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Exploring Task Structure for Brain Tumor

Segmentation from Multi-modality MR Images
Dingwen Zhang, Guohai Huang, Qiang Zhang, Jungong Han, Junwei Han Senior Member, IEEE,

Yizhou Wang, Yizhou Yu, Fellow, IEEE

Abstract—Brain tumor segmentation, which aims at seg-
menting the whole tumor area, enhancing tumor core area,
and tumor core area from each input multi-modality bio-
imaging data, has received considerable attention from both
academia and industry. However, the existing approaches
usually treat this problem as a common semantic segmen-
tation task without taking into account the underlying rules
in clinical practice. In reality, physicians tend to discover
different tumor areas by weighing different modality volume
data. Also, they initially segment the most distinct tumor
area, and then gradually search around to find the other two.
We refer to the first property as the task-modality structure
while the second property as the task-task structure, based
on which we propose a novel task-structured brain tumor
segmentation network (TSBTS net). Specifically, to explore the
task-modality structure, we design a modality-aware feature
embedding mechanism to infer the important weights of the
modality data during network learning. To explore the task-
task structure, we formulate the prediction of the different
tumor areas as conditional dependency sub-tasks and encode
such dependency in the network stream. Experiments on
BraTS benchmarks show that the proposed method achieves
superior performance in segmenting the desired brain tumor
areas while requiring relatively lower computational costs,
compared to other state-of-the-art methods and baseline
models.

I. INTRODUCTION

Brain tumor segmentation aims at automatically seg-

menting tumor areas from multi-modality Magnetic Res-

onance (MR) sequences that are imaged by the advanced

medical imaging equipment. Through segmenting brain

tumors, the volume, shape, and localization of brain tumor

areas (including the whole tumor areas, enhancing tumor

core areas, and tumor core areas) can be provided, which
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play crucial roles in brain tumor diagnosis and monitoring1.

However, segmenting brain tumors from noisy medical

images is never an easy task and many research efforts have

been devoted to this area, which generally follow two main

pathways. On one hand, the existing approaches consider

the multi-modality brain tumor segmentation task as a

common semantic segmentation problem and build their

models based on the network architectures for semantic

segmentation [1], [2], [3]. On the other hand, several exist-

ing approaches further extend the 2D convolutional neural

network (CNN) architectures that are commonly used in

semantic segmentation into the 3D CNN architectures [4],

[5] to fit the data structure of the investigated multi-

modality MR volumes.

However, intending to replicate semantic segmentation

methods for RGB images, the existing approaches for

brain tumor segmentation seem to rely too much on the

CNN architectures, while ignoring the underlying rules for

identifying brain tumor areas in clinical practice. Thus, the

performance of these approaches is still not satisfactory.

In fact, brain disease physicians usually discover different

tumor areas by weighing different modality volume data

because they know that different modality data may reflect

different pathological features. This reveals the underlying

task-modality structure in brain tumor segmentation, and

indicates the relationship between each modality data and

the interested tumor area. On the other hand, physicians

in brain disease neither seek the three tumor areas

simultaneously nor do they treat each modality equally

to find a certain tumor area. To our best knowledge, this

is because physicians have the task structure prior in mind:

On one hand, they know that the three tumor areas are

mutually included rather than being located independently.

Thus, they find these tumor areas by first localizing the most

distinct one and then searching around to find the others.

This implies the underlying task-task structure in brain

tumor segmentation if we treat the segmentation of each

type of tumor area as a single sub-task. These properties

are illustrated in Fig. 1.

1The brain tumors studied in this work are the Low-grade gliomas
(LGG) and High-grade gliomas (HGG) as 1) gliomas are the most
common primary brain malignancies and automatic gliomas segmentation
algorithms could alleviate huge human labor in brain tumor diagnosis and
monitoring; 2) segmenting gliomas in multimodal MRI scans is one of
the most challenging tasks in medical image analysis due to the highly
heterogeneous appearance and shape; and 3) compared with the other
gliomas, i.e., the Biologically benign gliomas, LGG and HGG will have
a prognosis resulting in eventual death.
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Fig. 1: Illustration of the multi-modality brain tumor segmentation task. On the left, we show MR scans in different

modalities and from different views (imagining the entire multi-modality input data is a 3D volume with four modality

channels). On the right, we show the ground-truth of the targeted tumor areas. At the bottom of this figure, we reveal

two valuable prior knowledge from the clinical practice, which are also the key insights for establishing our proposed

TSBTS net. Notice that, to show examples more clearly, we reduce the black background areas for each slice.

Inspired by the aforementioned clinical practices, we

propose a novel task-structured brain tumor segmentation

network (TSBTS net), which is designed to explore the task

structures, including both the task-modality structure and

task-task structure, to mimic the physicians’ expertise. On

the one hand, we model the relationship between the multi-

modality data and the targeted tumor areas in a weight-

ed combination structure, where the weights indicating

the importance of each modality data for segmenting a

particular tumor area are formulated in a modality-aware

feature embedding (MAFE) module of the proposed net-

work model. On the other hand, we model the relationship

among the sub-tasks on segmenting the three mutually

included tumor areas in an ordered inference structure,

where the segmentation processes of different tumor areas

are formulated as the conditionally dependent sub-tasks

and such dependency is encoded in the proposed network

stream.

The concrete framework is shown in Fig. 2. As can

be seen, we introduce three MAFE modules to infer the

importance weights for each modality data and get the

weighted features for segmenting the tumor areas. It is

worth mentioning that instead of only using a single MAFE

module, we use three MAFE modules, each of which cor-

responds to segmenting a certain type of tumor areas. This

design compiles the task-modality structure of the brain

tumor segmentation well as it enables our TSBTS net to

segment different tumor areas by weighing different modal-

ity data. Besides, we can also observe that the mainstream

of the proposed network is a feed-forward network, which

mainly consists of three inferring modules. Thus, unlike

the conventional architectures that simultaneously predict

the segmentation maps of all types of brain tumor areas at

the end of the network, we instead predict these brain tumor

areas separately in different learning modules—-predicting

the enhancing tumor core (ET) area from Inferring Module

I, the tumor core (TC) area from Inferring Module II,

and the whole tumor (WT) area from Inferring Module

III, respectively. By mimicking the process to discover

and segment the three mutually included areas from the

most distinct one to the other surrounding ones, this design

can properly encode the task-task structure in brain tumor

segmentation.

To sum up, this work mainly contains the following

three-fold contributions:

• Inspired by the clinical practice, we reveal the in-

sight of the task structures (including the task-

modality structure and the task-task structure) for

multi-modality brain tumor segmentation and build

the novel task-structured brain tumor segmentation

network (TSBTS net).

• We model the task-modality structure as a weighted

combination structure and the task-task structure as an

ordered inference structure. The former is achieved by

modality-aware feature embedding for each particular

sub-task while the latter is achieved by formulating

the conditional dependency between sub-tasks.

• Comprehensive experiments on BraTS 2017 and 2018

datasets have been conducted to demonstrate that our

proposed approach outperforms the baseline models
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Fig. 2: Illustration of the whole network architecture of the proposed TSBTS net, which contains three modality-aware

feature embedding (MAFE) modules and three inferring modules. The modules in green, red, and blue are used to

segment the enhancing tumor core, tumor core, and whole tumor areas, respectively. In the TSBTS net, the task-modality

structure is modeled as a weighted combination structure, where the MAFE mechanism is adopted to infer the importance

weights and obtain the weighted features. In addition, the task-task structure is modeled as an ordered inference structure,

where the network mimics the process to discover and segment the three mutually contained areas from the most distinct

area to its surrounding areas. Notice that the dashed blocks are not network layers but the input data of each inferring

module.

and achieves the state-of-the-art performance.

II. PREVIOUS WORKS

For segmenting brain tumors automatically, researchers

in the fields of computer vision and machine learning have

made great efforts in the past few decades. In early ages,

researchers addressed this problem by mainly using hand-

crafted features (such as the context feature [6], gradient

feature [7], symmetry feature [8], and physical feature [9])

and shallow learning models (such as Conditional Random

Field [10], Support Vector Machines [11], and Random

Forests [12]). For example, Tustison et al. [9] used the

Random Forests to build a two-stage brain tumor segmen-

tation framework, where the output of the first classifier

was used to improve the second stage of segmentation.

Geremia et al. [13] developed a hierarchical semination

framework based on a Spatially Adaptive Random Forests

model. Meier et al. [14] proposed a semi-supervised learn-

ing approach to train a subject-specific classifier for post-

operative brain tumor segmentation.

More recently, with the rapid development of the deep

learning technique [17], deep neural networks (DNNs) with

different network architectures have been established to

address the brain tumor segmentation problem. Compared

with the conventional approaches, the biggest advantage

of the DNN-based brain tumor segmentation approach is

that useful features could be learned, alongside the targeted

segmentation task, in a data-driven manner.

The DNN-based brain tumor segmentation methods can

be divided into two categories. The first category is the

2D CNN-based methods. These methods split the multi-

modality 3D volume data into 2D patches or slices and use

CNNs with 2D convolution operation to process each 2D

patch or slice. For example, Shaikh et al. [18] proposed a

100-layer Tiramisu architecture, which integrates a dense-

ly connected fully convolutional neural network (FCNN)

followed by a Dense Conditional Random Field (DCRF),

to segment brain tumors from multi-modal MR slices.

Similarly, Islam and Ren [19] extracted the hypercolumn

features from FCNN to predict the segmentation masks of

each MR slice. Lopez et al. [20] introduced the dilation

operation into the deep network for 2D slice-based brain

segmentation. They also studied the class imbalance issue

for segmenting different tumor areas.

The other category is the 3D CNN-based methods.

These methods use CNNs with 3D convolution operation

to process the whole MR 3D volume data or the extracted

3D patches. One of the most representative 3D CNN-based

brain tumor segmentation approaches is DeepMedic [21],

where a dual pathway 3D CNN with 11 layers is proposed

to perform on the local image patches for brain tumor

segmentation. The network processes the input image patch

at multiple scales and the obtained result is further refined

by a fully connected Conditional Random Field (CRF).

Besides, Li et al. [22] proposed a compact end-to-end

3D CNN model, where high-resolution multi-scale fea-

tures are maintained with dilated convolutions and residual

connections. Castillo et al. [23] developed a volumetric

multi-modality neural network organized in three parallel

pathways with different input resolutions to predict the

labels of each 3D column patch.

Among the existing works, [24] and [25] are the most

relevant ones. Specifically, in [24], Mohseni et al. proposed

an auto-context convolutional neural network (Auto-Net)

for extracting brain areas from the magnetic resonance

images. It can be seen as a hierarchy of classifiers, where

the objective of each classifier is identical. However, in our

approach, the objective of each classifier is for completing

different (sub-)tasks and different task-modality relation-

ships are learned for each specific sub-task. In other words,

[24] formulates the segmentation problem as a structured

prediction problem, which considers the spatial relationship

among multiple pixels, i.e., global or local neighborhood

interactions. In contrast, our work considers the relationship

among multiple related sub-tasks instead, and the prediction

for each sub-task is formulated as a structured prediction
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Fig. 3: Illustration of the network architecture of Inferring Module I. The input of the network block is the weighted

feature maps obtained from the MAFE Module I, while the output of the network block is the prediction of the ET area.

All the convolutional layers perform the 3D voxel-level convolution. The second parameter shown in each convolutional

layer is the number of the convolutional kernels. Inspired by [15], [16], we connect convolution modules with post-

activation (i.e., Conv-BN-ReLU) and those with pre-activation (i.e., BN-ReLU-Conv) in our network. Notice that the

difference between these inferring modules is that the kernel number and the dilation rate of the dilated convolutional

layer in the Inferring Module II are set to 32 and 4, respectively. Accordingly, the kernel number and the dilation rate

of the dilated convolutional layer in the Inferring Module III are set to 64 and 8.

problem. The network model proposed by [25] also consists

of a series of classifier branches which are used to segment

the Edema area, Enhancing core area, Necrosis, and Non-

enhancing core area in order. However, by concatenating

the data from multiple modalities and treating them with

equal importance, [25] ignores the exploration of the task-

modality structure for this task. Besides, the t-test loss

proposed in this work is also new, compared to [24]

and [25]. It is worth mentioning that although the main

target of our algorithm is to segment the specific types

of gliomas, it could succeed in segmenting other tumor

types or different tumor grades (with more simple or more

complex structures) as long as the data distributions do not

change too much from training scenarios to test scenarios.

III. METHODOLOGY

The existing works usually formulate the brain tu-

mor segmentation as a structured prediction problem,

where the “structure” mainly refers to the context struc-

ture, i.e., global or local neighborhood interactions. In

this paper, alternatively, we interpret it as a task struc-

tured prediction problem based on the valuable do-

main knowledge from clinical practice. Given the train-

ing data {Xm,Ym},m ∈ {1, 2, · · · ,M}, where Xm =
{XT1

m ,XT1c
m ,XT2

m ,XFLAIR
m } is the multi-modality volume

data while Ym = {YET
m ,YTC

m ,YWT
m } denotes the anno-

tated ground-truth tumor areas, the goal of the proposed

TSBTS net is to learn to predict the segmentation masks of

the tumor areas Ŷm = {Ŷ
ET

m , Ŷ
TC

m , Ŷ
WT

m } from each input

Xm. Considering no task structure, the existing methods,

such as [19], [20], [23], would directly predict labels for

multiple (sub-)tasks simultaneously and use unweighted

modality features as input. In contrast, our proposed TS-

BTS net explores the two-fold important task structures,

i.e., the task-task structure and task-modality structure, to

implement the multi-modality brain tumor segmentation

task, which formulates the prediction of multiple (sub-

)tasks in a conditional dependency fashion and introduces

the modality-aware feature weighting mechanism for each

specific (sub-)task.

A. The Network Architecture

As shown in Fig. 2, the basic architecture of our proposed

TSBTS net is a feed-forward network, mainly consisting of

the Inferring Module I, Inferring Module II, and Inferring

Module III. However, different from conventional architec-

tures, we do not simultaneously predict the segmentation

maps of all types of brain tumor areas at the end of the

network. Instead, we encode the conditional dependency of

the sub-tasks into the network stream, which predicts the

ET, TC, and WT areas from the three inferring modules

in order. Specifically, we first predict the ET area from the

Inferring Module I. Then we concatenate the inferred ET

area with the pre-computed features as the input of the

Inferring Module II and then use the Inferring Module II

to predict the TC area. As the TC area is actually around

the ET area, the Inferring Module II can leverage the

predicted ET area to better infer the TC area. Similarly,

after predicting the TC area, we concatenate the predicted

TC area with the pre-computed features as the input of

the Inferring Module III and use the Inferring Module III

to predict the surrounding WT area. The concrete network

architecture for each inferring module is shown in Fig. 3,

which contains a 3×3×3-voxel convolutional layer and six

dilated 3 × 3 × 3-voxel convolutional layers with residual

connections.

Besides, before each inferring module, we use a MAFE

module to explore the task-modality structure for segment-

ing brain tumor areas. This is implemented by extract-

ing modality-aware features that maximize the informative

patterns for characterizing the corresponding tumor areas.

As the volume data of each modality contains different

amounts of information when segmenting different types

of tumor areas, we use three MAFE modules for extracting

modality-aware features corresponding to each type of

tumor area. The architecture of the MAFE module is shown

in Fig. 4. Specifically, the original h × w × l-dimensional

input multi-modality volume data (h and w indicate the

height and width of the volume data, respectively, l = d×c
indicates the depth of the volume data, d and c refer

to the number of slices and modalities, respectively) first
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Fig. 4: Illustration of the architecture of the MAFE module.

The input of the network block is the original multi-

modality volume data, while the output of the network

block is the weighted feature volume considering the im-

portance of each modality conditioned on each specific MR

slice. Notice that MAFE Module I, II, III share the same

architecture. They are placed at different locations of the

network to explore the importance of each modality data

for segmenting different types of tumor areas.

undergoes two modality-wise 3D/2D convolutional layers

with ReLU to learn features within each modality data.

Then, the global average pooling [26] is adopted to embed

the feature maps into a l-dimensional vector. After two fully

connected layers, the l-dimensional vector is obtained to

infer the importance weights for each modality conditioned

on each specific MR slice. Finally, the inferred importance

weights are multiplied with the previously obtained modal-

ity features to generate the weighted feature volume, which

is the output of a MAFE module.

Here we explore the importance weights for each modal-

ity conditioned on the specific MR slice as we observe that

the same modality may have different imaging quality at

different slices, while for the same slice, the importance

of different modalities is also different (see Fig. 5). This

phenomenon can also be observed in Fig. 1, where the

imaging quality of the T2 modality data in the top row

is better than those in the bottom rows. Consequently, we

infer l-dimensional, instead of c-dimensional, importance

weights in our MAFE module. After obtaining the h×w×l-
dimensional output feature, we use a split operation to

convert it to h×w×d×c, indicating c slices with h×w×d
feature maps for each. Thus, 3D convolution can be used

in the network layers of the following inferring module.

From Fig. 3 and 4, it can be observed that by considering

the tradeoff between computational complexity and the

size of the reception filed, we mainly set the size of the

convolutional kernels in the inferring module and MAFE

module as 3x3, which is a common choice of most existing

works in network design.

B. Task-Task Structure

As we know, the goal of brain tumor segmentation is to

segment the ET, TC, and WT tumor areas from the input

MR scans. If we treat the segmentation of each type of

Fig. 5: Examples to explain why we need to learn im-

portance weights conditioned on the specific MR slice

location. The examples in the first row are from Slice

#54, from which we can observe that the T2 modality

is more important for segmenting the WT area. However,

from the examples of Slice #102 (the second row), we

observe that the FLAIR modality is more important for

segmenting the WT area. When segmenting the TC area,

the T1 modality appears to be more important in Slice #54

while less important in Slice #102.

tumor area as a sub-task, then we can follow the clinical

practice to find the strong relationship among these sub-

tasks: When segmenting the brain tumor areas, the ET area

is always included in the TC area, while the TC area is

always included in the WT area (see the right part in Fig. 1).

Besides, the ET area tends to be the most attractive tumor

area as it is quite distinctive in the T1c modality (see the

second column in the left part and the first column in the

right part of Fig. 1). Thus, physicians tend to find it in the

first instance. Keeping such a task-task structure in mind,

we segment the TC area by expanding the ET area and

segment the WT area by expanding the TC area.

In light of the above analysis, we model the relationship

among the segmentation sub-tasks of the three mutually

included tumor areas in an ordered inference structure,

where the segmentation processes of the three different

tumor areas are formulated as conditional dependency sub-

tasks. To be specific, conventional approaches use a deep

neural network model f(·) with parameter W to learn to

predict the three types of tumor areas simultaneously:

[P (ŷET
m,i = 1), P (ŷTC

m,i = 1), P (ŷWT
m,i = 1)]T = f(Xm;W);

(1)

where ŷET
m,i, ŷ

TC
m,i, ŷ

WT
m,i indicate the i-th voxel of the seg-

mentation masks Ŷ
ET

m , Ŷ
TC

m , Ŷ
WT

m , respectively. Different

from the conventional approaches, we formulate the condi-

tional dependency of the three related sub-tasks as:





P (ŷET
m,i = 1|Xm) = fI(Xm;WI);

P (ŷTC
m,i = 1|Ŷ

ET

m ,Xm) = fII(Ŷ
ET

m ,Xm;WII);

P (ŷWT
m,i = 1|Ŷ

TC

m ,Xm) = fIII(Ŷ
TC

m ,Xm;WIII),
(2)

where WI ,WII ,WIII are the network parameters of the

three successive inferring modules fI(·), fII(·), fIII(·),
respectively.
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C. Task-Modality Structure

From the clinical practice and the example shown in

Fig. 1, we can observe that different modalities are of

different importance for segmenting a certain type of

tumor area, and even the same modality is of different

importance for segmenting different types of tumor areas.

Thus, when we segment a certain type of tumor area, it

is more reasonable to weigh differently on each modality

data, rather than treating all of them equally. Such a task-

modality structure can be easily modeled as the weighted

combination structure and we formulate the learning of

these importance weights under the modality-aware feature

embedding mechanism:

X̂m = Xm ⊙ a,

a = g(Xm; Λ),
(3)

where ⊙ indicates the element-wise product2, a is the

learned importance weight vector, X̂m is the obtained

weighted feature volume, and Λ is the network parameters

in the MAFE module g(·).

By using the weighted features X̂
ET

m , X̂
TC

m , X̂
WT

m to

predict the segmentation masks of the interested tumor

areas, we obtain:




P (ŷET
m,i = 1|X̂

ET

m ) = FI(Xm; ΦI , );

P (ŷTC
m,i = 1|Ŷ

ET

m , X̂
TC

m ) = FII(Ŷ
ET

m ,Xm; ΦII);

P (ŷWT
m,i = 1|Ŷ

TC

m , X̂
WT

m ) = FIII(Ŷ
TC

m ,Xm; ΦIII),
(4)

where ΦI = {WI ,ΛI}, ΦII = {WII ,ΛII}, and ΦIII =
{WIII ,ΛIII} indicate the parameters of the three succes-

sive network branches FI(·), FII(·), and FIII(·), respec-

tively. Here each of the network branches contains a MAFE

module and an inferring module.

D. Objective Function and Training Strategy

The learning process of the proposed network model

minimizes two-fold loss functions. The first one is the mean

Dice coefficient loss. Compared with the cross-entropy loss

or mean square error loss, the Dice coefficient loss can

alleviate the imbalance issue of the training data in different

classes [22], which fits to the brain tumor segmentation

task well. Specifically, given each predicted segmentation

mask with N voxels {ŷi}
N
i=1

and the corresponding ground-

truth segmentation mask {yi}
N
i=1

, the Dice coefficient loss

is defined as follows:

LDice = 1−
2
∑N

i=1
δ(yi = 1)ŷi∑N

i=1
[δ(yi = 1)]2 +

∑N

i=1
ŷ2i

, (5)

where δ(·) is the logical operator.

The other loss function is inspired by the two-sample

t-test process [27]. As we know, t-test is often used to

determine if two sets of data are significantly different from

each other. Thus, in our approach, we use the t-test to

measure if the predicted likelihood values in the tumor area

2During calculation, we will first extend a from vector to volume tensor.

are significantly different from the values in the non-tumor

area. Denote the mean value of the predicted likelihood

values in the tumor area as µf , the mean value of the

predicted likelihood values in the non-tumor area as µb, the

voxel numbers of the tumor area and non-tumor area as Nf

and Ng , respectively. Then, if t = (µf−µb)/

√
S2

f

Nf
+

S2
g

Ng
≥

ǫ, where S2

f and S2

g are the variances of the predicted

likelihood values in the tumor area and non-tumor area,

respectively, we can hold the hypothesis that µf > µg . In

our task, since we need to separate the tumor area from

the non-tumor area, we can maximize t to encourage the

network to predict high values in the tumor area but low

values in the non-tumor area. To maximize t approximately,

we optimize the following object function:

Lt−test = (µf − µb)− (
S2

f

Nf

+
S2

g

Ng

). (6)

Then, the final loss function for segmenting each tumor

area becomes:

L = LDice − αLt−test, (7)

where α is a free parameter to weigh the t-test loss during

the learning process.

During the training process, we find it a little bit hard to

train the whole network from scratch. Instead, we imple-

ment a two-stage learning procedure. Specifically, we split

the whole network into three parts, each of which contains

a MAFE module and an inferring module to segment a

certain type of tumor area. Then, we pre-train each of

the sub-networks according to the corresponding ground-

truth annotation. After this pre-training stage, we train the

parameters of the whole network by integrating these sub-

networks and fine-tuning their parameters.

IV. EXPERIMENTS

A. Data and Implementation Details

We use the BraTS 2017 and 2018 [32], [33], [34]

benchmarks for experiments. The BraTS 2017 training set

contains 3D volume data from 285 patients, among which

210 are high-grade gliomas (HGG) data while 75 are low-

grade gliomas (LGG) data. The BraTS 2017 validation

set contains 3D volume data from 46 patients with brain

tumors of unknown grade. The BraTS 2018 training set

also contains 3D volume data from 285 patients, among

which 210 are HGG data while 75 are LGG data. The

BraTS 2018 validation set contains 3D volume data from

66 patients with brain tumors of unknown grade3. The 3D

volume data of each patient contains four modalities, which

are the T1, T1c, T2 and FLAIR, respectively. These data

have been skull-striped, re-sampled, and co-registered well.

The ground truth data are segmentation masks manually

3Notice that although the BraTS 2017 and 2018 have the same training
set, we report the experimental results on their validation sets separately
in order to be consistent with the evaluation in previous works.
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TABLE I

Comparison of the proposed approach and other state-of-the-art methods on the BraTS 2017 in terms of the Dice score

(the higher the better), Hausdorff distance (the lower the better), and model parameter (the lower the better). Besides

the absolute number of model parameters of each compared method, we also report the ratio (under the number of

parameters of each model) when comparing the model parameter of our approach to that of the other method.

Enhancing Tumor Whole Tumor Tumor Core Average Model
Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff Parameter

Lopez et al. [20]
Mean: 0.567 23.828 0.783 30.316 0.685 38.077 0.678 30.740 1.57E7
StdDev: - - - - - - - - 2.31%

Shaikh et al. [18]
Mean: 0.650 - 0.870 - 0.680 - 0.733 - 2.31E7
StdDev: 0.320 - 0.110 - 0.340 - 0.257 - 1.57%

Alex et al. [15]
Mean: 0.690 - 0.830 - 0.690 - 0.737 - 8.63E6
StdDev: 0.320 - 0.160 - 0.300 - 0.260 - 4.20%

Castillo et al. [23]
Mean: 0.690 - 0.860 - 0.690 - 0.747 - 2.22E7
StdDev: - - - - - - - - 1.63%

Li et al. [22]
Mean: 0.704 7.699 0.871 10.396 0.682 13.062 0.752 10.386 3.80E5
StdDev: 0.307 14.407 0.083 15.754 0.304 17.573 0.231 15.911 95.4%

Islam et al. [19]
Mean: 0.689 12.938 0.876 9.82 0.761 12.361 0.775 11.706 1.34E8
StdDev: 0.304 26.453 0.086 13.516 0.221 20.826 0.204 20.265 0.27%

Andermatt et al. [28]
Mean: 0.711 4.187 0.893 4.613 0.735 8.189 0.780 5.663 -
StdDev: 0.304 6.112 0.086 5.732 0.299 13.813 0.230 8.552 -

Jesson et al. [29]
Mean: 0.713 6.980 0.899 4.160 0.751 8.650 0.788 6.597 4.29E6
StdDev: 0.291 12.100 0.070 3.370 0.240 9.350 0.200 8.273 8.45%

Havaei et al. [30]
Mean: 0.730 - 0.880 - 0.790 - 0.800 - 8.02E5
StdDev: - - - - - - - - 45.2%

Wang et al. [31] (S)
Mean: 0.740 5.318 0.890 12.457 0.820 9.662 0.817 9.146 5.95E5
StdDev: - - - - - - - - 60.9%

OURS
Mean: 0.766 4.147 0.883 8.081 0.818 10.059 0.822 7.429 3.63E5

StdDev: 0.267 5.557 0.084 11.154 0.154 9.583 0.169 8.765 -

annotated by experts4. To evaluate the segmentation accu-

racy, we adopt the widely used Dice score and Hausdorff

distance. As the validation sets do not provide the ground-

truth annotation masks, we obtain the evaluation scores

from their evaluation website.

We implement our network in Tensorflow [35]. The

training process is implemented on a NVIDIA GTX

1080Ti GPU. We adopt the Adaptive Moment Estimation

(Adam) [36] for training, with an initial learning rate 10−4,

weight decay 10−7, batch size 2, and maximal iteration

140k. α is set to 0.1. We take in total 29 hours to train and

10.6s per volume to test. Our network has 3.5e5 learnable

parameters which are less than some state-of-the-art brain

tumor segmentation networks like Havaei [30] (8.0e5),

indicating that our model has moderate complexity. For pre-

processing, we follow [31] to adopt a very simple operation,

which normalizes each image of the 3D volume data by its

mean value and standard deviation. For post-processing, we

remove small isolated areas to correct some voxel labels

using a simple thresholding method. The threshold is set

as half of the number of pixels residing in the biggest

connected area in each predicted binary map. In addition,

we also remove noisy areas that are smaller than 500 pixels

when predicting the ET areas.

B. Comparison to the State-of-the-arts

In this subsection, we compare the proposed approach

with 13 state-of-the-art methods, i.e., [20], [18], [15], [23],

[22], [19], [28], [29], [30], [37], [38], [39], [40], which

4The detailed information about the dataset and ground-truth can be
referred to in https://www.med.upenn.edu/sbia/brats2018/data.html

mainly use the U-net-like network architectures like ours

and have the comparable scales of network parameters to

our approach. These methods also include both the 2D

CNN-based methods and 3D CNN-based methods. Table I

and Table II report the comparison results on the BraTS

2017 and 2018 validation set, respectively, from which

we can observe that the proposed approach achieves the

superior performance when compared with the existing

state-of-the-art methods. Specifically, in terms of the mean

Dice score, our approach achieves 0.822 and 0.834 on

the two datasets, which outperforms the other state-of-

the-art methods by 2.2% to 14.4% and 0.7% to 10.1%,

respectively. Besides, in terms of the standard deviation of

the Dice score, our approach achieves 0.169 and 0.156 on

the two datasets, which is also better than the other state-

of-the-art methods. It is worth mentioning that the Wang et

al. [31] (S) indicates the single-view model of [31] (more

specifically the axial view), which has a more comparable

setting with our approach as our model is also trained on the

data along the axial view5. Based on the comparison results

between Wang et al. [31] (S) and our approach, we can

observe that by exploring the task structure, our approach

is able to obtain slightly better segmentation accuracy while

reducing nearly 40% of the network parameters.

Seen from the comparison results with [24] and [25], it

is clear that our approach obtains superior performance for

all the three tumor areas under both the Dice score and the

Hausdorff distance. To our best knowledge, there are two

5Training the model along other views would obtain different perfor-
mance. When training along the coronal view and sagittal view, our model
obtains 0.814 and 0.823 mean Dice scores on the BraTS 2018 validation
set, respectively.
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TABLE II

Comparison of the proposed approach and other state-of-the-art methods on the BraTS 2018 in terms of the Dice score

(the higher the better), Hausdorff distance (the lower the better), and model parameter (the lower the better). Besides

the absolute number of the model parameter of each compared method, we also report the ratio (under the number of

parameters of each model) when comparing the model parameters of our approach to those of the other methods.

Notice that as [25] and [24] do not have the open access projects and results, we implement their algorithms ourselves

based on their descriptions for experimental comparison.

Enhancing Tumor Whole Tumor Tumor Core Average Model
Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff Parameter

Carver et al. [37]
Mean: 0.710 4.460 0.880 7.090 0.770 9.570 0.787 7.040 2.20E7
StdDev: 0.290 8.320 0.080 11.570 0.260 14.080 0.210 11.323 1.65%

Benson et al. [38]
Mean: 0.660 15.940 0.820 26.410 0.720 18.870 0.733 20.407 -
StdDev: 0.270 25.560 0.100 23.610 0.230 20.560 0.200 23.243 -

Chen et al. [25]
Mean: 0.707 10.385 0.845 11.822 0.731 15.066 0.761 12.424 1.33E7
StdDev: 0.264 21.205 0.116 19.037 0.245 19.810 0.208 20.017 2.73%

Salehi et al. [24]
Mean: 0.704 9.668 0.822 9.610 0.733 13.909 0.753 11.062 1.20E7
StdDev: 0.289 13.757 0.136 13.036 0.242 14.965 0.222 13.919 3.03%

Puch et al. [39]
Mean: 0.758 4.502 0.895 10.656 0.774 7.103 0.809 8.880 1.48E6
StdDev: 0.264 8.227 0.070 19.286 0.253 7.084 0.196 11.532 24.53%

Chandra et al. [40]
Mean: 0.767 7.569 0.901 6.680 0.813 7.630 0.827 7.293 -
StdDev: - - - - - - - - -

Isensee et al. [41]
Mean: 0.807 2.74 0.909 5.83 0.852 7.20 0.856 5.2567 1.45E7
StdDev: - - - - - - - - 2.50%

Myronenko et al. [42]
Mean: 0.815 3.8048 0.904 4.4834 0.860 8.2777 0.859 5.5220 2.01E7
StdDev: - - - - - - - - 1.81%

OURS
Mean: 0.782 3.567 0.896 5.733 0.824 9.270 0.834 6.190 3.63E5

StdDev: 0.232 4.286 0.062 7.665 0.173 13.238 0.156 8.396 -

reasons. First, our approach pays special attention to the

mask-modality structure and uses the t-test loss for brain

tumor segmentation. Second, both [24] and [25] process 2D

convolution on each slice separately, while our approach

performs 3D convolution on voxels which explores the

richer context for brain tumor segmentation. In addition,

compared with the state-of-the-art methods with heavy

networks, such as [41] and [42], our method can obtain ap-

proaching performance (less than 2.5% performance gap in

terms of the Mean Dice score) by only having about 0.25%

parameters of them (i.e., x40 reduction in memory cost).

This also demonstrates the effectiveness of our approach

to some extent and implies that the proposed network

would have better potential in applications on devices with

limited computing capacity and memory. In summary, the

experimental results in Table I and Table II demonstrate

that our proposed approach is able to achieve precise and

robust brain tumor segmentation results. The promising

performance of our approach is obtained mainly from the

strategy to explore the task-structure in network design as

the used network layers or blocks are well-established ones.

In this way, the value of our learning strategy is better

demonstrated.

C. Ablation Study of the Proposed Approach

In this subsection, we carry out ablation studies of the

proposed approach to evaluate and analyze the components

we have considered. Specifically, we compare our approach

with the following seven baselines:

- OURS w/o TS&MAFE: Removing the task-

structured prediction mechanism and the modality-

aware embedding mechanism from our proposed net-

TABLE III

Comparison of the proposed approach and other baseline

models in terms of the Dice score, where “ET”, “WT”,

“TC”, and “StdDev” are short for “Enhancing Tumor”,

“Whole Tumor”, “Tumor Core”, and “Standard

deviation”, respectively.

ET WT TC Average

OURS w/o
TS&MAFE

Mean: 0.704 0.871 0.682 0.752
StdDev: 0.307 0.083 0.304 0.231

OURS w/o
TS

Mean: 0.718 0.877 0.764 0.786
StdDev: 0.298 0.071 0.226 0.198

OURS w/o
MAFE

Mean: 0.748 0.892 0.740 0.794
StdDev: 0.293 0.066 0.241 0.200

OURS w/o
FE

Mean: 0.740 0.891 0.729 0.787
StdDev: 0.289 0.089 0.291 0.223

OURS w/o
PT

Mean: 0.764 0.896 0.751 0.804
StdDev: 0.267 0.063 0.232 0.187

OURS w/o
t-test

Mean: 0.763 0.891 0.731 0.795
StdDev: 0.269 0.071 0.275 0.205

OURS L2S
Mean: 0.731 0.866 0.725 0.774
StdDev: 0.291 0.089 0.244 0.208

OURS
Mean: 0.766 0.883 0.818 0.822

StdDev: 0.267 0.084 0.154 0.169

work, which is the most basic baseline for our ap-

proach.

- OURS w/o TS: Removing the task-structured predic-

tion mechanism from our proposed network, i.e., using

the same network architecture but simultaneously pre-

dicting the three tumor areas at the end of the network.

Notice that this baseline contains a MAFE module

followed by three cascaded inferring modules, where

the last conv layers in the first two inferring modules

are removed and the last conv layer in the last inferring

module predicts three tumor areas, simultaneously. As
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Fig. 6: Examples of the brain tumor segmentation results from the BraTS 2017 Validation Dataset. The green, blue, and

pink regions indicate the whole tumor areas, tumor core areas, and enhancing tumor core areas, respectively.

a result, this baseline has almost the same network

depth as ours.

- OURS w/o MAFE: Removing the MAFE modules

from our proposed network architecture.

- OURS w/o FE: Directly using the feature volume that

is obtained by concatenating the different modality

features with equal importance weights (see the left

part of Fig. 4) as the output of the MAFE module.

- OURS w/o PT: Learning the network in one stage

without the pre-training stage.

- OURS w/o t-test: Only using the Dice loss during the

training process of the proposed network.

- OURS L2S: Using the proposed network architecture

to segment tumor areas from the largest one (i.e., the

WT area) to the smallest one (i.e., the ET area).

The experimental results are reported in Table III. The

comparison between OURS w/o TS&MAFE and OURS

demonstrates that the components considered in our ap-

proach can significantly improve the performance (7.0% in

terms of the mean Dice score) over the commonly used

baseline network. The comparison of OURS w/o TS to

OURS w/o MAFE and OURS demonstrates that both

the task-structured prediction and MAFE are important for

this task, while the former plays a more important role in

improving the performance. The comparison of OURS w/o

MAFE to OURS w/o FE implies that simply using more

convolutional layers without the task-modality weighting

mechanism won’t always help learn better features. While

the comparison between OURS w/o FE and OURS demon-

strates the effectiveness of using the weighted combination

Fig. 7: Influence of the parameter α on the BraTS 2018

dataset. The left figure is based on the measurement of

the mean Dice score, where higher values indicate better

results. The right figure is based on the measurement of the

standard deviation of the Dice score, where lower values

indicate better results.

strategy to model the task-modality structure. The compar-

ison of OURS w/o PT to OURS w/o t-test and OURS

demonstrates that the proposed t-test loss and the two-

stage learning strategy also bring benefit to our approach.

The comparison of OURS L2S to OURS demonstrates

that the adopted small-to-large task structure obtains better

performance than the large-to-small task structure, which is

consistent with the prior knowledge in clinical practice (see

in Sec. I). The results obtained by OURS w/o TS, OURS

w/o MAFE, w/o t-test, and OURS are visualized in Fig. 6.

From the above experiments, we observe an interesting

phenomenon that although the overall performance of our

approach is always better than the other baseline methods,

the performance on the WT area is slightly worse than

some baseline methods. Based on our investigation, this
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is caused by the loss-imbalance issue. Compared to the ET

and TC areas, the WT area is larger, leading to its Dice loss

value much smaller than its t-test loss value. This makes

the optimization regarding the WT area mainly depend on

the t-test loss, thus limiting the test performance which is

under the measurement of Dice. This is why using t-test

loss does not help segment the WT area. This issue also

prevents us from learning optimal parameters in the MAFE

or the FE module.

Besides, to study the influence of using different α values

to weigh the t-test loss, we further implement the sensitivity

study on α. The experimental results are shown in Fig. 7,

from which we can observe that the performance of our

approach is sensitive to α and would reach a peak value

when α = 0.1.

To show the task-modality structure that is discovered

by our network, we perform the statistical analysis on

the importance weights that are inferred from the MAFE

module. Specifically, we calculate the average values of

the inferred importance weights for each modality data

when segmenting a certain type of tumor area and report

them in Fig. 8. As can be seen, our network learns that

the T1-contrast, T1, and FLAIR modality contain the most

informative cues when segmenting the ET, TC, and WT

areas, respectively. From Fig. 1, we can observe that when

we conduct this task, the T1-contrast modality is indeed

more useful to segment the ET area. This demonstrates the

effectiveness of the task-modality structure learned by our

TSBTS net.

Finally, we also visualize several failure cases of the

proposed approach. As shown in Fig. 9, the failure cases

may appear when the input image has a small contrast

between the tumor area and the background area (see

the first column), the tumor areas have complex shapes

and appearances (see the middle columns) or even do

not present any observable structure (see the last column).

Besides, from the examples in the last two columns of

Fig. 9, we can observe that our approach can obtain good

performance on the WT when the segmentation of the

TC and/or ET area is a failure. This indicates that in

the proposed learning framework, the errors in the former

inferring module won’t dramatically affect the learning

process of the latter inferring module.

V. CONCLUSION

In this paper, we have proposed a novel deep neural

network model to explore task structure and modality

importance for multi-modality brain tumor segmentation.

This is based on two findings: On one hand, the three

targeted tumor areas are mutually included rather than being

located separately. On the other hand, different modalities

are of different importance for segmenting tumor areas. For

implementing the task-structured learning, we predict the

different types of brain tumor areas in different network

modules. For exploring the modality importance, we intro-

duce the modality-aware feature embedding mechanism to

our network to infer the importance weights and the weight-

ed features. Comprehensive experiments have demonstrated

Fig. 8: The average values of the importance weights

for each modality data inferred by our TSBTS net when

segmenting a certain type of tumor area.

Fig. 9: Some examples of the failure cases of our approach.

The first row shows the original input with the FLAIR

modality. The green, blue, and pink regions indicate the

WT areas, TC areas, and ET areas, respectively. The scores

reported in the middle of each column are the Dice scores

of the predicted tumor areas. Here scores marked in yellow

(i.e., those below 0.8) are considered as the failure cases.

the effectiveness of the components considered in our

approach as well as the outstanding capacity of our entire

approach when compared with the state-of-the-art methods.

In future works, we will explore the task structure for other

tasks in the medical image analysis field or the conventional

image or video understanding fields and apply our approach

to solve those problems. We will also explore the potential

of integrating the saliency detection technique [43], [44],

[45] and the weakly supervised learning technique [46],

[47] to further improve learning performance.
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