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Microbial secondary metabolites (MSMs) have played and continue to play a highly

significant role in the drug discovery and development process. Genetically, MSM

chemical structures are biologically synthesized by microbial gene clusters. Recently,

however, the speed of new bioactive MSM discovery has been slowing down due to

consistent employment of conventional cultivation and isolation procedure. In order

to alleviate this challenge, a number of new approaches have been developed. The

strategy of one strain many compounds (OSMAC) has been shown as a simple and

powerful tool that can activate many silent biogenetic gene clusters in microorganisms

to make more natural products. This review highlights important and successful

examples using OSMAC approaches, which covers changing medium composition and

cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM

biosynthetic precursor(s). Available evidences had shown that variation of cultivation

condition is the most effective way to produce more MSMs and facilitate the discovery

of new therapeutic agents.

Keywords: OSMAC strategy, microbe secondary metabolite, structural diversity, medium composition,

co-cultivation, epigenetic modification

INTRODUCTION

Microbial secondary metabolites (MSMs) have been recognized as the primary source of new
compounds for drug discovery and development (Gunatilaka, 2006; Rateb et al., 2011b; Deng
et al., 2013). Traditional chemical investigation of microorganism mainly focuses on extraction
and isolation of structurally and highly active compounds from fermentation broth and mycelium.
However, these processes are becoming inefficient due to high rate of the re-discovery of known
MSMs. It is commonly believed that a large portion of microbial gene clusters are silenced under
standard fermentation conditions (Scherlach and Hertweck, 2009; Wasil et al., 2013). By mining
microbial genome and targeting biosynthetic gene clusters of MSM, researchers can exploit the
potential ofmicrobes in amore objective way, such as knocking down, introduction or heterologous
expression of microbial genes, regulation of promoters, induction of mutations, or changing
cultivation conditions to stimulate MSM genes expression (Schneider et al., 2008). Variation of
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cultivation condition has been deemed to be the simplest
and most effective strategy, which is termed as “one strain
many compounds (OSMAC)” by professor Zeeck and co-
workers (Bode et al., 2002). On basis of extensive literature
search, important and successful examples using OSMAC
strategy are summarized in this review, which consists of
variation of medium, changing cultivation condition, co-
cultivation with other strain(s), adding epigenetic modifier(s) or
biosynthetic precursor(s).

VARIATION OF MEDIUM

Culture medium has a greater effect not only on microbe growth
but also on metabolism. It has been reported that C/N ratio,
salinity, and metal ion can regulate the degree and pattern
of MSM gene expression and result in production of various
secondary metabolites.

Medium Composition
Generally, carbon and nitrogen sources are major components
in the culture medium. The carbon source not only provides
the basis for building biomass and represents the source of
energy for all heterotrophs but also delivers carbon units for
secondary metabolites. The nitrogen source is required for the
synthesis of essential proteins and nucleic acids, and likewise
N-containing units for secondary metabolites. The type of used
carbon and nitrogen sources is known to have a significant
influence on microbial secondary metabolism (Ruiz et al., 2009;
Singh et al., 2017). Furthermore, the C/N ratio is one of
important factors that affect fermentation products (Karakoç
and Aksöz, 2004; Brzonkalik et al., 2012; Dinarvand et al.,
2013). Notably, the consumption of carbon and nitrogen-based
medium components can greatly affects the pH of the cultivation
broth, e.g., by formation of organic acids or the accumulation
of basic ammonium. Thus, microorganisms cultured in medium
containing different components may exhibit differently adapted
metabolism and express specific sets of biosynthetic genes, which
produced a differential biosynthesis of specialized metabolites
(Ma et al., 2009).

One marine-derived strain Asteromyces cruciatus 763 was
shown to produce a new pentapeptide lajollamide A (1), when
cultivated in the Czapek-Dox broth contained arginine solely
as nitrogen source rather than NaNO3, which was missed in
the normal Czapek-Dox medium (Gulder et al., 2012). One
sediment-derived Aspergillus niger BRF-074 produced a novel
furan ester derivative (2), a compound has toxicity acidity
against HCT-116 cancer cell line (Uchoa et al., 2017), when
cultivated in MPDB (malt peptone dextrose broth) medium.
But this compound failed to appear in PDB (potato dextrose
broth) or PDYB (potato dextrose yeast broth) media. A fungus
Aspergillus sp. from Waikiki Beach (Honolulu, HI), generated
six isotopically labeled metabolites (3–8) when grown on the
deuterium-enriched Czapek broth (Wang et al., 2015a), whereas
this strain was found to metabolite a novel prenylated indole
alkaloid, waikialoid A (9) when cultivated in PDB medium.
Bioassay results indicated that compound 9 possessed potent

inhibitory effect on biofilm formation of Candida albicans with
an IC50 value of 1.4 µM (Wang Q.X. et al., 2012).

Five new polyketides (10–14) were detected in the crude
extract of rice-based medium of a marine-derived Cladosporium
sphaerospermum 2005-01-E3 (Wu et al., 2014). Another two
new hybrid polyketides (15–16) were accessed when the same
strain was fermented on the soybean flour (Yu et al., 2015). The
organic extract of Dothideomycete sp. CRI7 was elaborated by
four comparative medium. The strain growing in PDB made
with potato tubers led to the isolation of azaphilone derivatives
(17–18) and a novel tricyclic polyketide (19). Only compound
19 exhibited a broad spectrum of cytotoxic activities (Senadeera
et al., 2012). It is interesting that MSM production by strain
CR17 was sensitive to sources of potato and malt extract used
for the preparation of PDB and Czapek malt media, respectively.
Three new polyketides (20–22) were produced when strain
CR17 was grown in PDB broth prepared from a commercial
potato powder instead of fresh tubers of potato, while this
strain produced several other compounds (20–21 and 23–25) in
Czapek malt medium. Compound 24 exhibited cytotoxic activity
against cancer cell lines MOLT-3, HuCCA-1and A549 with IC50

values of 17.4, 48.1, 46.5 µg/mL, respectively (Hewage et al.,
2014). One fungus strain of Fusarium tricinctum isolated in
Beni-Mellal, which can colonize the rhizomes of Aristolochia
paucinervis, could afforded three new fusarielins (26–28). But
these metabolites were not detected when cultivated in normal
rice medium supplemented with fruit and vegetable juice.
Bioassay results suggested that compound 26 possessed cytotoxic
effect on human ovarian cancer cell line A2780 with an IC50

value of 12.5 µM (Hemphill et al., 2017). A new diketopiperazine
(29) was isolated from Eurotium rubrum MPUC136 cultured by
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wheat medium, which displayed more powerful bioactivity than
the Czapek-Dox agar medium, and shown to have cytotoxicity
against B16 melanoma cell line with an IC50 value of 60 µM
(Kamauchi et al., 2016).

HPLC analysis of crude extracts of an actinomycete strain
Lentzea violacea AS08 indicated different composition in three
media including CYPS (casein yeast peptone), SCP-1 (starch
casein peptone), and SC (starch casein) (Hussain et al., 2017).
Only one new eudesmane sesquiterpenoid (30) and a new analog
of virginiae butanolide E (31) were detected in SC medium, and
compound 30 exhibited moderate cytotoxic effect on HCT-116
and A549 tumor cell lines with IC50 values of 19.2 and 22.3
µM, respectively. One rhizosphere fungus Paraphaeosphaeria
quadriseptata produced a known C18 polyketide monocillin I
together with several analogs when incubated in PDA medium
constituted with tap water (Wijeratne et al., 2004). However,
the same fungal strain could make six new trihydroxybenzene
lactones, cytosporones F-I (32–37), when the tap water was
changed as distilled water (Paranagama et al., 2007). Similarly,
one new naphthalopyran compound (38), which possesses an
unusual oxygenated aromatic structure with a lactone bridge,
could be metabolized by the fungus P. hordei grown on plant
tissue agar such as macerated tulip and yellow onion, oatmeal
and red onion, while it was not detected in CYA (caffeic
acid agar), MEA (malt extract agar), and YES (yeast extract
with supplements) media (Overy et al., 2005). When cultivated
in rice medium, a hard coral-derived fungus Scopulariopsis
sp. from the coastline of Red Sea was shown to afford
six secondary metabolites including xanthone derivatives (39–
40), phenolic bisabolane-type sesquiterpenes (41–42), one new
alkaloid (43) and one new α-pyrone derivative (44) (Elnaggar
et al., 2016). Interestingly, this strain could biosynthesize a new
naphthoquinone derivative (45) and two new triterpenoids (46–
47) in the protein-rich white beanmedium (Elnaggar et al., 2017).

Chemical investigation of one marine-derived strain
Streptomyces sp. C34 grown on ISP2 (yeast malt extract agar)
medium led to the isolation of four new ansamycin-type
polyketides (48–49). But only compounds 48, 50, and 51 could
be extracted from modified ISP2 medium, which contained
glycerol rather than glucose. Bioassay results indicated that

compound 51 had a selective inhibitory effect on S. aureus ATCC
25923 with a MIC value of 0.05 µg/mL (Rateb et al., 2011a).
The utilization of a defined medium to cultivate strain C34
resulted in the observation of three novel 22-membered lactone
polyketides (52–54) (Reid et al., 1995). Compounds 50–52
possessed strong antibacterial activities against L. monocytogenes
and B. subtilis with MIC values range from 3 to 6 µg/mL
and against S. aureus with MIC values of <1 µg/mL (Rateb
et al., 2011a). Four media applied to strain Streptomyces sp. CS
resulted in production of various natural products including
three new macrolides (55–57) from YMG agar medium, five
new 16-membered macrolides (58–62) from ISP2 broth, five
novel polyketides (63–67) from sterilized Waksman Synthetic
medium and three new naphthomycins (68–70) from oatmeal
medium. Compounds 55 was shown to have inhibitory effect
on Fusarium moniliforme with a MIC value of 300 µg/mL and
compounds 58–62 exhibited cytotoxicity toward the MDA-MB-
435 human cancer cell line with IC50 values of 4.2, 4.5, 5.5, 3.8,
and 11.4 mM, respectively (Lu and Shen, 2003, 2004; Li et al.,
2008, 2010; Yang et al., 2012). Streptomyces sp. ML55 in amedium
consisting of glycerin, molasses, casein, polypeptone led to the
isolation of three novel antimycins, JBIR-02 (71), JBIR-06 (72),
and JBIR-52 (73), while this strain had capacity to produce two
novel depsipeptides (74–75) in GYM medium (Ueda et al., 2007,
2008; Kozone et al., 2009; Li X. et al., 2013). An ant-derived
actinomycete Streptomyces sp. 1H-GS5 was found to produce one
new spectinabilin derivative (76) when cultivated in the medium
consisting of corn starch 10%, soybean powder 1%, cotton flour
1%, α-amylase 0.02%, NaCl 0.1%, K2HPO4 0.2%, MgSO4 · 7H2O
0.1%, CaCO3 0.7%, cyclohexanecarboxylic acid 0.1%, pH 7.0,
while this stain made another new cytotoxic spectinabilin (77)
when reducing the proportion of nutrients (Liu S. et al., 2015;
Liu C. X. et al., 2016).
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When cultured in an oat bran medium, one strain Strepto-
myces sp. A1 was found to produce rubromycin derivatives,
while other three known compounds were biosynthesized in
a mannitol/soybean meal medium and three new congeners
(78–80) and streptenol E (81) in medium (degreased soybean
meal 2%, mannitol 2%, agar 2%) with soil as an addition, provide.
Compound 81 had significant cytostatic effect on four tumor cell
lines including HMO2, HEP G2, MCF7 and Kato III with GI50
values (the concentration that causes 50% growth inhibition)
of 0.15, 0.3, 10, and 0.7 µM, respectively (Puder et al., 2001).
Phytochemical study of one filamentous soil fungus, Talaromyces
wortmannii, cultivated in maize culture medium, led to the
separation of three new polyketones (82–84), which were absent
in rice or dextrose agar media. Compounds 82–84 displayed
inhibitory activities against NFRD (fumarate reductase) with IC50

values of 8.8, 11, and 13 µM, respectively (Liu W. C. et al., 2016).

Interestingly, this stain was found to produce four novel
22-membered macrolides (85–88) (Dong et al., 2006) and four
novel tetraene lactones (89–92) (Dong et al., 2009) when grown
in the still-cultured medium (2.5% soybean meal and 97.5%
rice). Compounds 85–88 exhibited in vitro moderate cytotoxic
activities against human cancer cell lines (HCT-5, HCT115, A549,
MDA-MB-231, and K562) with IC50 values range from 28.7 to
130.5 µM, while compounds 89–92 showed potent inhibitory
effects on cathepsin B.

Salinity
Salinity is an important factor in determining many aspects
of the chemistry of natural water and of biochemical process
within cultivation system, and is a thermodynamic state variable
that, along with temperature and pressure, governs physical
characteristics like the osmotic pressure and enzymes involved
in microbial growth and metabolism (Blunt et al., 2015).
Suitable salinity is needed for normal microbial growth and
high osmotic pressure makes cells dehydrated and affects
microbial biochemical reactions (Poolman and Glaasker, 1998;
Wang Y. et al., 2011).

Microorganisms exposed to different types of media
supplemented with various halogens maybe trigger their
synthesis pathway to restore osmotic imbalance, thus activating
different hidden MSM biosynthetic gene clusters. Compare to
that grown in seawater, one marine-derived fungus Aspergillus
unguis CRI282-03 was shown to produce new brominated
depsidones (93–95) and two new orcinol derivatives (96–97) in
KBr medium and a new depsidone (98) in KI broth (Sureram
et al., 2013). Bioassay results indicated that compounds 95 and
96 possesses aromatase inhibitory effects (Sureram et al., 2012).
Nine new polyketides (99–107), which were absent in the broth
contained KI or deionized water, were produced by the fungus
Dothideomycete sp. CRI7 isolated from Tiliacora triandra when
cultivated in the medium supplemented with KBr and seawater
(Wijesekera et al., 2017).

Chemical investigation of one symbiotic stain Aspergillus
sp. D from Edgeworthia chrysantha led to isolation of five
known heterocyclic alkaloids from normal Czapek medium,
while a new meroterpenoid (108) and four known analogs
were obtained from Czapek medium with 3% salty (Zhang
et al., 2018a,b). One mangrove-derived endophyte Wallemia
sebi PXP-89 cultivated in 10% NaCl broth produced a new
cyclopentanol pyridine alkaloid (109), which was not detected
in normal medium (Peng et al., 2011). When cultivated in
medium containing 10% sea salt, strain Spicaria elegans KLA-
03 was shown to biosynthesize a new antimicrobial diacrylic
acid (110) (Wang F. Z. et al., 2011). Strain Streptomyces sp.
DSM 14386 could metabolize five new compounds (111–115) in
1.5% NaCl medium, while this strain produced two brominated
congeners (116–117) in 1.5% NaBr medium. Antimicrobial tests
showed that compounds 113 and 117 displayed potent antibiotics
against MRSA (methicillin-resistant Staphylococcus aureus) with
the same MIC values of 16 µg/mL, and compound 117 also
had strong activity toward Mycobacterium smegmatis (IC80 = 2
µg/mL) (Onaka, 2017). Two rare epidithiodiketopiperazines,
gliovirin and pretrichodermamide A, were detected in 1.5% NaCl
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broth of a marine-derived Trichoderma sp. TPU199, while this
strain produced a new iodo derivative (118) from freshwater
medium with 3.0% NaI and 3.0% NaBr as well as 5-bromo-5-
deoxy derivative (Yamazaki et al., 2015a).

Metal Ion
Metal ion affects physiological structure and function of
microorganism. The interaction between metal ion and microbe
is usually assumed in three pathways, including causing reactions
in cells, conserving energy in the process of dissimilation, and
assimilating reactions (Thorneley, 1990).

One marine-derived strain Ascotricha sp. ZJ-M-5 was shown
to produce a new 3,4-split ring lanolin alkyl triterpene (119) and
a new cyclonerols derivative (120), when cultivated in eutrophic
medium made up with sea salt (Xie et al., 2013a,b). However,
three new caryophyllene derivatives (121–123) were detected
in modified Czapek Dox medium, while compound 122 was
absent in the fermentation broth without Mg2+ (Wang W.J.
et al., 2014). Strain Aspergillus sclerotiorum C10WU derived from
hydrothermal vent sediment in Taiwan (China) could produce
three new alkaloids (124–126) under normal medium. However,
this strain metabolized one unelucidated compound due to the
low amount available together with aspochracin when grown
in the stressed culture medium with Cu2+ as a supplement.
Likewise, two compounds, namely deoxytryptoquivaline and
tryptoquivaline A (127–128), were purified from the normal
extract of A. clavatus C2WU, while only metabolite 129

was found in normal medium containing Cu2+ and Cd3+

(Jiang et al., 2014). A novel antibacterial cyclodepsipeptide,
named NC-1 (130), was produced by a red soil-derived strain
Streptomyces sp. FXJ1.172 when cultured in GYM (glucose-
yeast extract-malt extract) medium added with ferric ion
(Liu M. et al., 2016).

CULTIVATION CONDITION

Suitable cultivation conditions, such as appropriate temperature,
pH, oxygen concentration, and cultivation status, are essential
for the growth and biochemical reactions of microorganisms.
However, many biosynthetic genes of MSMs are not expressed
under normal culture conditions, thus it is essential to change
the cultivation condition to activate these silent gene clusters to
diversify their MSMs.

Temperature
Chemical diversity of MSM is directly influenced by microbe
enzyme activity, which is susceptible to cultivation temperature.
The normal function of microbial enzyme is dependent on
appropriate temperature. Generally, the higher the cultivation
temperature is, the faster the enzyme deactivation rate will be
(Feller et al., 1994). For example, when the temperature was
lower than 30◦C, secondary metabolites of an uncoded strain
Streptomyces sp. were composed of chlortetracycline, while only
tetracycline was synthesized when cultivation temperature went
up to 35◦C (Cui et al., 1996).

pH
During microbe fermentation process, the decomposition and
utilization of nutrients as well as the accumulation of secondary
metabolites usually causes the variation of medium pH (Gibson
et al., 1988; Tan et al., 1998). It affects not only the activity
of each enzyme, but also the surface charge of the membrane.
The nature and permeability of cell membrane could change
the rate of utilization of substrate, thus affecting the growth of
microorganisms and biosynthesis of final products. Chemical
study of one desert-derived strain Nocardiopsis alkaliphila
nov. YIM-80379 led to isolation of two new pyran-2-one
derivatives (131–132) when cultivated on Gause’s synthetic
agar slants with pH = 10. However, the neutral medium
was unsuitable for its growth (Hozzein et al., 2004; Wang
et al., 2013c). Acidic medium (pH = 5) dramatically increased
the production of bioactive compounds of a mangrove-
derived fungus Rhytidhysteron rufulum AS21B, including two
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new antitumor spirobisnaphthalenes (133–134). However, these
compounds were not detected in neutral medium (Siridechakorn
et al., 2017).

Oxygen Concentration
Changes in oxygen supply can affect the biochemical reactions
and activate different set of functional gene clusters for different
secondary metabolites production (Sato, 1990). For example,
[13C]-labeled acetates and a small amount of [18O2] were used to
investigate the biosynthetic pathway of aspinonene (135) in the
culture broth of Aspergillus ochraceus DSM-7428. It is interesting
that aspyrone (136) was produced by increasing dissolved
oxygen concentration during fermentation, accompanied by
reduced amounts of compound 135 under an oxygen enriched
atmosphere (Fuchser et al., 1995).

Cultivation Status
A growing body of evidence has indicated that cultivation status
can directly affect microbe metabolic process, including solid
or liquid, static or dynamic. Compared with solid and static
cultivation, liquid and dynamic modes not only ensure the full
contact of microorganisms and nutrients, but also affect their
biochemical reactions by changing oxygen supply and activating
functional gene clusters. Till now, MSMs from 12 genera had
been investigated under different fermentation status, including
Arthrinium, Aspergillus, Myxotrichum, Nodulisporium, Lentinus,
Paraphaeosphaeria, Penicillium, Pestalotiopsis, Phomopsis,
Spicaria, Streptomyces, Ulocladium.

Arthrinium

One marine sponge-derived fungus Arthrinium arundinis
ZSDS1-F was shown to metabolize a novel naphthalene glycoside
(137) (Wang J.F. et al., 2014), five cytochalasins (138–142) (Wang
et al., 2015b), and three alkaloids (143–145) when cultivated
in a rotary liquid medium (Wang et al., 2015c). However, only
phenethyl 5-hydroxy-4-oxohexanoate (146) was traced in rice
medium (Li Y. L. et al., 2017). Bioassay suggested that compounds
143–146 possessed in vitro cytotoxicity against cancer cell lines
A549, BGC823, Huh-7, K562, H1975, MCF-7, HL60, U937, Hela,
and MOLT-4 with IC50 values in range of 0.24–45 µM. In
addition, compounds 143 and 145 displayed significant AchE
(acetylcholine esterase) inhibitory activity with IC50 values of 47
and 0.81 µM, respectively.

Aspergillus

By comparison of solid and liquid fermentation products
of an endophytic strain A. fumigates LN-4 from stem bark
of Melia azedarach L., their HPLC profiles were obviously
different (Zhang et al., 2013). Strain A. versicolor ZLN-60 could
produce two new cyclic pentapeptides (147–148) and four new
prenylated diphenyl ethers (149–152) in static liquid condition
(Zhou et al., 2011; Gao et al., 2013). Biological tests indicated
that compound 151 displayed moderate cytotoxicity against Hela
and K562 cancer cell lines with IC50 values of 31.5, 48.9 µM,
respectively. However, further purification of its crude extract of
solid medium resulted in the detection of four other novel cyclic
peptides (153–157) (Peng et al., 2014). Chemical study of one
marine-derived fungusA. terreus cultivated in 11 different culture
conditions indicated that static agar was ideal for the production
of antifungal lovastatins (158–159) and 7-desmethylcitreoviridin
(160), which were absent in the shaking fermentation
(Adpressa and Loesgen, 2016).

Lentinus

Two new prenyl phenols (161–162), one indole alkaloid
echinuline (163) and one anthraquinone fiscione (164), were
biosynthesized by Lentinus strigellus under static condition.
While in shaking fermentation broth, this strain produced
benzopyrans (165–168) together with panepoxydone (169) and
isopanepoxydone (170). Bioassay indicated that striguellone A
(171) displayed moderate cytotoxicity against HeLa cancer cells
(Zheng et al., 2009; Barros et al., 2012).

Myxotrichum

One fungal strain Myxotrichum sp. isolated from lichen Cetraria
islandica (L.) Ach in Laojun Mountain (China), was shown to
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make one novel austdiol analog (172), three new fulvic acid
derivatives (173–175) and a new citromycetin analog (176)
in rotary PDB medium (Yuan et al., 2013), while four new
polyketides (177–180) were acquired from rice medium under
static fermentation status. And compound 179 was shown to
restrain Arabidopsis seeds root markedly with the inhibition rate
of 75.9% at 8 µg/mL (Yuan et al., 2016).

Nodulisporium

Chemical investigation of one symbiotic strainNodulisporium sp.
(No. 65-12-7-1) from the lichen Everniastrum sp. resulted in the
isolation of two rarely 4-methyl-progesteroids (181–182) when
grown in rice medium (Zheng et al., 2013). Whereas this strain
could biosynthesize ten novel nodulisporisteroids (183–192) in
shaking PDB medium (Zhao et al., 2015).

Paraphaeosphaeria

A fungal strain Paraphaeosphaeria photiniae, inhabiting
Roystonea regia collected from Jianfeng Mountain (China),
was shown to yield six new unique benzofuranone-derived
γ-lactones (193–198) when cultivated in shaking liquid medium
(Ding et al., 2009), while only two different δ-lactone derivatives
(199–200) were detected in its rice medium (Ding et al., 2012).

Penicillium

When grown on solid PDA medium, one mangrove-derived
fungus Penicillium brocae MA-231 could produce six new
disulfide-bridged diketopiperazine derivatives (201–206).
Bioassay results showed that compounds 201, 202, 205, and
206 had cytotoxic activities against Du145, Hela, HepG2,
MCF-7, NCI-H460, SGC-7901, SW1990, SW480, and U251
tumor cell lines with IC50 values ranging from 0.89 to 9.0 µM
(Meng et al., 2014). When cultivated in liquid media (PDB or
Czapek), however, five new penicibrocazines (207–211), four
new thiodiketopiperazine alkaloids (212–215) and two new

N-containing p-hydroxyphenopyrrozin derivatives (216–217)
were detected in its fresh mycelia, which compounds 207–209
displayed antimicrobial activities against Staphylococcus aureus
with MIC values of 32.0, 0.25, 8.0 µg/mL, respectively. In
addition, 209–211 exhibited potent antimicrobial effect on
Gaeumannomyces graminis with MIC values of 0.25, 8.0
and 0.25 µg/mL, respectively. And compound 216 showed
powerful inhibitory effect on Fusarium oxysporum and S. aureus
(Meng et al., 2015b, 2017).

Chemical study of one marine sponge-derived strain
P. adametzioides AS-53 led to isolation of two new bisthiodi-
ketopiperazine derivatives (218–219) from shaking PDB broth,
whereas two new acorane sesquiterpenes (220–221) were
found in its static rice medium. Compound 218 showed strong
lethality against brine shrimp (Artemia salina) with an LD50

value of 4.8 µM and a broad spectrum of antimicrobial effect
on Aeromonas hydrophilia, S. aureus, Vibrio spp. V. harveyi,
Gaeumannomyces graminis and V. parahaemolyticus (Liu Y.
et al., 2015). Six novel azaphilone derivatives (222–227) as major
secondary metabolites were obtained from rotary PDB medium
of one marine-derived strain P. commune QSD-17 (Gao et al.,
2011), whereas other new compounds isophomenone (228) and
3-deacetylcitreohybridonol (229) were detected in its static rice
medium (Gao et al., 2012).

Three novel penipanoids (230–232) were characterized
from one marine-derived strain P. paneum SD-44 grown in
rice medium (Li et al., 2011). The exploration of changing
fermentation conditions of P. paneum SD-44 to a seawater-based
culture broth under dynamic fermentation condition gave five
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new anthranilic acid derivatives (233–237). Metabolites 233 and
237 exhibited inhibitory activity toward human colon cancer
RKO cell lines with IC50 values of 8.4, 9.7 µM, respectively
(Li C. S. et al., 2013). One deep sea-derived fungus Penicillium
sp. F23-2 biosynthesized terpenoids, diketopiperazines, and
meleagrin alkaloids when incubated in sea-water-based culture
medium under static condition (Du et al., 2009, 2010), whereas
five new nitrogen-containing sorbicillinoids (238–242) were
metabolized by this stain when cultivated in PYG (peptone yeast
glucose) medium under shaking status (Guo et al., 2013).

Pestalotiopsis

When grown in rice medium, one endophytic strain of
Pestalotiopsis fici from Camellia sinensis was found to be a
prolific producer of bioactive secondary metabolites, including
pupukeanane chloride (243) (Liu et al., 2008a), chloropestolide
A (244) (Liu et al., 2009a), seven isoprenylated chromones
(245–251) (Liu et al., 2010), three highly functionalized
compounds (252–254) (Liu et al., 2009b), and three cytotoxic
pupukeanane chlorides (255–257) (Liu et al., 2011). In vitro
cytotoxic assays suggested that compound 244 possessed potent
inhibitory effects on HeLa and HT29 with GI50 values of
0.7, 4.2 µM, respectively. However, this strain produced new
cyclopropane derivatives (258–262) when cultivated in shaking
liquid medium (Liu et al., 2008b). An endophytic fungus
P. foedan, residing in Bruguiera sexangul, synthesized a new
reduced spiro azaphilone derivative (263) together with two
new isobenzofuranones (264–265) in solid GYM (glucose, yeast
extract, malt) medium (Ding et al., 2008). But, in liquid modified
PDB medium, a pair of novel spiro-γ-lactone enantiomers
(266–267) were identified (Yang and Li, 2013).

Phomopsis

An endophytic fungus Phomopsis sp. sh917 isolated from fresh
stems of Isodon eriocalyx var. laxiflora collected in Kunming
Botanical Garden of China, was shown to produce six new

polyketides (268–273) on solid rice medium but metabolize
a new polyketide (274) in shaking liquid FM4 medium
(Tang et al., 2017).

Spicaria

Nine new cytochalasins Z7-Z15 (275–283), one novel
spicochalasin (284), five new aspochalasins (285–289), and
three new aspochalasin derivatives (290–292) were synthesized
by a marine-derived fungus Spicaria elegans KLA03 in the
seawater-based medium under static fermentation status.
Compounds 235 and 276 displayed strong cytotoxicity against
P388 and A-549 cancer cell lines with IC50 values in range of
8.4–99 µM (Liu et al., 2005, 2006, 2008c; Lin et al., 2009a, 2010).
However, new aromatic polyketide (293) was obtained from
shaking seawater medium (Luan et al., 2014).

Streptomyces

Onemarine-derived stain Streptomyces sp. CHQ-64 was found to
produce six new antifungal polyene-polyols (294–299) and two
new cytotoxic hybrid isoprenoid alkaloids (300–301) in liquid
medium under shaking condition, while this strain made only
one new hybrid isoprenoid alkaloid (302) under static condition
(Che et al., 2012, 2013, 2015, 2016). When cultivated in liquid
Gause’s No. 1 medium, strain Streptomyces sp. DT-A37 could
produce a new ring-opened lactam (303), while in rice medium
one unknown holomycin (304) and two new cyclopropaneacetic
acids (305–306) were detected (Ding et al., 2017). Strain
Streptomyces sp. HZP-2216E cultured in 2216E solid medium,
GYM solid medium and GMSS (Gause’s medium with sea salt)
liquid medium resulted in isolation of two new compounds of
23-O-butyrylbafilomycin D (307), streptoarylpyrazinone A (308)
a unique indolizinium alkaloid streptopertusacin A (309). It was
noted that compound 307 showed potent activity in suppressing
the proliferation of the four tested glioma cell lines with IC50

values in a range from 0.35 to 2.95 µM and antibacterial activity
with MIC value of 7.4 µM for MRSA and IC50 values of 0.44 to
0.98 µM for glioma cells (Zhang et al., 2017c,d).
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Ulocladium

Two antifungal polyketides (310–311) were characterized from
rice medium of Ulocladium sp. that was isolated from the
lichen Everniastrum sp. (Wang X.E. et al., 2012), whereas three
new tricycloalternarenes F-H (312–314) and five ophiobolane
sesterterpenes (315–319) were detected in liquid Czapek or
PDB medium (Wang et al., 2013a,b). Compounds 315 and
319 exhibited moderate antibacterial activity against meticillin-
resistant S. aureus and Bacillus subtilis and displayed strong
in vitro cytotoxicity against cancer cell lines KB and HepG2.

CO-CULTIVATION WITH

OTHER STRAIN(S)

In one culture medium, the relationship between one strain
and other(s) may be competitive, antagonistic or friendly.
Co-cultivation of two or more strains usually has positive
effect of an enhanced production of known compounds or
an accumulation of cryptic compounds that are not detected
in axenic culture (Bohni et al., 2013; Marmann et al., 2014).
This effect maybe results from the production of enzymes that
activate metabolite precursors or that other strain(s) may induce
epigenetic modifications of the producer strain.

Fungus and Other Fungal Strain
An endophytic strain Acremonium sp. Tbp-5 from the European
yew (Taxus baccata L.) could produce new lipoaminopeptides
(320–322) when co-cultivated with Mycogone rosea DSM 12973
(Degenkolb et al., 2002). Chemical investigation of the mixed
fermentation broth of two epiphytic strainsAspergillus sp. FSY-01
and FSW-02 from marine mangrove Avicennia marina led to the
isolation of a novel alkaloid (323), which had antibacterial activity
against Bacillus dysenteriae, B. proteus, and E. coli (Zhu et al.,
2011). The production of 2-alkenyl-tetrahydropyran analogs
(224–326) was provoked by Chaunopycnis sp. CMB-MF028 in
the mixed culture with a partner strain Trichoderma hamatum
CMB-MF030, which were isolated from the inner tissue ofmarine
pulmonate false limpet (Shang et al., 2017). Co-cultivation of
Monascus sp. J101, used as the producer of Monascus pigment,
with Saccharomyces cerevisiae KCCM 11371 or A. oryzae KCCM
11773 on the solid sucrose medium could result in two folds of
accelerated cell growth and 30–40 folds of increased pigment
production (Shin et al., 1998). Strain J101 was shown to
stimulate cell growth and reproduction by interacting with
S. cerevisiae, which resulted in production of more hydrophobic
pigments compared to themono-culture (Suh and Shin, 2000a,b).
When co-cultivated with Beauveria felina, one marine-derived
P. citrinum could biosynthesize two new compounds (327–328)
featuring in a unique tetracyclic framework, whereas neither
strain could produce these compounds in axenic medium.
Antimicrobial assay showed that compounds 327 and 328 had
strong inhibitory effects on human pathogens S. aureus and
E. coli (Meng et al., 2015a). Penicillium sp. IO1 derived from
mediterranean sponge Ircinia oros could produce a new fusarielin
analog (329). However, co-cultivation of Penicillium strains IO1
and IO2 resulted in the accumulation of two known compounds
norlichexanthone and monocerin, which were not detected in
axenic controls (Chen et al., 2015a). Four new polyketides
(330–333) were detected in a dual culture of the deep-sea-derived
fungus Talaromyces aculeatus and a mangrove-derived fungus
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P. variabile, while these compounds were not identified in
single culture. Compounds 333 displayed strong cytotoxicity
against A549, K562, HCT-116, HeLa, MCF-7 and HL-60 human
cancer cell lines with IC50 values ranging from 1.2 to 9.8 µM
(Zhang et al., 2017b).

One novel 1-isoquinolone analog (334) and its methyl ester
(335) were detected in mycelia and culture filtrate of mixed
fermentation of two endophytic fungi Nos. 1924# and 3893#,
whereas these compounds were not traced in axenic medium
under the same conditions (Zhu and Lin, 2006). The formation
of new antibiotics (336–337) was emerged during co-cultivation
of a multi-antibiotic stable mutant strain of Rhodococcus fascians
and a strain Streptomyces padanus, neither of which was capable
of yielding an antibiotic (Kurosawa et al., 2008). An terrestrial
bacterium Tsukamurella pulmonis TP-B0596 co-cultured with
strain Streptomyces sp. NZ-6, coincided with stimulation of three
new metabolites (338–340) of unprecedented di-andtricyclic
macrolactams (Hoshino et al., 2015). The yield of red pigment
was detected in the dual induction of T. pulmonis TP-B0596 and
S. lividans TK23. Co-cultivation of T. pulmonis and S. endus
S-522 resulted in the production of one new antibiotics called
alchivemycin A (341) (Onaka et al., 2011). A soil-dwelling
actinomycetes S. coelicolor was shown to significantly improve
the yield of red compound undecylprodigiosin, when co-cultured
with Corallococcus coralloides (Schäberle et al., 2014).

Bacterium and Other Bacterial Strain
Only two new macrolactams (342–343) were detected in
the co-culture broth of a rare actinomycete Micromonospora
wenchangensis HEK-797 and Tsukamurella pulmonis TPB0596,
whereas the axenic medium of strain HEK-797 produced a
polyene macrolactam (344), which was possibly the precursor of
compounds 342 and 343 (Hoshino et al., 2017). Investigation of
the interaction of the portable predatorMyxococcus Xanthus and
Streptomyces coelicolor showed that actinorhodin production
of S. coelicolor was raised up to 20-fold and stimulated aerial
mycelium production (Pérez et al., 2011). Co-cultivation of
two sponge-derived actinomycetes, Nocardiopsis sp. RV163 and
Actinokineospora sp. EG49, induced ten reported compounds,
including diketopiperazine, angucycline, and β-carboline
derivatives, while only three natural products were isolated in
mono-culture (Dashti et al., 2014).Mixed culture of Pseudomonas
maltophilia 1928 and S. griseorubiginosus 43708 resulted in the
production of one peptide antibiotic, biphenomycin A (345)
(Ezaki et al., 1992). However, the accumulation of biphenomycin
A, which could be obtained from the transformation of
biphenomycin C (346), was inhibited in single culture of strain
1928 (Uchida et al., 1985; Ezaki et al., 1993). Interspecies
interactions between Streptomyces coelicolor M145 with other
actinomycete stains (Amycolatopsis sp. AA4, Streptomyces sp.
E14, Streptomyces sp., SPB74 and S. viridochromogenes DSM
40736) resulted in the production of at least 12 different versions
of a molecule called desferrioxamine (Traxler et al., 2013).

Fungus and Bacterium
Co-cultivation of one fungal strain A. terreus with B. cereus
and B. subtilis resulted in the yield of two novel butyrolactones

(347–348), which were absent in single culture medium
(Chen et al., 2015b). An endophyte Chaetomium sp. from
the Cameroonian plant Sapium Ellipticum (Euphorbiaceae) was
shown to produce two novel shikimic acid analogs (349–350) and
four new butenolide derivatives (351–354) when co-cultivated
with Pseudomonas aeruginosa, while none of these chemicals
was traced in axenic medium (Ancheeva et al., 2017). Strain
Bacillus subtilis 168 trpC2 was shown to greatly activate the
biosynthesis of three novel chemicals (355–357) of fungal
endophyte Fusarium tricinctum during co-culture process. And
these compounds were not duplicated in axenic fungal culture
(Ola et al., 2013).

Co-cultivation of one marine fungus Libertella sp. CNL-
523 symbiotic on an ascidian collected from the Bahamas
and a fellow strain Thalassospira sp. CNJ-328 resulted in the
production of four new diterpenoids (358–361). Compound
360 exhibited remarkable cytotoxicity against HCT-116 human
adenocarcinoma cell line with an IC50 value of 0.76 µM (Oh
et al., 2005). A new pyridone alkaloid (362) was isolated
from the mixed culture extract of Paecilomyces lilacinus and
Salmonella typhimurium, which had 57.5 ± 5.50% of AChE
inhibition (Teles and Takahashi, 2013). Co-culture of an
endophyte Pestalotiopsis sp. from Drepanocarpus lunatus with
B. subtilis was found to biosynthesize two novel sesquiterpenoids
(363–364) while new compounds 365 and 366 emerged in
axenic culture (Liu et al., 2017). The mixed cultivation of
Trichoderma sp. 307 colonizing in Clerodendrum inerme and one
bacterium Acinetobacter johnsonii B2 led to the production of
two new sesquiterpenes (367–368) and three novel de-O-methyl
lasiodiplodins (369–371). Compounds 369 and 370 displayed
potent α-glucosidase inhibitory effect with IC50 values of 25.8 and
54.6 µM, respectively (Zhang et al., 2017a).

Chemical study of an endophytic stain Aspergillus
austroafricanus from Eichhornia crassipes led to the isolation of
a highly oxygenated heterodimeric xanthone (372) and a new
sesquiterpene (373) in axenic culture. Mixed fermentation of
A. austroafricanus with B. subtilis or S. lividans afforded several
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diphenyl ethers, including one new austramide (374) (Ebrahim
et al., 2016). Two novel N-formyl alkaloids (375–376) were
characterized from a mixed fermentation of A. fumigatus and
S. peucetius. Compound 376 displayed in vitro cytotoxic effect
on cancer cell line NCI-60 with an IC50 value of 1.12 µM (Zuck
et al., 2011). Seven known diketopiperazine alkaloids associated
with ergosterol and 11-O-methylpseurotin A were traced in
response to the supplement of A. fumigatus MBC-F1-10 to an
established culture of S. bullii, whereas neither strain metabolized
these compounds when cultivated alone (Rateb et al., 2013).
Co-cultivation of A. fumigatus MR2012 with S. leeuwenhoekii
C34 in ISP2 medium resulted in the yield of a new luteoride
derivative (377) and a new pseurotin derivative (378). None of
these compounds could be detected in axenic culture. When
strain MR2012 was co-cultivated with strain C58, a lasso
peptide chaxapeptin (379) was made, which displayed significant
inhibitory effect on human lung cancer cell line A549 (Elsayed
et al., 2015; Wakefield et al., 2017).

Physical interaction of A. nidulans RMS011 with
S. hygroscopicus was found to trigger biosynthesis of four
new aromatic polyketides (380–383), which were absent
in the axenic medium (Schroeckh et al., 2009). A new
polyketide glycoside (384) was formed in the dual induction
of two Gram-positive bacteria, S. tendae KMC006 and
Gordonia sp. KMC005, which were obtained from an acidic
mine drainage sample (Park et al., 2017). In response to
S. coelicolor A3(2) M145, strain A. niger N402 was shown
to be apt to produce 2-hydroxyphenylacetic acid and cyclic
dipeptide cyclo(Phe–Phe). Biotransformation of a new
hexadienedioxic acid (385) and a new phenol derivative
(386) was achieved by co-culture of these strains (Wu et al.,

2015). More interestingly, co-cultivation of one marine-
derived fungus Emericella sp. CNL-878 with Salinispora
arenicola CNH-665 resulted in the higher yields of two novel
antimicrobial cyclic depsipeptides (387–388) than axenic culture
(Oh et al., 2007).

EPIGENETIC MODIFIER

Epigenetic modifiers are those chemicals that are able to
change microbial characteristics in correspondence to alteration
of their epigenetic status, such as DNA methyltransferase
(DNMT) inhibitor and histone deacetylase (HDAC) inhibitor.
The addition of these modifiers usually suppresses the
activity of related enzymes in the biosynthetic pathway
and promotes the progress of other metabolic pathways
(Seyedsayamdost, 2014).

DNA Methyltransferase Inhibitor
DNAmethylation is a process by which methyl groups are added
to DNA. When located in a gene promoter, DNA methylation
typically acts to repress gene transcription and causes chromatin
structure changes in the corresponding regions, preventing the
binding of specific transcription factors and suppressing gene
expression (Araujo et al., 2001). 5-Azacytidine (5-AC) is the
most common DNMT inhibitor used to modify the function
of microbe DNA followed by repressing gene transcription.
Chemical investigation of a marine-derived fungus Aspergillus
sydowii afforded three novel bisabolane-type sesquiterpenoids
(389–391) when its culture medium was supplemented
with 5-AC (Chung et al., 2013b). An entomopathogenic
fungus Cordyceps indigotica yielded a novel aromatic polyketide
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glycoside (392) when cultivated in PDB media, while the strain
produced another unusual glycoside (393) when supplement
with 5-AC (Asai et al., 2012e). Several other examples that adding
5-AC as epigenetic modifier in culture medium could lead to
the production of new metabolites were also reported, such
as novel diethylene glycol phthalate esters (394–400) from a
marine-derived strain Cochliobolus lunatus TA26-46 (Chen et al.,
2016), a new benzoic acid (401) from Pestalotiopsis microspora
(Yang et al., 2017), one new coumarin (402) from P. crassiuscula
NBRC 31055 associated with Fragaria chiloensis (Yang et al.,
2014), and novel meroterpenes (403–404) from P. citreonigrum
(Wang et al., 2010).

Histone Deacetylase Inhibitor
The acetylation or deacetylation of histone affects its binding
to DNA in microbe. There are many chemical modifications
in the tail of histone that regulate the gene expression. The
introduction of hydrophobic acetyl group into the N-terminal
lysine residues of histone could increase the electrostatic
attraction and steric hindrance between histone and DNA, which
is conducive to facilitate the depolymerization of DNA and
the binding of transcription factors (Fukuda et al., 2006; Cole,
2008). Suberoyl bishydroxamic acid (SBHA), suberoylanilide
hydroxamic acid (SAHA), and nicotinamide are the most
common HDAC chemicals used to inhibit the deacetylation
and facilitate gene transcription and expression in microbes
(Moore et al., 2012).

Many reports suggested the presence of SAHA in culture
medium could result in production of new natural compounds,
such as a novel metabolite nygerone A (405) from a soil-
dwelling fungusA. niger ATCC 1015 (Henrikson et al., 2009), two
new aromatic norditerpenes (406–407) tied with an oxygenated
derivative (408) from a marine-derived A. wentii na-3 residing
in the brown alga Sargassum fusiforme (Miao et al., 2014),
three novel cyclodepsipeptides (409–411) from Beauveria feline
(Chung et al., 2013a), one novel chlorinated polyketide (412)
from Daldinia sp. (Du et al., 2014), a new cyclodepsipeptide
of hybrid EGM-556 (413) from one marine sediment-derived
fungusMicroascus sp. (Vervoort et al., 2011).

In SBHA-treated culture medium, Chaetomium indicum
could produce two novel spironolactone polyketides (414–415)
and six novel prenylated aromatic polyketides (416–421)
(Asai et al., 2013b,c). Similarly, when exposed to SBHA, four
new 2,3-dihydrobenzofurans (422–425) and a new aromatic
polyketide (426) were characterized from an entomopathogenic
fungus Cordyceps annullata (Asai et al., 2012c), six new aromatic
polyketides (427–432) were synthesized by C. indigotica (Asai
et al., 2012f), two new fusaric acid derivatives (433–434) were
produced by Fusarium oxysporum associated with medicinal
plant Datura stramonium L. (Chen et al., 2013), and a series
of novel prenylated tryptophan analogs (435–437) were
metabolized by an entomopathogenic fungus Torrubiella
luteorostrata (Asai et al., 2011). Supplement of nicotinamide
[a Zn(II)-type HDAC inhibitor] in culture medium of
C. cancroideum could generate three novel polyketides
(438–440) (Asai et al., 2016). The use of this inhibitor to
strains Eupenicillium sp. LG41 and Graphiopsis chlorocephala
had the similar effect, which the former supplied two new
decalin-containing compounds (441–442) (Li G. et al., 2017)
and the later afforded a serious of new benzophenones
(443–444) and diverse new C13-polyketides (445–453)
(Asai et al., 2012d, 2013a).

Multiple Chemical Epigenetic Modifiers
Interactions between epigenetic features play an important role
in regulation of gene expressing or silencing in microorganisms,
such as DNA methylation and histone modification. Many
references that looked into the combined effect of epigenetic
processes suggested that these chemicals could regulate the
activity of genomic regions of varying sizes, from single genes
to entire domains and chromosomes. Epigenetic markers could
also interact with other nuclear proteins to work together to form
chromatin structures and to create genomic functional discrete
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regions that induce the production of new secondary metabolites
(Tammen et al., 2013).

One symbiotic strain Alternaria sp. from medicinal plant
Datura stramonium Linn. was shown to produce four new
aromatic polyketides (454–457) and a new tenuazonic acid (458)
when incubated in medium containing 5-AC and/or SBHA.
While these compounds were absent in normal culture medium.
Interestingly, the yield of these secondary metabolites was higher
in the medium of adding HDAC and DNMT inhibitors than
that of addition of any other inhibitors (Sun et al., 2012).
Chemical investigation of one marine-derived fungus Aspergillus
sp. SCSIOW2 or SCSIOW3, exposed with an integration of SHBA
and 5-AC, led to production of three new eremophilane-type
sesquiterpenes (459–461) together with a new diphenylether-O-
glycoside (462) (Wang L. et al., 2016; Li X. et al., 2017). Bioactivity
tests indicated that the glycosylated compound 462 exhibited a
protective activity toward free radicals with an EC50 value of 20.8
µM. One strain Cladosporium cladosporioides from a tidal pool
was found to display different responses to the treatment with 5-
AC and SHBA. Exposure of C. cladosporioides to 5-AC resulted in
substantially increased biosynthesis of three oxylipins (463–465),
whereas SHBA induced the yield of two new perylenequinones
(466–467) (Williams et al., 2008).

Concomitant supplement of SHBA and N-phthalyl-L-
tryptophan (DNMT inhibitor) to the fermentation medium of
an entomopathogenic fungus Gibellula formosana induced the
formation of two new highly oxidized ergosterols (468–469)
and five new isariotin analogs (470–474) (Asai et al., 2012a).
The same method was applied to expand MSM profile of Isaria
tenuipes, which resulted in the yield of one new polyketide (475)
(Asai et al., 2012b). An endophytic strain Leucostoma persoonii
from red mangrove was subject to large-scale cultivation with
sodium butyrate (HDAC inhibitor) and 5-AC, which resulted in
the increased yield of known cytosporones and the production

of one new cytosporone (476) (Beau et al., 2012). Three novel
aromatics (477–479) were produced by Pestalotiopsis acacia from
Taxus brevifolia when its culture medium was supplemented
with SHBA and 5-AC (Yang and Li, 2013). Application of this
approach also led to production of a new glycolipid ustilagic acid
C (480) by Ustilago maydis (Yang et al., 2013).

OTHER FACTORS

Enzyme Inhibitor
Beside DNMT and HDAC, other microbial enzymes also played
important role in the regulating the biosynthesis of secondary
metabolites, such as monooxygenase and hydroxylase. Some
chemicals can selectively inhibit the activity of these enzymes
in the biosynthetic pathway and promote the progress of
other metabolic pathways, such as metyrapone, tricyclazole,
jasplakinolide, and DMSO.

Chemical study of Chaetomium subaffine in the presence
of metyrapone (an inhibitor of cytochrome P-450) led to
purification of five new polyketides (481–485) and two new
less oxidized analogs (486–487) (Oikawa et al., 1992). A soil-
derived strain Phoma sp. SNF-1778 was shown to yield a
new cytochalasin (488) when inoculated with metyrapone
(Kakeya et al., 1997). When added with the F-actin inhibitor
jasplakinolide in culture medium, one marine sponge-derived
fungus Phomopsis asparagi could afford three unusual cytotoxic
compounds, chaetoglobosin-510 (489), chaetoglobosin-540
(490), and chaetoglobosin-542 (491) (Christian et al., 2005). Two
novel bisnaphthalene compounds (492–493) were characterized
from Sphaeropsidales sp. F-24’707 cultured with tricyclazole,
which was shown to inhibited the regular biosynthesis of 1,8-
dihydroxynaphthalene (Bode and Zeeck, 2000). Continuous
study showed that metyrapone supplementation in the
culture of Spicaria elegans led to the isolation of two novel
7-deoxy-cytochalasins (494–495). Compound 494 had weak
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cytotoxicity against human lung cancer cell line A-549 at
15.0 mM (Lin et al., 2009b). One marine-derived strain
Trichoderma cf. brevicompactum elicited an unprecedented epi-
diketopiperazine (496), which has a trisulfide bond between the
α–β positions of two amino acid residues, by adding DMSO to its
natural seawater medium (Yamazaki et al., 2015b).

Biosynthetic Precursor
Biosynthetic precursor refers to one chemical that is apt to
be directly incorporated into the final product. Adding various
biosynthetic precursors in the fermentation mediummay change
biosynthesis pathways of secondary metabolites and result in the
production of novel compounds (Ramm et al., 2017).

An endophytic strain Penicillium crustosum from the ripe
berry of Coffea arabica L., treated with ferulic acid and quinic
acid or cinnamic acid and 3,4-(methylenedioxy) cinnamic acid,
was shown to produce mycophenolic acid (497) and 5-hydroxy-
7-methoxy-4-methylphthalide (498) (Valente et al., 2013). Three
novel cytochalasins Z21–Z23 (499–501) were characterized
from one marine-derived fungus Chaetomium indicum KLA03
when cultivated in medium supplied by L- and D-tryptophan.
Compound 498 exhibited potent cytotoxic effect on A549 cell
lines with an IC50 value of 8.2 µM (Wang F. Z. et al., 2011).
Strain S. griseoviridis Tü 3634 could afford a wide variety of
acyl α-L-rhamnopyranosides (pyrrolyl, indolyl, thienyl, furanyl,
and pyridyl derivatives) if its culture medium, respectively,
added corresponding precursors, heteroaromatic carboxylic acid,
benzoic acid, cinnamic acid, aminobenzoic acid, and salicylic acid
(Grond et al., 2000, 2002).

CONCLUSION

Microorganisms are susceptible to culture conditions, such
as medium composition, temperature, pH, salinity, culture
status, axenic or mixed culture, epigenetic modifier, biosynthetic
precursor, and so on. Variation of these factors may result

in changing chemical diversity of secondary metabolites.
Traditional culture method of microbe is limited to the
expression of a large number of metabolic pathways that many
MSMs could not be biologically synthesized. A growing body
of evidence has suggested that OSMAC strategy can provide
a simple, quick and effective approach for enhancing chemo-
diversity of MSM to obtain new drug leads through activating
silent gene clusters. Moreover, employment of this strategy could
avoids the waste of time and resources caused by multiple
inoculation, screening, culturing and separation in comparison
with mutation strategy (Fang et al., 2014) and ribosome
engineering (Ochi et al., 2004). Nowadays, the rate of discovery
of new MSM is getting lower and the possibility of the re-
discovery of known compounds is higher than before. Therefore,
OSMAC strategy would be an important alternative way to
alleviate this challenge. There is a great need for new method
to assist in isolating and identifying novel bioactive MSMs, such
as bioassay-guided isolation, microbe genomes mining (Hug
et al., 2018) and LC-MS/MS based molecular networking analysis
(Wang M. et al., 2016).
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