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ABSTRACT 
Imagine in the future people comfortably wear augmented reality 
(AR) displays all day, how do we design interfaces that adapt to the 
contextual changes as people move around? In current operating 
systems, the majority of AR content defaults to staying at a fxed 
location until being manually moved by the users. However, this 
approach puts the burden of user interface (UI) transition solely on 
users. In this paper, we frst ran a bodystorming design workshop to 
capture the limitations of existing manual UI transition approaches 
in spatially diverse tasks. Then we addressed these limitations by 
designing and evaluating three UI transition mechanisms with dif-
ferent levels of automation and controllability (low-efort manual, 
semi-automated, fully-automated). Furthermore, we simulated im-
perfect contextual awareness by introducing prediction errors with 
diferent costs to correct them. Our results provide valuable lessons 
about the trade-ofs between UI automation levels, controllability, 
user agency, and the impact of prediction errors. 
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1 INTRODUCTION 
Compared to Virtual Reality (VR) headsets where users are im-
mersed in a virtual environment, Augmented Reality (AR) glasses 
enable people to interact with their everyday physical world with 
the digital augmentation [3]. In a typical everyday-life activity, peo-
ple will need to move around to carry out diferent tasks, changing 
their information needs on-the-go. Recent research has shed light 
on the potential of AR glasses to support such needs in common 
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everyday scenarios [29, 35, 41]. For example, recent work by Lu 
& Bowman suggested that AR head-worn displays (HWDs) could 
support easier and less distracting everyday information acqui-
sitions as compared to mobile phones [41]. However, in existing 
state-of-the-art AR operating systems (OS) (e.g., the Magic Leap 
One and the HoloLens 2), AR content defaults to staying at a fxed 
location until users manually move or re-instantiate it. This kind 
of mechanism assumes that the main use cases for AR are confned 
in one space, limiting the mobility and accessibility of the digital 
content when users move around. 

With mobile computing (e.g., smartphones, smartwatches), peo-
ple can access diferent applications and information on-the-go. 
However, most of the time, these systems still rely very much on 
the users’ efort to fnd and open the application that is needed 
at that time. This poses challenges to the users who need to fo-
cus on real-world tasks with their attention and hands occupied. 
How could we enable easier access to the digital content as users 
move across diferent environments while needing access to some 
information? 

One direction is to predict what the user tries to do and surface 
the corresponding functions. With the advancements in Artifcial 
Intelligence (AI) and computational power, recent user interfaces 
have become more capable of predicting user intent and suggest-
ing potential interactions to be performed by the users [34, 64]. 
Recently, more and more of this kind of prediction is applied to 
mobile systems, where the mobile applications make interaction 
suggestions based on the time of the day, the history of interactions, 
and location [8, 55, 68, 72]. For example, Google Maps occasionally 
pops up a suggestion to navigate to a certain destination based on 
past uses. 

We see the great opportunity to leverage prediction and automa-
tion with AR systems. AR devices have the potential to understand 
users’ intent accurately and just-in-time, due to the wearability, 
world-facing sensors (e.g. egocentric videos, depth cameras), and 
user-facing sensors (e.g. eye-tracking cameras). Combined with 
the increased AI capability, AR can help ofoad the users’ efort of 
fnding the digital content to the system. 

To explore the intersection between AI and AR, a lot of questions 
need to be answered. First, how would people respond to user 
interfaces (UI) that try to predict and adapt to their needs? What 
do they like or dislike about it? Second, how is such automated 
experience compared to manually controlling the UIs, the latter 
of which is more familiar to users? Third, how would efciency, 
usability, and agency be afected when the interfaces automatically 
adapt to user needs with diferent levels of user control? Finally, 
given that it is virtually impossible for any prediction to reach 100% 
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accuracy, how would the user experience be afected when the 
system predicts user intent incorrectly, and how to mediate the 
consequences when an error happens? 

In this research, we answer these questions by designing, de-
veloping, and evaluating several mechanisms to spatially transit 
AR UIs when people move in space. To inform our design direc-
tions, we frst conducted a body-storming design workshop with 
expert user experience (UX) designers, in which we learned about 
the major problems participants encountered when they use AR 
glasses for acquiring information on-the-go. We then designed and 
implemented three UI transition mechanisms as outcomes of the 
workshop. These interfaces have diferent levels of automation 
and controllability, which required diferent levels of user efort 
to access AR content on-the-go. Moreover, we simulated the inac-
curacy/error of prediction about what UI widgets users may need 
at diferent locations. With this simulation of errors, we looked 
into how users perceive and handle the error in the context of 
spatial tasks while given diferent levels of user control over the 
automation results. Finally, we ran a within-subject study with 40 
users to compare the three UI transition mechanisms, plus the base-
line of the manual UI manipulations which is available on existing 
commercial AR glasses. 

Through the design workshop and the user study, We learned 
valuable lessons about users’ needs for on-the-go AR UIs. We also 
learned users’ performance and preferences with diferent UI tran-
sition mechanisms, which reveals the relation among automation, 
controllability, and user agency. Furthermore, we found that predic-
tion errors were perceived diferently with diferent controllability 
and diferent error-recovery cost. 

The main contributions of this work include: (1) explorations 
of the challenges users encounter when trying to access AR con-
tent on-the-go; (2) designing and implementing three interface 
solutions with diferent levels of automation controllability; (3) em-
pirical fndings about users’ performance and preference among the 
diferent interfaces and how prediction error afects the experience. 
(4) design implications for future implementations of automated UI 
transition mechanisms for AR. 

2 LITERATURE REVIEW 

2.1 Everyday Information Acquisition with AR 
HWDs 

People encounter a variety of information needs in their every-
day lives [14, 21]. AR HWDs have the potential to address such 
needs by displaying relevant information directly in the real-world 
environment in front of the users. ARWin is an early attempt of 
displaying everyday information such as calendar, weather, and 
clock in AR on a tabletop [22]. In recent work, Colley et al. explored 
displaying virtual information on top of relevant objects at home 
to augment user memory [18]. Ventä-Olkkonen et al. explored dis-
playing everyday information on home windows [61]. Knierim et 
al explored the use of AR for displaying information in home envi-
ronments [35]. Lu et al. explored displaying everyday information 
as glanceable UIs at the periphery of the user’s view [42]. These 
work shed light on the potential of AR displays to fulfll people’s 
everyday information needs. Most of these work involved the idea 
of “widgets”, which are compact glanceable UIs for quick access to 

information. Widget UIs have been the common form of displaying 
information on current mobile phone interfaces [62, 67]. Similarly, 
in this research, we focused on everyday information access in AR 
systems with widget UIs. 

2.2 Mobility of UIs in AR 
UIs in AR are usually rendered at a fxed location in the real world. 
However, in everyday situations. information could be needed on-
the-go in a less-controlled manner [15, 57]. As such, recent research 
has explored the possibility of carrying AR content with the users 
while moving. Lages & Bowman explored an adaptive walking 
interface in which AR windows become body-referenced and follow 
the users around [37]. Lu et al. explored display-referenced and 
body-referenced layouts for carrying the AR content with the users 
[42]. The major limitation of these approaches is scalability. Because 
the system has no knowledge of what the users might need, it has 
to bring all the AR content that the user will possibly need, while 
increased pieces of information could cause information overload 
and distract the users. An early study by Sohn et al. found that 72% 
of the information needs were prompted by contextual factors such 
as location changes and activities to be done [57]. In this research, 
we explored the possibility of automated UI placements based on 
location changes and activities, and compared them with existing 
solutions such as display-referenced follow behaviors and manual 
drag and drops of the AR UIs. 

2.3 Levels of System Automation and User 
Control 

Roy et al. defned automation as the programming of complex tasks 
to be automatically executed by a machine with the goal of reduc-
ing tedious manual efort, workload and improving productivity of 
everyday human users [51]. Automated systems may encompass 
a wide range of low-to-high automation levels and user controls. 
A higher level of system automation could lead to a lower level of 
user control because the system would take over, performing more 
decision-making and task-executions with less user interference. 
In 2004, Findlater and McGrenere proposed three levels of automa-
tion: (1) adaptive: the system controls all the interface changes with 
no user control; (2) adaptable: the users control all the interface 
changes with no system control; and (3)mixed-initiative: the control 
is shared between the user and the system [23]. A more widely 
adopted automation level standard could be found in the feld of au-
tonomous driving. The standard J3016_202104 (SAE 2021) defned 
six levels of automation in automated driving: no driving automation 
(level 0); driver assistance (level 1); partial driving automation (level 
2); conditional driving automation (level 3); high driving automation 
(level 4); and full driving automation (level 5) [52]. A lower level of 
system automation allows customization for certain needs, while 
a higher level of automation reduces complexity and friction to 
interact with the UIs [71]. In our work, we are interested in under-
standing how diferent levels of automation impact users’ efciency 
and agency. 

Automation is powered by the advancement in Machine Learning 
and AI. The algorithm generates an output (“prediction”) based on 
the past training data, the input, and the model. Some autonomous 
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systems may be capable of predicting user intent and making deci-
sions on the users’ behalf [19, 20]. However, the predictions may 
be inaccurate. In addition to trying to improve the accuracy of pre-
diction, it’s proven to be critical to design for controllability, which 
“refects to what extent the users can control the automation or 
alter its result to reach their goal, and how easily and rapidly can 
this control be carried out [51].” There have been long-time debates 
on how much the system should be involved in the automation 
of UI components, as well as how much controllability should the 
user hold over the automation. Findlater and McGrenere found 
that adaptable was more preferred and signifcantly more efcient 
than adaptive in 2D menus [23]. Gajos et al. found that adaptive 
interfaces were not necessarily advantageous purely because of 
their theoretical benefts [26]. Zhang et al. found that combining 
adaptive with adaptable could lead to higher usability [71]. Roy et al. 
found that manual approaches were more preferred as compared to 
automated systems [51]. However, little research has been explored 
for AR displays about how automation and controllability would 
impact the multi-faceted user experience. In this research, we aim 
to explore the trade-of between automation and user agency, and 
the roles that controllability and prediction errors play in this kind 
of trade-ofs. 

2.4 Automated UI Placements in AR Interfaces 
Research in automated UI placements in AR mostly lies in label 
placements and view management [43, 50]. Little research has been 
conducted to explore automated placements of everyday AR UIs. In 
2019, Lages and Bowman explored an adaptive walking UI, in which 
AR windows were placed adaptively around the user’s body or on 
the wall based on manual input [37]. Lindlbauer et al. explored au-
tomated placements of AR content based on task and eye-tracking 
data [40]. Cheng et al. explored automatic adaptation of UI’s spatial 
layouts based on environmental changes when users move to dif-
ferent locations [12]. Their results shed light on the potential of AR 
systems to predict user needs and assist the placements of AR UIs. 
In this research, we explore the idea of automated UI placements 
with diferent levels of automation and controllability when users 
move across diferent locations. 

3 DESIGN EXPLORATION: BODYSTORM 
WORKSHOP 

3.1 Research Goals 
We frst conducted a design workshop to identify user needs for 
accessing AR content on-the-go. The workshop was conducted 
online with video-conferencing software. Specifcally, we aimed to: 
(1) identify the gaps between user needs and the existing manual 
UI transition mechanisms available on commercial AR systems; (2) 
brainstorm with experienced designers about potential solutions to 
address these gaps. 

To design for the embodied nature of AR interactions in the 
space, we conducted a bodystorming workshop [54] with fve UX 
experts. They needed to walk through their house for a sequence 
of physical and digital tasks. During the tasks, they experienced 
and refected on a Hololens prototype we developed to represent 
the current UI transition mechanisms available on commercial AR 
devices. 

3.2 Prototype for the Workshop 
For the design workshop, we developed a prototype on the HoloLens 
2 device. In the prototype, eight AR widgets were integrated in 
the system, including calendar, weather, timer, email, recipe, so-
cial, stock, and news. The widgets contain pre-defned information 
that we programmed in the system. All the widgets were world-
referenced by default. We implemented the three common solutions 
for transitioning AR user interfaces. The frst one was drag&drop 
(see Figure 1 (a)). Users performed a pinch gesture to grab the wid-
gets, then they could walk to a new location and drop the widgets. 
The second one was tag-along (see Figure 1 (b-c)), in which users 
could touch a button to trigger the widgets to follow them around. 
While following, the widgets became loosely display-referenced 
and stayed within the feld of view (FoV) of the users. By either 
dragging the widgets or pressing the “follow” button again, users 
could unfollow the widgets and make them world-fxed. Similar to 
how tag-along is implemented on HoloLens 2, at most one widget 
could be triggered to follow the users at a time. The last one was re-
instantiate (see Figure 1 (d-e)). Users could bring out a home menu 
by showing their left-hand palm to the front camera of the headset. 
Then they could tap on the icon of a widget to re-instantiate the 
widget on the right side of their hands. 

3.3 Bodystorm Activities 
With the AR prototype application, participants were asked to go 
through a sequence of physical and digital tasks while moving 
around in their own home environments, including the kitchen, the 
living room, and the home ofce room. The tasks in the workshop 
were designed to represent common at-home user scenarios where 
digital information may be needed. Participants started in their 
home ofce. First, they were asked to place all eight widgets in their 
ofce environments. Second, participants were asked to monitor 
the stock widget while going to the kitchen to make a cofee. They 
were asked to set up a timer with the timer widget above the cofee 
machine. Third, participants were asked to open their fridge and 
check what ingredients they do not have according to the list in 
the recipe widget. Fourth, participants were asked to go back to the 
home ofce, record the current stock price and the missing recipe 
ingredients in a notepad application on their laptop. Last, partici-
pants were asked to go to the living room and check out the current 
weather in the weather widget. During the activities, whenever 
participants encountered any pain-points or challenges, they were 
instructed to write down notes on post-its and take screenshots 
with their HoloLens 2 device. In total, we allocated 25 minutes 
during the workshop for the bodystorming activities. Participants 
were also encouraged to complete more custom activities if they 
had time left. 

3.4 Participants & Procedures 
We recruited participants with rich experience in designing AR, VR, 
or MR user experiences in the industry, including fve participants 
(three designers, one design technologist, and one UX researcher). 
All participants came from the AR/VR industry. They all had ac-
cess to a HoloLens 2 hardware and were very experienced with 
AR/VR platforms. The workshop was conducted remotely via a 
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Figure 1: An illustration of the AR prototype application: (a) drag & drop: users approach a widget with their hands and drag 
them around; (b-c) tag-along: users press a “follow” button beside a widget and the widget will loosely stay in the FoV of the 
display; (d-e) re-instantiate: users press the icon of a widget in the hand menu to instantiate the widget in front of them; (f) 
users show their palms to see a hand menu and instruction tasks to be completed in the bodystorming session. 

video-conferencing application called BlueJeans1. The procedure 
for the workshop included seven phases. First, before the workshop, 
the prototype application was sent to participants together with 
instructions about how to sideload it on their own HoloLens 2. Sec-
ond, participants joined the virtual conference room and introduced 
themselves to each other (5 min). Third, a brief overview was given 
to all participants about the workshop background and schedule (10 
min). Fourth, participants were asked to go through the bodystorm 
activities (25 min). Fifth, after participants fnished all the activities, 
they were instructed to go back to their home ofce and import the 
comments and screenshots in a shared online whiteboard2 (15 min). 
Sixth, in the same online whiteboard board, participants were asked 
to brainstorm about how these pain-points could be resolved if the 
AR system has diferent levels of knowledge on their contextual 
changes while moving around. Each participant was encouraged 
to brainstorm three to fve interface solutions (25 min). In the end, 
participants shared their solutions with each other and voted for 
their favourite ones. The entire workshop took around 90 minutes 
to complete. 

3.5 Results 
3.5.1 Most common pain-points. In this section, we listed the most 
frequently appearing pain-points mentioned by the workshop par-
ticipants in the bodystorm session. 
P1. Placements of the widget UIs. The frst pain-points, which 
was mentioned by all participants, was the high level of efort 
required to manually place the widgets (see Figure 2 (a)). One par-
ticipant commented that “I need to spend a lot of time arranging. 
The widgets look messy and topsy turvy”, and another participant 
commented, “manually laying out the widgets felt tedious”. When 
being asked how they wish the AR interface could be improved, 

1https://www.bluejeans.com/
2https://start.mural.co/ 

they talked about the system automation to help organize the wid-
gets. (e.g., “I wish the system can help me organize the widgets so 
they don’t take up too much space around me”). 
P2. Awareness & Recall. The second pain-point, mentioned by 
three participants, was the difculty of memorizing where and why 
a widget was placed beforehand in the previous environment (see 
Figure 2 (b)). One participant commented that “I felt confused about 
why the timer was opened in the ofce” ; and the other one mentioned 
that “I forgot where I placed a widget, so I had to scan the whole area 
around my screen”. When being asked about improvements, one 
designer mentioned that “I wish there were some guidance about 
where I placed what widget within my feld of view”, and the other 
one mentioned that “(I want to be more aware) of the locations of the 
widgets, what’s opened, and how I’m bringing a widget from place to 
place”. 
P3. High efort of widget acquisition. The last pain-point, which 
was mentioned by three participants, was the high-level user efort 
required to access the widgets. Participants mentioned that they 
did not want to fnd the widget they placed in the previous location. 
They wish they could easily bring multiple widgets with them and 
have access to certain information without the need to relocate or 
reopen a widget. For example, one commented that “I wish I didn’t 
have to reload the weather app just to check the weather” (see Figure 2 
(c)); and the other one commented that “Only one widget following is 
too little. I would like to put ‘quick’ widgets such as weather and timer 
on to my forearms”. Lastly, participants talked about leveraging the 
contextual change for the UI transition, for example, one asked 
“Could the weather widget appear as I am walking to the door? Or as 
I am about to head out?” 

3.5.2 Most common interface solutions. In this section, we high-
light the most frequently appearing solutions mentioned by the 
workshop participants in the brainstorming session. 

https://2https://start.mural.co
https://1https://www.bluejeans.com
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Figure 2: Three examples from the screenshots taken by the workshop participants, each highlights one of the pain-points: (a) 
P1. placements of the widget UIs, in which participants wish that the AR system could help them arrange the UIs around the 
physical monitor; (b) P2. awareness & recall, in which one participant forgot why the timer widget was placed in the kitchen 
after returning there from the ofce; (c) P3. high efort of widget acquisition, in which a participant wish that did not have to 
reopen the weather widget and manually place it in the living room just to access the weather information. 

S1. Wrist-based glanceable UIs. The frst interface solution, voted 
by four of the participants (80%), aimed to solve P.3 and required a 
low level of contextual understanding with some level of input re-
quired from the users. In this solution, designers suggested that all 
widgets were shown in low level-of-detail (LoD) icons and attached 
to the user’s wrist and stays with the users by default similar to 
smartwatches (“I would like to put ’quick’ widgets such as weather 
and timer on to my forearms.” ) Users could easily glance at the icons, 
or open the widget in full size if they need high LoD information. 
S2. Snap to planes or objects. The second interface solution, 
voted by three of the participants (60%), aimed to solve P.1 and P.2. 
It required some level of knowledge of the environments. In this 
solution, the widgets automatically snap to physical surfaces and 
planes, or near relevant objects after being opened. Participants 
suggested that “widgets should align/snap to my physical surround-
ing or other already placed widgets”; and “widgets understand what 
is around it and adapt to the environment”. 
S3. Everything in the right place. The third interface solution, 
voted by four of the participants (80%), aimed to solve all the three 
pain-points. It required a high level of contextual understanding of 
the environment. In this solution, the system automatically opened 
the widget and placed it right when and where the users needed 
it. Participants suggested that “the UI populates in the right place 
where it is most relevant, where the user’s attention is, what the user’s 
intention might be” ; and “the UI should be displayed around the 
system’s best guess of the object or activity it’s related to, the user can 
move this.” 

In general, through the workshop, we learned about the user 
needs and challenges when trying to use AR interfaces while car-
rying out real-world tasks. New interface solutions need to be 
explored for solving the pain-points mentioned above. The design 
workshop highlighted some of the potential directions, such as re-
ducing the efort to remember, carrying AR content, and leveraging 
the system’s contextual awareness to trigger certain widgets. We 
designed multiple UI transition mechanisms in sketch based on the 
workshop learnings. 

4 EVALUATION: USER STUDY 
Inspired by the solutions we generated from the design workshop, 
we implemented three interfaces (Wristpack, Semi-Auto, Fully-Auto), 

which incorporated diferent levels of automation and controlla-
bility. We chose these three because they represent the three au-
tomation levels proposed by Findlater and McGrenere: adaptable, 
mixed-initiative, and adaptive, with an increased level of system au-
tomation and decreased level of user control. [23]. We also simulated 
error/inaccuracy that is unavoidable in any of the prediction-based 
automation algorithms. 

To evaluate and understand how these interfaces are used while 
people move in spaces, we conducted a user study. Due to chal-
lenges of running in-person studies during COVID-19 and to avoid 
technological limitations of current AR devices, the study was con-
ducted in a VR-simulated AR environment. 

4.1 Research Questions 
In this study, our goal was to evaluate and compare four conditions 
(Wristpack, Semi-Auto, Fully-Auto, Baseline) for transitioning AR 
widget UIs. Specifcally we aim to answer the following questions 
through the user study: 

• How do these interface transition mechanisms perform in 
terms of efciency, usability, workload, and agency? 

• How do diferent levels of automation and controllability 
afect agency and users’ preference? 

• How do people perceive and handle system inaccuracy/error 
when it occurs? How is the overall experience afected by 
the errors? 

4.2 Interface Conditions 
4.2.1 Wristpack. The frst interface solution took inspirations from 
S.1. When users leave the current room and head towards the other 
one, all the widgets become automatically attached to user’s wrist 
and forearms, displaying as icons and names. In previous work, 
Harrison et al. explored projecting UIs on the wrist for interacting 
with menus [30]. Grubert et al. explored extending wrist-worn dis-
plays with widget UIs for convenient access to mobile applications 
[28]. Similarly, in our Wristpack solution, when users need access 
to a widget later, they can pull the widget of their arms and place 
them around in the new location (see Figure 3 (a-b)). This interface 
represents the adaptable metaphor from Findlater and McGrenere’s 
work [23], in which users take most of the control about when and 
where the widgets are placed in the real world; the system only 
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Figure 3: An illustration of the three interfaces: (a-b) Wristpack, in which all widgets UIs are attached to participants’ wrist 
when spatial changes are detected and can be “pulled out” if needed; (c-d) Semi-Auto, in which the system would suggest three 
widgets on participants’ wrist, and participants hold the decision of when and which one to place; (e) Fully-Auto, in which the 
system would place the most recommended widget automatically for the users without any input needed (a purple dot was 
displayed at the corner of the display as a visual indicator when automation happened in the system). 

provided a small amount of automation when a spatial change was 
detected. 

4.2.2 Semi-Automated Placements (Semi-Auto). The second inter-
face solution took inspiration from S.1, S.2 and S.3. The system 
would predict user needs and suggest three widgets on the user’s 
wrist to be placed in these spaces, so it has a higher level of automa-
tion as compared to the Wristpack interface. The three widgets will 
be spawned on users’ wrist, the widget with the largest probability 
of being needed had the biggest size and was the most visible, while 
the widgets that were less possibly needed was smaller and less 
visible (see Figure 3 (c)). The user has high controllability by making 
the fnal decision of which widget to open and when to place it 
(see Figure 3 (d)). If a prediction error happened, meaning that the 
top-recommended widget was not a match to the task, the user can 
look through the rest of the two less prominent recommendations 
and fnd the correct widget. This interface represents the mixed-
initiative metaphor [23], in which the user and the system take 
shared control over which and when the widgets are placed in the 
real world. 

4.2.3 Fully-Automated Placements (Fully-Auto). The third interface 
solution was similar to the Semi-Auto condition, but with a higher 
automation level and lower controllability level, in the sense that 
the user could not interfere with the system automation results. 
As such, a higher cost was introduced while the prediction was 
wrong because users were not allowed to make any change to 
system predictions. After predicting the widget that the user may 
need for a new task, the system would automatically place the 
top-recommended widget in front of the user without any input 
from the users (see Figure 3 (e)). When an error happened in the 

predictions, the user needed to fnd the previous location of the 
widget to access it. The Fully-Auto condition represents the adaptive 
metaphor [23], in which the system takes full control over which, 
when and where the widgets are placed. The users could not change 
the predictions made by the system even when it is incorrect. 

4.2.4 Baseline. We also included a Baseline interface, which was 
the drag & drop and tag-along behaviors of the widgets. Similar to 
the AR prototype, participants could either grab a widget with their 
controller and drop it at a new room, or trigger tag-along mode so 
the widget would follow them around automatically. Note that we 
removed the re-instantiation function in the VR study because: (1) 
we wanted to keep computational resource allocation consistent for 
all interface conditions; (2) our research focus was about interface 
transition rather than interface initiation. 

4.3 Study Design 
We conducted a within-subject user study to experience the above 
four conditions of UI transition mechanisms in VR. Due to the 
limitation of not being able to run in-person studies during the 
COVID-19 pandemic, we simulated the AR interfaces in a VR envi-
ronment so that we could recruit from a larger pool of VR headset 
owners who have access to consumer VR hardware. The study was 
conducted remotely and unsupervised. 

4.3.1 System. The experiment used a simulated AR setting im-
plemented in a VR system, to avoid the limitations of current AR 
devices (e.g., limited FoV, unstable wide-area multiple-room track-
ing), to allow us to systematically control key features of the en-
vironment and task, and to potentially recruit from a larger base 
of participant pool online. This approach, known as Mixed Reality 
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Figure 4: An illustration of the virtual home environment with three rooms: (a) the kitchen; (b) the home ofce; and (c) the 
living room. Participants could touch the buttons with the blue outlines on the door to travel between the three rooms. Each 
room has four usable objects, yielding a total of 12 objects in the virtual home (kitchen: stove, microwave, blender, fridge; 
ofce: laptop, lamp, bookshelf, smartphone; living room: TV, plant, remote control, trash bin). 

Simulation, has been used in a variety of prior AR experiments 
and was proven to be efective [6, 25, 38, 39]. The Oculus Quest 2 
device was used for the implementation of the VR experience. The 
device has 1832 × 1920 resolution per eye with 90 Hz refresh rate. 
The Oculus Touch controllers were used for interactions with the 
widgets in the VR environment. The experimental software was 
developed via Unity 2020.3.16f1 with the SDK provided by Oculus. 

4.3.2 Virtual Environment. In the task, participants were placed in 
a virtual home environment with three rooms, the kitchen, the liv-
ing room, and the home ofce (see Figure 4). Each room has a 2 by 2 
meters walking area for participants to freely move around. In case 
that participants do not have access to a large enough walking area, 
we implemented a teleportation technique so participants could 
teleport in the same room. To move between the three rooms, partic-
ipants could move to the virtual door and touch the corresponding 
button with the controllers (see Figure 4). The virtual scene would 
then be switched to the new room. As such, we were able to reuse 
the same walking space in the real world for interactions in difer-
ent virtual rooms. In each room, there were four “usable” objects 
(see Figure 4). Users could use a raycasting technique to point the 
right controller at the objects to use them. 

4.3.3 Tasks. A within-subject design was used for the study, in 
which interface condition was the only independent variable. Latin-
square counterbalancing was applied to the order of conditions. In 
the task, participants were instructed to imagine that they were the 
owner of the virtual home. They wanted to interact with various 
objects in the three diferent rooms, for example, use the stove 
in the kitchen, use the laptop in the home ofce, or turn on the 
TV in the living room. A total of twelve objects were scattered 
in the home environment, four in each of the three rooms (see 
Figure 4). They were asked to move between the three virtual rooms 
in order to use these objects. After they interact with an object, they 
suddenly wanted to check some information. For example, they 
wanted to know the ingredients needed in the recipe after opening 
the fridge, or know the next calendar event after turning on the 
laptop. Similar to the prototype application in the design workshop, 
eight widgets were integrated in the system. A multiple-choice 
question popped up near the object simulating their thoughts of 
mind, and they needed to check the information in the widgets to 

answer the questions. As such, in a single trial, participants were 
asked to go to a diferent room (see Figure 5 (a)), interact with a 
virtual object by pointing the ray at the object and press the trigger 
button (see Figure 5 (b)), and answer the questions prompted on 
the object about information in a widget (see Figure 5 (c)). For the 
Semi-Auto and the Fully-Auto conditions, the automation results 
were dependent on the questions asked (i.e., which widget was 
needed by the users in order to answer a question). A total of 12 
trials were included for each interface. Participants were asked to 
answer the questions as fast as possible while prioritizing accuracy. 
As such, our setup simulates a scenario in which users are in a 
hurry and want to obtain the information they need quickly and 
efciently. 

4.3.4 Simulation of predictability & accuracy. Predictability and 
accuracy are two important aspects of adaptive UIs. According to 
Gajos et al., accuracy refers to “the percentage of time that the 
necessary UI elements are contained in the adaptive area”, and pre-
dictability refers to “if the adaptation follows a strategy the users 
could easily model in their heads [27].” Our tasks setup simulated 
high predictability because users know that the system’s recom-
mended widget(s) will appear after they interact with an object 
during Semi-Auto and Fully-Auto conditions. Since it is extremely 
challenging for adaptive interfaces to reach 100% accuracy on pre-
dicting user intent, we simulated imperfect accuracy in both the 
Semi-Auto and Fully-Auto interface conditions. For the Semi-Auto 
condition, the system would suggest the widget needed to answer 
the question in the second or third slots 25% of the time (3 out of 12 
trials), which posed a low cost on the users to retrieve the correct 
widget when imperfect prediction happened. For the Fully-Auto 
condition, the system would place the incorrect widget in front of 
the users 25% of the time. If that happens, since users could not 
interfere with system automation results, they needed to manu-
ally fnd the widget and access the information in it similar to the 
Baseline condition, which posed a high cost on the users to correct 
the prediction errors. While we understand that 25% error rate is 
relatively high for regular well-trained machine learning classi-
fers, the value is close to the accuracy levels of state-of-the-art 
predictive systems that predict user’s interaction intent in order 
to provide the relevant apps, tools, and information at the right 
time [11, 32, 46, 59, 66], which is the use case we are targeting by 
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Figure 5: An illustration of a single task trial: (a) participants followed an instruction board and went to a diferent room to 
use an object; (b) participants used the object by pointing the ray at the object and press the trigger button; and (c) a multiple-
choice question popped up on the object about a widget, and participant accessed information in that widget and answered 
the question by selecting an option. 

transitioning the right widget to the right place right when the 
users need them. For example, Huang et al. proposed a system that 
predicts which app the user will open on mobile phones based 
on contextual information. The system prompted three apps, the 
hit rate of which by the users fell between 67% to 79% maximum 
[32]. Qu et al. compared diferent machine learning algorithms for 
predicting user intent in information seeking with conversation 
assistants, the accuracy levels of which lie between 63% to 69% [46]. 
Xia et al. proposed IntentCapsuleNet-ZSL, a zero-shot deep neural 
network classifer for predicting everyday interaction intent such as 
play music or get weather information, the accuracy levels of which 
fell at 75.87% the lowest [66]. Chen et al. proposed a reinforcement 
learning system for predicting user’s query intent in automated 
customer service, in which the hit rate of the top three instance 
in the recommended list reached 75.95% [11]. As such, 25% could 
be an ideal simulated error rate value in order to make our results 
relevant to the current technological contexts in predicting user’s 
intent specifcally in everyday interactions such as information 
seeking or opening an app. 

4.3.5 Procedure. The study was completely remote and unsuper-
vised on the dscout platform3. The study includes six phases. In 
the frst phase, a screener questionnaire was sent out to the dscout 
platform. Participants were required to have access to the Oculus 
Quest 2 hardware, internet connection, and at least a 5 by 5 feet 
area to move around safely. Second, qualifed participants were 
invited to the project on dscout, which granted them access to the 
test software and the questionnaire. Participants were instructed 
to complete a background questionnaire, and install the test soft-
ware on their own Quest device. Third, participants opened the 
test application. The application started with a tutorial about the 
environment, controls, and tasks. Fourth, participants experienced 
the four interface conditions one by one. Before the formal testing 
session of each interface condition, a training session was provided 
to participants in VR to teach them how to use the interface. After 
they fnish the 12 trials for each interface, they were instructed to 
take of the VR headset, go to their laptop and complete one page 
of the questionnaire on dscout. The questionnaire asked about the 
usability, workload, agency, as well as what they like and dislike 

3https://dscout.com/ 

about the interface in the condition they just experienced. Fifth, 
after participants fnished all the four interfaces, they clicked on 
an upload button to upload the logged data to a cloud server. Last, 
participants were instructed to rank the four interfaces based on 
their own experience. They were also asked about how they felt 
when the system suggested the wrong widgets in the tasks. The 
study took about 80 minutes in total. Participants are compensated 
with $70 US dollars for their time. To encourage participants to 
achieve as good performance as they can, we rewarded half of the 
participants who performed more accurately and faster than the 
other half another $10 dollars. 

4.3.6 Participants. Participants were recruited from the dscout 
platform. The dataset includes 40 participants (23 M, 17 F) between 
18 to 55 years old (M = 34.53, SD = 9.33). All participants had prior 
experience with VR and were regular users of the Oculus Quest 2 
device. 

4.4 Measures 
4.4.1 Performance measures. For evaluating user performance on 
the tasks, we calculated (1) the time of completion (how long did 
it take for participants to fnish a task); (2) the distance travelled 
(including distance teleported and distance walked); as well as (3) 
the accuracy of the answers for each interface condition. 

4.4.2 Subjective Measure. We used the Single Easement Question-
naire (SEQ) [53], System Usability Scale (SUS) [5] and NASA TLX 
workload questionnaire [31] to gauge the usability, efectiveness 
and workload of each interface condition. We also asked partic-
ipants to rate the level of agency on each interface using three 
questions adapted from the work by Tapal et al. (see Figure 9 (b)) 
[58], and rank the interface based on their own preferences. 

4.5 Results 
We conducted a series of analyses to our results. Shapiro-Wilk 
test indicated that both the time and distance were not normally 
distributed for Wristpack, Semi-Auto and Fully-Auto. As such, we 
applied Box-Cox transformations to correct non-normal residuals 
[4, 7, 60, 69], followed by Repeated-Measure One-way ANOVA 
(RM-ANOVA) tests to reveal the main efect of independent vari-
ables. A Greenhouse-Geisser correction was applied for violations 

https://3https://dscout.com
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of sphericity. For Likert measures, Friedman tests were applied with 
Wilcoxon signed-rank test as post-hoc pairwise analysis. The Pear-
son’s correlation coefcient r was reported as a measure of efect 
size [9, 49]. According to Cohen’s measure [16, 17], 0.1 ≤ r < 0.3, 
0.3 ≤ r < 0.5, and r ≥ 0.5 would be considered as small, medium 
and large efects respectively. Bonferroni correction was applied to 
all pairwise comparisons. We used an α level of 0.05 in all signif-
cance tests. In the result fgures, pairs that are signifcantly diferent 
are marked with * when p ≤ .05, ** when p ≤ .01 and *** when 
p ≤ .001. 

4.5.1 Performance measures. In this subsection, results about the 
performance measures are reported in detail. 

Time. A Box-Cox transformation with λ = 0.3 was applied to 
correct non-normal residuals. RM-ANOVA indicated signifcant 
main efect on interface on the average time it took for participant 
to answer each question (F (2.017, 78.680) = 44.556,p < .001, η2 

.533). Post-hoc pairwise comparisons with Bonferroni adjustments
p 

Baseline condition resulted in signifcantly lower accuracy as com-
pared to Wristpack (p < .001), Semi-Auto (p = .001), and Fully-Auto 
(p = .002) conditions. 

4.5.2 Subjective measures. In this subsection, results about the 
subjective measures are shown in detail. 

User preference. Figure 8 (a) shows the distributions of the sub-
jective rankings. 27 our of 40 (72.5%) participants ranked Baseline as 
the least favored interface. 31 participants (77.5%) ranked Semi-Auto 
as the most favored interface. 21 participants (52.5%) ranked the 
Fully-Auto condition as the second most favored interface. 

SEQ. Figure 8 (b) shows participants’ response to the SEQ. Fried-
man test yielded signifcant main efect of interface on the ratings 
(χ2(3) = 22.610, p < .001). Wilcoxon signed-rank tests showed that 
the Semi-Auto condition was rated signifcantly higher than the 
Baseline condition (Z = -3.408, p = .003, r = .381). No signifcant 

= diferences were identifed between other pairs. 

indicated that Baseline yielded signifcantly more time to answer 
the question as compared to the Wristpack (p < .001), Semi-Auto (p 
< .001), and Fully-Auto (p < .001) conditions. Semi-Auto also took 
signifcantly less time as compared to Wristpack (p < .001) and 
Fully-Auto (p < .001) (see Figure 6 (a)). 

Figure 6 (b) shows the average time it took for participants to 
answer the questions under four scenarios: when the system pre-
diction was correct or wrong for Semi-Auto or Fully-Auto inter-
faces. A Box-Cox transformation with λ = −0.6 was applied. RM-
ANOVA yielded signifcant main efect of scenario on the average 
time (F (3, 117) = 440.201, p < .001, η2 

p = .919). Post-hoc pairwise -3.484, p = .002, r = .390). Similarly, for U2, Semi-Auto was rated 
comparisons indicated that when a prediction error happened dur- signifcantly higher than Baseline (Z = -4.401, p < .001, r = .492) and 
ing the Fully-Auto condition, participants spent signifcantly longer 
time to answer the questions as compared to when error happened 
in the Semi-Auto condition (p < .001), as well as when the predic-
tions were correct in Semi-Auto (p < .001) and Fully-Auto (p < .001). 
No diference was found for Semi-Auto between when the system 
suggested the correct and when the system suggested the wrong
AR content ( 086). This result shows that in the Fully-Auto p = . 
condition, users spent more time handling the prediction error, as
compared to the condition.Semi-Auto 

A Box-Cox transformation was applied with Distance-travelled. 

p 

λ = 0.3. RM-ANOVA also found signifcant main efect of inter-
face on the total distance travelled (F (2.256, 87.980) = 77.528, p < 
.001, η2 = .565) (see Figure 7 (a)). Post-hoc pairwise analysis with 

Usability. Figure 9 (a) shows participants’ responses towards 
three questions in the SUS questionnaire. Friedman tests found 
signifcant main efect of interface on all the three statements (U1: 
I thought the interface was easy to use; U2: I would imag-
ine that most people would learn to use the interface very 
quickly; and U3: I felt very confdent using the interface) (all 
p < .001). For U1, Semi-Auto was rated signifcantly higher than 
Baseline (Z = -4.979, p < .001, r = .556) and Wristpack (Z = -4.861, 
p < .001, r = .543). Fully-Auto was also rated signifcantly higher 
than Baseline (Z = -3.953, p < .001, r = .442) and Wristpack (Z = 

Wristpack (Z = -3.714, p < .001, r = .415). Fully-Auto was also rated 
signifcantly higher than Baseline (Z = -3.399, p = .004, r = .496) and 
Wristpack (Z = -2.855, p = .042, r = .319). For U3, Semi-Auto was 
rated signifcantly higher than Baseline (Z = -4.679, p < .001, r = 
.523), Wristpack (Z = -4.438, p = .001, r = .496), and Fully-Auto (Z = 
-3.714, p = .024, r = .415). 

Agency. Figure 9 (b) shows participants’ responses to the three 
questions regarding agency (A.1: To what extent did you feel 
the decision of where and when to place a widget was within 
your hands; A.2: To what extent did you feel the widgets 
were placed with your intent; A.3: I felt that I am responsible 
for the speed and accuracy of completing the task). Friedman 
test yielded signifcant main efects of interface on the ratings for 

p 

Bonferroni adjustments showed that Baseline yielded signifcantly 
more distance travelled as compared to the Wristpack (p < .001), 
Semi-Auto (p < .001), and Fully-Auto (p = .002) conditions. The 
Fully-Auto condition also resulted in signifcantly more distance 
travelled as compared to the Wristpack (p < .001) and the Semi-Auto 
conditions (p < .001). 

Accuracy. Figure 7 (b) shows the average accuracy level of the 
answers for each of the interface conditions. We processed the 
accuracy data with Aligned Rank Transform (ART) to take into ac-
count the non-normal distributions [4, 63, 69]. RM-ANOVA yielded 
signifcant main efect of interface on accuracy rate (F (3, 117) = 
7.712, p < .001, η2 = .165). Post-hoc comparisons show that the 

all the three questions (all p < .002). Participants found that the 
decision of where and when to place the widgets was signifcantly 
less in their hand for the Fully-Auto condition as compared to Base-
line (Z = -4.800, p < .001, r = .537), Wristpack (Z = -4.214, p < .001, r 
= .471), and Semi-Auto (Z = -3.846, p < .001, r = .429). When being 
asked to what extent did they feel that the widgets were placed with 
their intent, Fully-Auto was rated signifcantly lower as compared 
to Baseline (Z = -3.153, p = .012, r = .352) and Semi-Auto (Z = -3.707, 
p < .001, r = .414). When being asked how much they feel that they 
are responsible for the speed and accuracy for completing the tasks, 
Semi-Auto received signifcantly higher ratings than Baseline (Z = 
-3.063, p = .012, r = .342), Wristpack (Z = -3.375, p = .006, r = .377). 
and Fully-Auto (Z = -4.893, p < .001, r = .547). 



"' "C 

15.00 

C: 
0 
~ 10.00 

VI 

·= 
~ 5.00 

i= 

0.00 

"C 30.00 
..!! "' ai ;!: 
> C: 
nl ::> 20.00 
i= > 
Qj 

.... 
u ·2 
C: ::> 10.00 nl .... ·= "' 0 

0.00 

Baseline Wristpack Semi-Auto Fully-Auto 

• *** • 0 *** 

l1s.5ol 

Baseline Wristpack Semi-Auto Fully-Auto 

"' 
01st Place 0 2nd Place 0 3rd Place ■4th Place 

.... 40 C: 
nl 
C. 

:Q - 30 
t: 1111 

nl ·= c.. ~ - c: 20 
0 nl ... a: 
GI 
.c 10 
E 
:::s 
z 0 

Baseline Wristpack Semi-Auto Fully-Auto 

.... 
"' 0 
u 20.00 

> "' 
~ ~ 15.00 
> 0 
0 u 
~ ~ 10.00 
~ C: .. 
0 .. .. 
w 

"' 1111 
C: -~ 
nl 
a: ... 
C: 
Qj 

E 
Qj 

"' nl w 
GI 
1111 
nl .. 
GI 
> 
<( 

5.00 

0.00 

Qj 
IIO 
nl .... 
C: 
Qj 
u .. 
Qj 
c.. 
C: 

> u 
nl .. 
:::s 
u 
u 
<( 

7.00 

6.00 

5.00 

4.00 

3.00 

2.00 

1.00 

■Baseline D w ristpack ■semi-Auto □Fully-Auto 

Semi­
Auto 
Error 

*** 
*** 

Semi­
Auto 

Correct 

Fully­
Auto 
Error 

*** 

Fully­
Auto 

Correct 

198.541 

e 

e 

Baseline Wristpack Semi-Auto Fully-Auto 

** • 
Baseline Wristpack Semi-Auto Fully-Auto 

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Feiyu Lu and Yan Xu 

Figure 6: (a) The average time it took for participants to answer each question (in seconds); (b) the average time took for 
participants to answer the questions when failure happened / did not happen in the prediction for Semi-Auto and Fully-Auto 
interfaces (in seconds) (±S .E.). 

Figure 7: (a) The average distance travelled by participants to answer each question (in Unity units); (b) the average accuracy 
level of the answers for each interface condition (in percentage) (±S .E.). 

Figure 8: (a) The ranking distributions for each interface; (b) the average ratings of the SEQ questionnaire (±S .E.). 

Workload. Figure 10 shows the NASA TLX ratings for fve cate- 4.5.3 Qalitative feedback. To understand why participants liked 
gories. Pairwise comparisons showed that the Baseline condition or disliked the interfaces, we collected qualitative feedback by ask-
yielded a signifcantly higher level of mental workload and efort ing participants to comment on what they like and dislike about 
than Wristpack. It also resulted in a signifcantly higher level of each interface. Below we highlight most commonly appeared com-
mental, physical, efort, and frustration as compared to Semi-Auto ments by participants. 
and Fully-Auto. The Semi-Auto condition resulted in a signifcantly 
lower level of mental, physical, efort and frustration as compared 
to Wristpack. Meanwhile, it also yielded a lower level of efort and Baseline. Participants liked the “intuitiveness” and “the sense of 
frustration than the Fully-Auto condition. being in control;” they disliked that it was “sometimes cumbersome 

and slow,” as shown in the quotes like, “I always have to travel to 
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Figure 9: (a) The average ratings for the three questions from the SUS questionnaire; (b) the average ratings to three questions 
about agency for each interface condition (±S .E.). 

Figure 10: The average workload ratings from NASA-TLX 
subcategories (±S .E.). 

get the widget I need,” and “I need to recall where I placed the widgets 
beforehand to fnd them.” 

Wristpack. Participants liked the “convenience,” “similarity to 
smart watch,” and “no need to think about carrying the widgets with 
them;” they disliked that they “had to search for the correct widget 
on their wrist to open.” 

Semi-Auto. Participants liked the “ease of use, accuracy.” More-
over, they liked “the sense of being in control,” as witnessed in quotes 
like “I really liked that I was completely in control of the widgets that 
I wanted to see up here,” and “it still gives you the convenience of 
having things pop up, but then you can control and make sure you’re 
getting the correct one.” They also liked they were able “to fnd the 
right widget in the recommended list, even when it was not the top 
one.” They disliked that they “can’t easily select another widget if 
they accidentally picked the wrong widget.” 

Fully-Auto. Participants liked the “the prediction was correct most 
of the time” and “it was absolutely awesome when it worked;” they 
disliked “not being able to correct the widget when failure happens” 
and “high efort to correct the error when it happens by manually 
fnding the widget they need.” 

4.6 Summary of Findings 
In summary, we evaluated four mechanisms for UI transitions for 
tasks that require users to move in spaces. These mechanisms in-
clude: Wristpack (users carry the widgets on the wrist when moving 
from one space to another), Semi-Auto (the system predicts three 
widgets that may be needed for the task, and the user makes the 
fnal choice, in which the cost of automation error is low), Fully-
Auto (the system predicts what widgets may be needed for the task 
and presents the top one directly to the user, in which the cost of 
automation error is high) and the Baseline conditions (the widgets 
need to be manually moved or tethered by the user). We found: 

• The Semi-Auto condition performed the best both objectively 
(time of completion and traveled distance) and subjectively 
(user preference, workload, usability, and agency) among all 
four conditions; 

• The Baseline condition performed the worst among all con-
ditions; 

• The participants felt signifcantly less agency during Fully-
Auto condition than the more manual conditions (i.e., Base-
line and Wristpack). In contrast, participants felt an equal 
or even higher level of agency on Semi-Auto condition as 
compared to the manual conditions. 

• When a prediction error happened, users spent a lot shorter 
time in handling the error in the Semi-Auto condition than 
in the Fully-Auto condition. 

• From the qualitative feedback, we found that users consid-
ered the sense of control and ease of recovering from error 
(could be from user error or system’s prediction error) as the 
key factors when deciding their preference. 

4.7 Discussion & Design Implications 
4.7.1 The need for ultra-low-friction interfaces on-the-go. Our re-
sults provided strong evidence that the current mechanism (i.e., 
manual movement of the AR widgets) was not optimal for tran-
sitioning widget UIs spatially. It was the least preferred interface 
for most participants, resulted in a lower level of accuracy and 
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efciency, and posed high workload on the users. The major reason 
was that in Baseline, users had to remember which information 
was needed, recall where the widgets were located in the previous 
environment, and manually acquire them in order to answer each 
question. The heavy mental and physical workload made it chal-
lenging for the users to obtain the correct answers. The Wristpack 
interface ofoaded part of the workload by carrying the widgets 
automatically on user’s wrist. However, it was still not optimal in 
that the users need to manually locate the widget on their wrist, 
open it, and place it in the new location. For scenarios that the 
users move around in diferent spaces to carry out diferent tasks, 
users are already multitasking - they navigate the space, look for 
diferent physical objects, and sometimes handle social encounters. 
When users need digital content in such scenarios, they have less 
cognitive bandwidth to maneuver UI widgets, therefore needing 
the ultra-low-friction interface mechanisms. In both our design 
workshop and user study, we confrmed that this user need does 
exist, calling for more solution explorations from the HCI research 
and design community. 

4.7.2 Automation, controllability and agency. One of the motiva-
tions of our work is to explore how automation and controllability 
levels can make a diference in addressing the dynamic UI needs 
on-the-go. We designed the Wristpack, Semi-Auto and Fully-Auto in-
terfaces to integrate diferent levels of automation and user control. 
In Wristpack condition, the previously opened widgets automati-
cally minimize and attach to the wrist when major spatial difer-
ences are detected. In Semi-Auto condition the system automatically 
fnds a list of matching widgets for the task. In Fully-Auto condi-
tion the system automatically places the best matching widgets 
for the task. All three interfaces were able to reduce the workload 
and increase the accessibility of the widgets. However, Semi-Auto 
condition, where the system suggests a few widgets for the task 
and the user makes the choice, did the best objectively and sub-
jectively. Clearly, under situations where errors are inevitable and 
happen 25% of the time, more automation does not necessarily lead 
to better user experiences. Along the same line with the previous 
work, we confrm the importance of controllability, which is how 
much the user is in control of an automated task [51, 56]. More-
over, our results confrmed that a combination of automation and 
controllability creates the best user experience outcomes for tasks 
on-the-go. Controllability also plays a critical role in user agency. 
In our study, the Fully-Auto condition had lower agency ratings 
than the more manual conditions (i.e., Baseline and Wristpack). But 
we also found that participants felt an equal or even higher level of 
agency on Semi-Auto condition as compared to the more manual 
conditions. This result, combined with users’ positive comments 
around controllability, indicates that giving users the control for 
decision-making can keep the agency high while leveraging system 
automations. 

We would also like to highlight the relevance of our fndings 
with previous work in predicting typing intent during text entry. 
While entering texts, keyboards with predictive features could (1) 
recommend a list of words (usually 2-3 words on mobile interfaces) 
based on what is already typed (i.e., word-prediction), the structure 
of which is similar to our Semi-Auto interface; and (2) automatically 
correct the typed word to another word without any input from 

the users, but could happen falsely and change the typed words to 
undesired phrases (i.e., auto-correction), the structure of which is 
similar to our Fully-Auto condition in terms of system-level control. 
Previous work has found that word-prediction could reduce the 
required keystrokes by giving users both automation and control 
over world selections [24]. However, it might also introduce extra 
interaction and perception costs by requiring users to pay continu-
ous attention to the list of suggested words [47, 48]. In our work, 
we successfully indicated the importance of both controllability 
and automation by demonstrating the advantages of the Semi-Auto 
condition. However, the fndings of our work were restrained to 
interface placements in AR in a hurried scenario with 25% errors. 
A higher level of controllability may introduce extra interaction 
and perception costs, which could outweigh the benefts brought 
by the automation. In diferent task contexts or systems, the degree 
level of user control and system automation needs to be carefully 
considered and balanced to achieve the optimal user experience. 

Overall, our study confrms that automation is a promising de-
sign direction that can greatly reduce users’ efort and attention 
cost on-the-go. Controllability is especially critical to ensure higher 
user agency when the system provides automation functions. More-
over, we call out for further explorations about how to combine 
automation with controllability. The tasks in our study were easy 
to combine both because the system can wait on the user to make 
the choices. What if the user choices are more time-sensitive (e.g. 
decisions when driving), how do we balance the automation and 
controllability in such tasks? 

4.7.3 The cost of correcting prediction errors. Error has always 
been one of the biggest concerns for intelligent systems [45], which 
motivated us to study the user experience outcomes when an error 
occurs. In both Semi-Auto and Fully-Auto conditions, the top rec-
ommendation from the system was occasionally wrong. However, 
Semi-Auto condition is diferent from Fully-Auto condition in two 
ways, one is that the correct widget can be found among the other 
recommended items, just in a lower order and a smaller size; and 
the other is that users need to choose which widget to use from 
the recommended list. As a result of the diference, users spent 
signifcantly more time handling the prediction error during the 
Fully-Auto condition than the Semi-Auto condition. 

While being asked about their feelings when the system sug-
gested the wrong widget, participants gave very diferent responses 
for the Semi-Auto and Fully-Auto conditions. For the Fully-Auto con-
dition, most participants mentioned “Annoying” (65%) and “Frus-
trated” (50%), as shown in comments like the following: “The un-
certainty of knowing if it would be right or not was very annoying 
and made me anxious” ; “I was slightly annoyed because I have to 
fnd the widget I truly need, which adds lots of unnecessary work” ; 
and “I would feel less frustrated if I could’ve grabbed the correct wid-
get from a UI after failure happens.” In summary, a big source of 
frustration came from the efort of correcting the error. On the 
contrary, for Semi-Auto condition, the majority of the participants 
did not fnd it bothering when the top-recommended widget was 
not correct. They can easily fnd the correct widget from the rest 
of recommended list. They commented “sometimes the widget (I 
need) was not at the top, which is totally fne cause I could still fnd 
it in the list;” “even though I had to click something other than the 
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fully automated one, I could always check and get the right widget.” 
Needing to select the widget actually gave users a good opportunity 
for double-checking and recognizing the recommendation error. 
Interestingly, if the user accidentally selected the wrong widget 
(i.e. user slip), they also complained about the efort they had to 
take to correct it, not too dissimilar to the comments about the 
efort required for correcting the system error during Fully-Auto 
condition. 

Our fndings were established on an accuracy level of 75% in 
a demanding scenario when accuracy was prioritized. While it 
is true that the users might be more tolerant of having a higher 
error-recovery cost when errors happen less frequently or when 
users are in a lightweight scenario, our results demonstrated that 
in worst-case scenarios where the errors happen inevitably and 
users are in a hurry during AR UI transitions, the cost of correcting 
them could play a crucial role in performance and user experience. 
In recent work, Lafreniere et al. proved that the temporal cost of 
recovering automation errors could signifcantly afect user frus-
tration and experience [36]. Similarly, in previous work about the 
auto-correction feature in text-entry, it was found that when users 
have to manually correct the system’s faulty auto-corrections, the 
cost of it could outweigh the reduced efort when the corrections 
were desired [1]. How much efort is needed for error recovery (in-
cluding both system-generated prediction error and user error) is 
crucial to the user experience. The usability heuristics about “help-
ing users recognize, diagnose, and recover from errors [44]” needed 
to be expanded and emphasized for today’s automated/intelligence 
systems. Errors are not edge cases anymore, it always happens with 
the probabilistic output of AI systems. We need to “always enable 
an easy path to recognize and recover from error.” 

The error recognition and recovery could be achieved through a 
human-system team efort. For example, on the user side, the users 
could learn from the prediction errors about the limitations of the 
systems, thus becoming more prepared to correct the automation 
errors quickly. One limitation of this approach, as indicated by 
previous work in text-entry, would be that the users’ abilities of 
identifying and adapting to errors vary among individuals and are 
largely afected by how long they have been using the system and 
how frequently the errors occur [2, 10]. A more reliable way would 
be from the system side, in which the system could incorporate 
functions to involve users in the loop to help it identify and learn 
from the prediction errors [65, 70]. Moreover, the system could 
even auto-detect its error based on the confdence level and users’ 
responses/reactions. 

4.7.4 The stakes of error occurrences. We would also like to point 
out that what is at stake when errors happen could largely afect 
user behaviors of using automated interfaces. Although the defni-
tion of automation level in our use case is similar to the automated 
driving use case, there are two major diferences: (1) the conse-
quence of an error is much less severe (lower cost of error); and (2) 
it is much easier to recover from the error, as the user can always 
fnd the widgets manually when the system’s prediction was wrong. 
Our application scenario is more general-purpose and focuses on 
the use of AR widgets on-the-go. We do not consider our learnings 
here to be directly applicable to a scenario that has much higher 
stakes for prediction errors. Through this work, we call out to the 

research community about the importance of studying error from 
prediction algorithms with more depth and nuance. 

To conclude, for the design space of AR UI transitions on-to-
go, our results show that user experiences could beneft from in-
troducing automation, such as detecting contextual changes and 
predicting the user intent. At the same time, we need to creatively 
combine automation with controllability to ensure high agency and 
overall satisfaction. Moreover, we should always provide an easy 
way for the users and the system to recognize and recover from the 
always-gonna-be-there prediction errors. 

5 LIMITATION & FUTURE WORK 
There are several limitations of our work. First of all, our study was 
conducted in VR due to COVID-19 restrictions and the limitations 
of current AR devices. Future work could evaluate the interface 
conditions in AR with real-world environments and tasks. Second, 
to ensure a safe walking environment and overcome space limita-
tions, we implemented teleportation for locomotion in the virtual 
environment in the remote study. Based on recent research, tele-
portation may hinder spatial cognition performances as compared 
to real walking [13, 33]. Future research could consider involving 
real walking of the participants to compare these interfaces. Third, 
our task setup simulated a scenario that encouraged efciency. The 
users were incentivized to access the widgets they needed as fast 
and accurately as possible. However, in everyday AR scenarios, 
users may access AR content at their own pace. Perhaps there will 
be more need for UIs that suggest non-utilitarian widgets. Future 
work could capture and design these AR use cases, and situate the 
UI mechanisms with more diverse scenarios. Fourth, we adopted 
a 75% accuracy level for the Semi-Auto and Fully-Auto conditions. 
Future research could explore how diferent accuracy levels could 
afect the user behavior and user experience of using these inter-
faces, and the design choices to be made. Fifth, our fndings indicate 
that a Semi-Auto interface with high controllability and low error-
recovery cost would likely be more favored in a hurried scenario. 
In future work, we plan to explore the benefts and drawbacks of 
having such interfaces. Last, we are interested in designing and 
researching lightweight/low-efort methods to recover from predic-
tion errors, without compromising usability and agency. 

6 CONCLUSIONS 
In this research, we aimed to support the UI transition needs when 
people use AR interfaces on-the-go. We conducted an AR design 
workshop to reveal the existing challenges when accessing AR 
content across multiple spaces. We designed three interfaces to 
address these challenges with diferent levels of automation and 
user control. In a VR-simulated AR user study, we found that the 
semi-automated condition stood out as the best performing and 
most favored one. Thanks to the balance between automation and 
controllability in the semi-automated condition, user agency was 
not compromised when the automation level increased as com-
pared to the manual conditions. Moreover, our study indicated the 
importance of error recovery cost when an error happens in pre-
dicting the exact AR content that users may need. We would like 
to further explore ways to fail gracefully with backup plans for 
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automated interfaces that rely on predictions. The fndings and de-
sign insights from this work can provide valuable lessons to design 
ultra-low-friction AR interfaces with automation, controllability, 
and low error-recovery cost, especially for scenarios where users 
have limited attention bandwidth. 
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