruning approaches are usually used to

prune the network at the level of channels and even lay-

ers [25, 32, 33, 14]. Specifically, Li et al. [25] used L1

norm to measure the importance of different filters and then

pruned less important ones. Liu et al. [32] imposed a spar-

sity constraint on scaling factors of the batch normalization

layers and identified channels with lower scaling factors as

less informative ones. Different from these static structured

pruning methods, Lin et al. [30] conducted runtime neural

network pruning according to the input image. Recently,

Gao et al. [10] introduced a feature boosting and suppres-

sion method to dynamically prune unimportant channels at

inference time. Nevertheless, these network pruning meth-

ods treat all spatial locations equally without taking their

different importance into consideration.

3. Sparsity in Image Super-Resolution

In this section, we first illustrate the intrinsic sparsity of

the single image SR task and then investigate the feature

sparsity in state-of-the-art SR networks.

Given an HR image IHR and its LR version ILR (e.g.,

×4 downsampled), we super-resolve ILR using Bicubic

and RCAN to obtain ISR
Bicubic and ISR

RCAN , respectively.

Figure 2 shows the absolute difference between ISR
Bicubic,

ISR
RCAN and IHR in the luminance channel. It can be ob-

served from Fig. 2(b) that ISR
Bicubic is “good enough” for flat
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Figure 2. Absolute difference between ISR
Bicubic,

ISR
RCAN and IHR in the luminance channel.
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Figure 3. Visualization of feature maps after the ReLU layer in the first back-

bone block of RCAN. Note that, sparsity is defined as the ratio of zeros in the

corresponding channels.

regions, with noticeable missing details in only a small pro-

portion of regions (∼ 17% pixels with |IHR−ISR
Bicubic| >

0.1). That is, the SR task is intrinsically sparse in spatial

domain. Compared to Bicubic, RCAN performs better in

edge regions while achieving comparable performance in

flat regions (Fig. 2(c)). Although RCAN focuses on re-

covering high-frequency details in edge regions (Fig. 2(d)),

those flat regions are equally processed at the same time.

Consequently, redundant computation is involved.

Figure 3 illustrates the feature maps after the ReLU layer

in a backbone block of RCAN. It can be observed that

the spatial sparsity varies significantly for different chan-

nels. Moreover, a considerable number of channels are

quite sparse (sparsity ≥ 0.8), with only edge and texture

regions being activated. That is, computation in those flat

regions is redundant since these regions are not activated

after the ReLU layer. In summary, RCAN activates only a

few channels for “unimportant” regions (e.g., flat regions)

and more channels for “important” regions (e.g., edge re-

gions). More results achieved with different SR networks

and backbone blocks are provided in the supplemental ma-

terial.

Motivated by these observations, we learn sparse masks

to localize and skip redundant computation for efficient in-

ference. Specifically, our spatial masks dynamically iden-

tify “important” regions while the channel masks mark re-

dundant channels in those “unimportant” regions. Com-

pared to network pruning methods [10, 30, 14], we take

region redundancy into consideration and only prune chan-

nels for “unimportant” regions. Different from adaptive in-

ference networks [37, 27], we further investigate the redun-

dancy in channel dimension to localize redundant computa-

tion at a finer-grained level.

4. Our SMSR Network

Our SMSR network uses sparse mask modules (SMM)

to prune redundant computation for efficient image SR.

Within each SMM, spatial and channel masks are first

generated to localize redundant computation, as shown in

Fig. 4. Then, the redundant computation is dynamically

skipped using L densely-connected sparse mask convolu-

tions. Since only necessary computation is performed, our

SMSR can achieve better efficiency while maintaining com-

parable performance.

4.1. Sparse Mask Generation

1) Training Phase

Spatial Mask. The goal of spatial mask is to identify “im-

portant” regions in feature maps (i.e., 0 for “unimportant”

regions and 1 for “important” ones). To make the binary

spatial mask learnable, we use Gumbel softmax distribu-

tion to approximate the one-hot distribution [18]. Specifi-

cally, input feature F ∈R
C×H×W is first fed to an hourglass

block to produce F spa ∈R
2×H×W , as shown in Fig. 5(a).

Then, the Gumbel softmax trick is used to obtain a softened

spatial mask Mspa
k ∈R

H×W :

Mspa
k [x, y] =

exp
(

(

F spa[1, x, y]+Gspa
k [1, x, y]

)

/τ
)

∑2

i=1
exp
(

(

F spa[i, x, y]+Gspa
k [i, x, y]

)

/τ
) ,

(1)

where x, y are vertical and horizontal indices, Gspa
k ∈

R
2×H×W is a Gumbel noise tensor with all elements fol-

lowing Gumbel(0, 1) distribution and τ is a temperature

parameter. When τ → ∞, samples from Gumbel softmax

distribution become uniform. That is, all elements in Mspa
k

are 0.5. When τ → 0, samples from Gumbel softmax dis-

tribution become one-hot. That is, Mspa
k becomes binary.

In practice, we start at a high temperature and anneal to a

small one to obtain binary spatial masks.

Channel Mask. In addition to spatial masks, channel

masks are used to mark redundant channels in those “unim-

portant” regions (i.e., 0 for redundant channels and 1 for

preserved ones). Here, we also use Gumbel softmax trick
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Figure 5. An illustration of sparse mask generation and sparse mask convolution.

to produce binary channel masks. For the lth convolu-

tional layer in the kth SMM, we feed auxiliary parameter

Sk,l ∈ R
2×C to a Gumbel softmax layer to generate soft-

ened channel masks M ch
k,l ∈ R

C :

M ch
k,l[c] =

exp
(

(

Sk,l[1, c] +Gch
k,l[1, c]

)

/τ
)

∑2

i=1
exp
(

(

Sk,l[i, c] +Gch
k,l[i, c]

)

/τ
) , (2)

where c is the channel index and Gch
k,l ∈ R

2×C is a Gumbel

noise tensor. In our experiments, Sk,l is initialized using

random values drawn from a Gaussian distribution N(0, 1).

Sparsity Regularization. Based on spatial and channel

masks, we define a sparsity term ηk,l:

ηk,l =
1

C×H×W

∑

c,x,y

(

(1−M ch
k,l[c])×Mspa

k [x, y]

+M ch
k,l[c]×I[x, y]

)

,

(3)

where I ∈R
H×W is a tensor with all ones. Note that, ηk,l

represents the ratio of activated locations in the output fea-

ture maps. To encourage the output features to be more

sparse with fewer locations being activated, we further in-

troduce a sparsity regularization loss:

Lreg =
1

K×L

∑

k,l

ηk,l, (4)

where K is the number of SMMs and L is the number of

sparse mask convolutional layers within each SMM.

Training Strategy. During the training phase, the tempera-

ture parameter τ in Gumbel softmax layers is annealed us-
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Table 1. Comparative results achieved on Set14 by our SMSR with different settings for ×2 SR.
Model Spatial Mask Channel Mask Conv #Params. Sparsity FLOPs PSNR SSIM

1 ✗ ✗ Vanilla 926K 0 1.00× 33.65 0.9180
2 ✗ ✓ Vanilla 587K 0.46 0.60× 33.53 0.9169
3 ✓ ✗ Sparse 985K 0.42 0.65× 33.60 0.9176

4 (Ours) ✓ ✓ Sparse 985K 0.46 0.61× 33.64 0.9179

ing the schedule τ =max(0.4, 1− t
Ttemp

), where t is the

number of epochs and Ttemp is empirically set to 500 in our

experiments. As τ gradually decreases, Gumbel softmax

distribution is forced to approach an one-hot distribution to

produce binary spatial and channel masks.

2) Inference Phase

During training, Gumbel softmax distributions are

forced to approach one-hot distributions as τ decreases.

Therefore, we replace the Gumbel softmax layers with

argmax layers after training to obtain binary spatial and

channel masks, as shown in Fig. 5(c).

4.2. Sparse Mask Convolution

1) Training Phase

To enable backpropagation of gradients at all locations,

we do not explicitly perform sparse convolution during

training. Instead, we multiply the results of a vanilla

“dense” convolution with predicted spatial and channel

masks, as shown in Fig. 5(b). Specifically, input feature F is

first multiplied with M ch
k,l−1

and (1−M ch
k,l−1

) to obtain FD

and FS , respectively. That is, channels with “dense” and

“sparse” feature maps in F are separated. Next, FD and FS

are passed to two convolutions with shared weights. The

resulting features are then multiplied with different combi-

nations of (1−M ch
k,l), M

ch
k,l and Mspa

k to activate different

parts of the features. Finally, all these features are summed

up to generate the output feature F out. Thanks to Gumbel

softmax trick used in mask generation, gradients at all lo-

cations can be preserved to optimize the kernel weights of

convolutional layers.

2) Inference Phase

During the inference phase, sparse convolution is per-

formed based on the predicted spatial and channel masks,

as shown in Fig. 5(d). Take the lth layer in the kth SMM as

an example, its kernel is first splitted into four sub-kernels

according to M ch
k,l−1

and M ch
k,l to obtain four convolutions.

Meanwhile, input feature F is splitted into FD and FS

based on M ch
k,l−1

. Then, FD is fed to convolutions ➀ and

➁ to produce FD2D and FD2S , while FS is fed to convo-

lutions ➂ and ➃ to produce FS2D and FS2S . Note that,

FD2D is produced by a vanilla “dense” convolution while

FD2S , FS2D and FS2S are generated by sparse convolu-

tions with only “important” regions (marked by Mspa
k ) be-

ing computed. Finally, features obtained from these four

branches are summed and concatenated to produce the out-

put feature F out. Using sparse mask convolution, compu-

tation for redundant channels within those “unimportant”

regions can be skipped for efficient inference.

4.3. Discussion

Different from many recent works that use lightweight

network designs [17, 2, 6] or knowledge distillation [24]

for efficient SR, we speedup SR networks by pruning re-

dundant computation. Previous adaptive inference and net-

work pruning methods focus on redundant computation in

spatial and channel dimensions independently. Directly ap-

plying these approaches cannot fully exploit the redundancy

in SR networks and suffers notable performance drop, as

demonstrated in Sec. 5.2. In contrast, our SMSR provides

a unified framework to consider redundancy in both spatial

and channel dimensions. It is demonstrated that our spatial

and channel masks are well compatible to each other and

facilitate our SMSR to obtain fine-grained localization of

redundant computation.

5. Experiments

5.1. Implementation Details

We used 800 training images and 100 validation im-

ages from the DIV2K dataset [1] as training and validation

sets. For evaluation, we used five benchmark datasets in-

cluding Set5 [4], Set14 [48], B100 [34], Urban100 [16],

and Manga109 [35]. Peak signal-to-noise ratio (PSNR) and

structural similarity index (SSIM) were used as evaluation

metrics to measure SR performance. Following the evalua-

tion protocol in [50, 51], we cropped borders and calculated

the metrics in the luminance channel.

During training, 16 LR patches of size 96× 96 and their

corresponding HR patches were randomly cropped. Data

augmentation was then performed through random rotation

and flipping. We set C = 64, L= 4,K = 5 for our SMSR.

We used the Adam method [21] with β1 = 0.9 and β2 =
0.999 for optimization. The initial learning rate was set to

2 × 10−4 and reduced to half after every 200 epochs. The

training was stopped after 1000 epochs. The overall loss for

training is defined as L = LSR + λLreg , where LSR is the

L1 loss between SR results and HR images, Lreg is defined

in Eq. 4. To maintain training stability, we used a warmup

strategy λ = λ0 ×min( t
Twarm

, 1), where t is the number of

epochs, Twarm is empirically set to 50 and λ0 is set to 0.1.

5.2. Model Analysis

We first conduct experiments to demonstrate the effec-

tiveness of sparse masks. Then, we investigate the effect of
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Table 2. Comparative results achieved on Set14 by our SMSR with different sparsities for ×2 SR.

Model Conv λ0 Sparsity #Params. FLOPs Memory
Time

PSNR SSIM
GPU CPU Kirin 990 Kirin 810

baseline Vanilla 0 0 926K 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 33.65 0.9180
5 Sparse 0.1 0.46 985K 0.61× 0.89× 1.22× 0.79× 0.64× 0.57× 33.64 0.9179
6 Sparse 0.2 0.64 985K 0.46× 0.87× 1.11× 0.73× 0.55× 0.50× 33.61 0.9174
7 Sparse 0.3 0.73 985K 0.38× 0.85× 1.04× 0.68× 0.54× 0.45× 33.52 0.9169

IDN [17] - - - 553K 0.57× 0.91× 1.04× 0.73× 0.71× 0.60× 33.30 0.9148
CARN [2] - - - 1592K 0.99× 1.01× 1.00× 0.89× 0.96× 1.15× 33.52 0.9166
FALSR-A [6] - - - 1021K 1.04× 2.02× 1.11× 1.05× 1.02× 0.92× 33.55 0.9168
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Figure 6. Visualization of sparse masks.

Blue and green regions in Mch represent

channels with “dense” and “sparse” fea-

ture maps, respectively. In Mspa, “im-

portant” locations are shown in yellow.
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sparsity and visualize sparse masks for discussion. Finally,

we compare our learning-based masks with heuristic ones.

Effectiveness of Sparse Masks. To demonstrate the effec-

tiveness of our sparse masks, we first introduced variant 1

by removing both spatial and channel masks. Then, we de-

veloped variants 2 and 3 by adding channel masks and spa-

tial masks, respectively. Comparative results are shown in

Table 1. Without spatial and channel masks, all locations

and all channels are processed equally. Therefore, variant 1

has a high computational cost. Using channel masks, redun-

dant channels are pruned at all spatial locations. Therefore,

variant 2 can be considered as a pruned version of variant

1. Although variant 2 has fewer parameters and FLOPs,

it suffers a notable performance drop (33.53 vs. 33.65)

since beneficial information in “important” regions of these

pruned channels are discarded. With only spatial masks,

variant 3 suffers from a conflict between efficiency and per-

formance since redundant computation in channel dimen-

sion cannot be well handled. Consequently, its FLOPs is

reduced with a performance drop (33.60 vs. 33.65). Using

both spatial and channel masks, our SMSR can effectively

localize and skip redundant computation at a finer-grained

level to reduce FLOPs by 39% while maintaining compara-

ble performance (33.64 vs. 33.65).

Effect of Sparsity. To investigate the effect of sparsity, we

retrained our SMSR with large λ0 to encourage high spar-

sity. Nvidia RTX 2080Ti, Intel I9-9900K and Kirin 990/810

were used as platforms of GPU, CPU and mobile processor

for evaluation. For fair comparison of memory consumption

and inference time, all convolutional layers in the backbone

of different networks were implemented using im2col [5]

based convolutions since different implementation methods

(e.g., Winograd [23] and FFT [41]) have different computa-

tional costs. Comparative results are presented in Table 2.

As λ0 increases, our SMSR produces higher sparsities

with more FLOPs and memory consumption being reduced.

Further, our network also achieves significant speedup on

CPU and mobile processors. Due to the irregular and frag-

mented memory patterns, sparse convolution cannot make

full use of the characteristics of general GPUs (e.g., mem-

ory coalescing) and relies on specialized designs to im-

prove memory locality and cache hit rate for acceleration

[47]. Therefore, the advantage of our SMSR cannot be fully

exploited on GPUs without specific optimization. Com-

pared to other state-of-the-art methods, our SMSR (variant

5) obtains better performance with lower memory consump-

tion and shorter inference time on mobile processors. This

clearly demonstrates the great potential of our SMSR for

applications on mobile devices.

Visualization of Sparse Masks. We visualize the sparse

masks generated in the first SMM for ×2 SR in Fig. 6. More

results are provided in the supplemental material. It can be

seen that locations around edges and textures in Mspa are

considered as “important” ones, which is consistent with

our observations in Sec. 3. Moreover, we can see that there

are more sparse channels (i.e., green regions in M ch) in

deep layers than shallow layers. This means that a subset

of channels in shallow layers are informative enough for

“unimportant” regions and our network progressively fo-

cuses more on “important” regions as the depth increases.

Overall, our spatial and channel masks work jointly for fine-

grained localization of redundant computation.
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Table 4. Comparative results achieved for ×2/3/4 SR. PSNR/SSIM results of previous works are directly copied from corresponding

papers. FLOPs is computed based on HR images with a resolution of 720p (1280 × 720). For SMSR, average sparsities on all datasets

(0.49/0.39/0.33 for ×2/3/4 SR) are used to calculate FLOPs, with full FLOPs being shown in brackets. Best and second best results are

highlighted and underlined.

Model Scale #Params FLOPs Set5 Set14 B100 Urban100 Manga109

Bicubic ×2 - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [8] ×2 57K 52.7G 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR [19] ×2 665K 612.6G 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
DRCN [20] ×2 1774K 9788.7G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
LapSRN [22] ×2 813K 29.9G 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
MemNet [40] ×2 677K 623.9G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
SRFBN-S [28] ×2 282K 574.4G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757
IDN [17] ×2 553K 127.7G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN [2] ×2 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
FALSR-A [6] ×2 1021K 234.7G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -/-
SMSR ×2 985K (224.1G)131.6G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771

Bicubic ×3 - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [8] ×3 57K 52.7G 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
VDSR [19] ×3 665K 612.6G 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
DRCN [20] ×3 1774K 9788.7G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.14/0.8279 32.24/0.9343
MemNet [40] ×3 677K 623.9G 34.09/0.9248 30.01/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
SRFBN-S [28] ×3 375K 686.4G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404
IDN [17] ×3 553K 57.0G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN [2] ×3 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
SMSR ×3 993K (100.5G)67.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445

Bicubic ×4 - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [8] ×4 57K 52.7G 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
VDSR [19] ×4 665K 612.6G 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540 28.83/0.8870
DRCN [20] ×4 1774K 9788.7G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.18/0.7524 28.93/0.8854
LapSRN [22] ×4 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
MemNet [40] ×4 677K 623.9G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
SRFBN-S [28] ×4 483K 852.9G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008
IDN [17] ×4 553K 32.3G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN [2] ×4 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
SMSR ×4 1006K (57.2G)41.6G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

Table 3. Comparison between learning-based masks and gradient-

based masks. Results are achieved on Set14 for ×2 SR.

Mspa #Params. α Sparsity
Set14

PSNR SSIM

Gradient-based

926K 30 0.51 33.48 0.9163
926K 30 0.62 33.42 0.9155
926K 30 0.72 33.33 0.9151
926K 50 0.50 33.45 0.9162
926K 50 0.61 33.39 0.9153
926K 50 0.71 33.30 0.9150

Learning-based
985K - 0.46 33.64 0.9179
985K - 0.64 33.61 0.9174
985K - 0.73 33.52 0.9169

We further investigate the sparsities achieved by our

SMMs for different scale factors. Specifically, we feed an

LR image (×2 downsampled) to ×2/3/4 SMSR networks

and compare the sparsities in their SMMs. As shown in

Fig. 7, the sparsities decrease for larger scale factors in

most SMMs. Since more details need to be reconstructed

for larger scale factors, more locations are marked as “im-

portant” ones (with sparsities being decreased).

Learning-based Masks vs. Heuristic Masks. As regions

of edges are usually identified as important ones in our spa-

tial masks (Fig. 6), another straightforward choice is to use

heuristic masks. KernelGAN [3] follows this idea to iden-

tify regions with large gradients as important ones when ap-

plying ZSSR [38] and uses a masked loss to focus on these

regions. To demonstrate the effectiveness of learning-based

masks in our SMSR, we introduced a variant with gradient-

induced masks. Specifically, we consider locations with

gradients larger than a threshold α as important ones and

keep the spatial mask fixed within the network. The per-

formance of this variant is compared to our SMSR in Ta-

ble 3. Compared to learning-based masks, the variant with

gradient-based masks suffers a notable performance drop

with comparable sparsity (e.g., 33.52 vs. 33.33/33.30). Fur-

ther, we can see from Fig. 8 that learning-based masks facil-

itate our SMSR to achieve better trade-off between SR per-

formance and computational efficiency. Using fixed heuris-

tic masks, it is difficult to obtain fine-grained localization of

redundant computation. In contrast, learning-based masks

enable our SMSR to accurately localize redundant compu-

tation to produce better results.

5.3. Comparison with Stateoftheart Methods

We compare our SMSR with nine state-of-the-art meth-

ods, including SRCNN [8], VDSR [19], DRCN [20], Lap-

SRN [22], MemNet [40], SRFBN-S [28], IDN [17], CARN

[2], and FALSR-A [6]. As this paper focuses on lightweight

SR networks (< 2M), several recent works with large mod-

els (e.g., EDSR [29] (∼40M), RCAN [50] (∼15M) and

SAN [7] (∼15M)) are not included for comparison. Quan-

titative results are presented in Table 4 and visualization re-
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SRFBN-S IDN CARN Ours

img_004

img_033

Figure 9. Visual comparison on the Urban100 dataset for ×4 SR.

Bicubic SRFBN-S CARN SMSRLR Image

Figure 10. Visual comparison on a real-world image.

sults are shown in Figs. 9 and 10.

Quantitative Results. As shown in Table 4, our SMSR

outperforms the state-of-the-art methods on most datasets.

For example, our SMSR achieves much better performance

than CARN for ×2 SR, with the number of parameters and

FLOPs being reduced by 38% and 41%, respectively. With

a comparable model size, our SMSR performs favorably

against FALSR-A and achieves better inference efficiency

in terms of FLOPs (131.6G vs. 234.7G). With compara-

ble computational complexity in terms of FLOPs (131.6G

vs. 127.7G), our SMSR achieves much higher PSNR val-

ues than IDN. Using sparse masks to skip redundant com-

putation, our SMSR reduces 41%/33%/27% FLOPs for

×2/3/4 SR while maintaining the state-of-the-art perfor-

mance. We further show the trade-off between perfor-

mance, number of parameters and FLOPs in Fig. 1. We can

see that our SMSR achieves the best PSNR performance

with low computational cost.

Qualitative Results. Figure 9 compares the qualitative re-

sults achieved on Urban100. Compared to other methods,

our SMSR produces better visual results with fewer arti-

facts, such as the lattices in img 004 and the stripes on the

building in img 033. We further tested our SMSR on a real-

world image to demonstrate its effectiveness. As shown in

Fig. 10, our SMSR achieves better perceptual quality while

other methods suffer notable artifacts.

6. Conclusion

In this paper, we explore the sparsity in image SR to

improve inference efficiency of SR networks. Specifically,

we develop a sparse mask SR network to prune redundant

computation. Our spatial and channel masks work jointly

to localize redundant computation at a fine-grained level

such that our network can effectively reduce computational

cost while maintaining comparable performance. Exten-

sive experiments demonstrate that our network achieves the

state-of-the-art performance with significant FLOPs reduc-

tion and a speedup on mobile devices.
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