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Abstract—

This paper proposes a teleimpedance controller with tactile feedback for more intuitive control of
the Pisa/IIT SoftHand. With the aim to realize a robust, efficient and low-cost hand prosthesis
design, the SoftHand is developed based on the motor control principle of synergies, through
which the immense complexity of the hand is simplified into distinct motor patterns. Due to the
built-in flexibility of the hand joints, as the SoftHand grasps, it follows a synergistic path while
allowing grasping of objects of various shapes using only a single motor. The DC motor of
the hand incorporates a novel teleimpedance control in which the user’s postural and stiffness
synergy references are tracked in real-time. In addition, for intuitive control of the hand, two tactile
interfaces are developed. The first interface (mechanotactile) exploits a disturbance observer
which estimates the interaction forces in contact with the grasped object. Estimated interaction
forces are then converted and applied to the upper arm of the user via a custom made pressure
cuff. The second interface employs vibrotactile feedback based on surface irregularities and
acceleration signals and is used to provide the user with information about the surface properties
of the object as well as detection of object slippage while grasping. Grasp robustness and
intuitiveness of hand control were evaluated in two sets of experiments. Results suggest that
incorporating the aforementioned haptic feedback strategies, together with user-driven compliance
of the hand, facilitate execution of safe and stable grasps, while suggesting that a low-cost, robust
hand employing hardware-based synergies might be a good alternative to traditional myoelectric
prostheses.

Index Terms—Prosthetic hand, Haptic feedback, Impedance control, Hand synergies, Under-actuation
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1 INTRODUCTION

The primary causes of amputation are trauma, disease, and

war, the proportions of which are skewed towards the former

two in developed countries and the latter in the developing

world. It is estimated that one in 200 people in the United

States have a missing limb [1], although global numbers are

difficult to estimate [2]. Following amputation, an individual

must overcome significant physical and functional loss as well

as the psychological trauma of change in independence and

appearance. Prostheses have emerged to help cope with these

immense changes. Body-powered prostheses were created to

restore function and have seen great advancements in the last

century. These prostheses provide several benefits including

functionality, robustness, and limited sensory feedback. The

next generation of prostheses has seen the incorporation

of electronic components controlled via electromyographic

(EMG) signals from the muscles in the residual limb. These
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myoelectric prostheses can provide greater control of the hand

and a more aesthetically pleasing appearance.

The most basic, and most common, myoelectric hands have

a single degree of freedom (DOF) and incorporate various

levels of control complexity. At a minimum, they offer on/off

control and can be used by amputees with limited EMG

signals. For users with more residual muscle and/or more

control over those muscles, proportional controllers allow the

user to vary grip force and/or grip speed relative to their

EMG output, examples include the Hosmer myoelectric hand

(Centri) or the DMC plus R© (Otto Bock). In a technological

leap forward, new anthropomorphic hands have emerged. The

i-limbTMultra (Touch Bionics, Inc) and the Bebionic 3 (RSL

Steeper) are two of these that, while much more expensive

than their basic counterparts, can adopt multiple realistic

postures and grips. The trade-off of the increased DOFs and

functionality is control complexity; the user must employ

sequential contractions or co-contractions to select and operate

the desired grip pattern.

Many different avenues of research are being pursued to

improve on current commercial devices. One of these is

employing complex machine learning algorithms to allow

more natural control [3], [4]. This technique works well to

classify a variety of postures in a lab setting, but depends on
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large training sets and few, if any, have been rigorously tested

outside of the lab. To accommodate a larger functional range,

the control burden on both the controller and the user necessar-

ily grows. In response to this burden, the Pisa/IIT SoftHand [5]

was developed as a joint venture between the Centro Piaggio of

the University of Pisa and the Advanced Robotics Department

of the Italian Institute of Technology. The SoftHand borrows

from knowledge gained from neuroscience and motor learning

to encode specific movement patterns, called synergies [6],

[7], directly into the hand’s hardware. The SoftHand actuates

on the first synergy identified through Principal Component

Analysis (PCA) of common hand movements, incorporating

over 50% of the natural variety of the hand, and providing

flexibility in the grasp pattern to facilitate molding around

grasped objects.

To further exploit the efficiency and robustness of a synergy-

based hand, we developed a novel myoelectric teleimpedance

controller. Teleimpedance control has previously replicated the

impedance of the proximal arm [8], [9] and lower limb [10]

and has proven itself a practical approach for real-time transfer

of human impedance-regulation skills and equilibrium position

profiles to robots. Here, we present an active impedance

controller that incorporates both the hand stiffness and postural

synergy references in real-time. Exploiting the concept of

synergies that drive concurrent muscle activation, only one pair

of antagonistic muscles (two EMG channels) was necessary

for the musculoskeletal modeling of the grasp. The resulting

model outputs then drove the stiffness and postural synergy

references tracked by the developed impedance controller.

1.1 Haptics in Prosthesis: State of Art

The hand is an especially complex part of the body containing

a variety of sensing capabilities that can differentiate between

light or firm touch, sense an object slipping from grasp, and

determine the texture of an object, among others. Haptic

information provided by mechanoreceptors of the fingertips

is crucial to accomplish every day activities such as grip

control and detection of object properties [11]. Further, recent

research suggests feedback can aid in establishing a sense

of embodiment or ownership of the prosthesis [12]. To the

author’s knowledge, no commercial devices provide the user

with active feedback; however, the cable tension felt in body-

powered prostheses provides limited but functional feedback

relating grip force to the user. To a lesser extent, motor noise

provides auditory feedback to myoelectric users. Ultimately,

prosthesis users must rely heavily on visual feedback to

guide prosthetic use, thus limiting their usability. The research

community is actively pursuing various methods of providing

haptic feedback to prosthesis users to help mitigate this issue.

Feedback methods can be roughly broken down into two

categories: invasive and non-invasive [13]. An example of the

former is targeted reinnervation surgery, where severed nerves

are rerouted from the amputated limb to residual muscles and

skin [14]. The latter typically consists of delivering sensory

feedback to intact sensory systems normally not involved in

the task, e.g., on the forearm. Common haptic feedback modal-

ities include vibrotactile feedback [13], skin stretch feedback

[15] and force feedback [16]. Such mechanical feedback was

able to increase the acceptance and the ability to control

the prosthetic hands [17]. Multi-modal haptic feedback is

being actively pursued in research, such as [18], [19] and

results suggest the most intuitive feedback is achieved through

somatotopic matching (usually achievable via TR surgery) and

modality matching, eg feeling pressure when exerting pressing

on an object.

Below, we present the first steps towards adapting the

Pisa/IIT SoftHand for prosthetic application and incorporating

haptic feedback. This is done through two experiments: the

first compares three different types of controllers (high and low

fixed impedance against teleimpedance) both with and without

force (low-frequency) feedback. To achieve this goal, we

developed a grasp interaction force observer that relies on the

pre-identified disturbance model of the hand. These interaction

forces are then fed back to the user via the mechanical cuff,

providing the user a sense of grasp forces in an intuitive

manner. The second uses teleimpedance control and force

feedback in conjunction with three levels of surface texture

(high-frequency) feedback: no, moderate (2 finger), and full

(4 finger) feedback. Since texture perception is important in

activities of daily living [20], we developed a vibrotactile

interface relying on surface irregularities and acceleration

signals from the accelerometers mounted on the artificial hand,

based on the works of [21], [22].

2 THE PISA/IIT SOFTHAND

The main design goal behind the development of the SoftHand

[5] is the construction of a robust, safe, low-cost and, above

all, simple robot hand. It is a well known fact in neuroscience

that humans control their hands not merely by controlling each

of its numerous degrees of freedom, but rather by coordinating

and co-activating them in organized motions called synergies.

Such behaviors have been numerically appraised in works

such as [23] and [24]. In soft synergies, introduced in [7],

the synergy serves as a reference position for a virtual hand,

thus enabling better control of the interaction forces between

the hand and the grasped object through variation of the

virtual hand position or the stiffness matrix connecting the

virtual and real hands. To manage weight, cost, and control

complexity of the final device, underactuation [25], whereby

fewer actuators are included than DOFs, was used in the

design of the hand. This technique imparts a quality of shape

adaptability to the device, thus these two strategies were

combined to produce an “adaptive synergy” design strategy

incorporating the neuroscientific basis of soft synergies with

the shape adaptability of underactuation.

A second, but not less important, design goal pursued with

the SoftHand was softness. By following the paradigms of

soft robotics [26], [27] and [28] (chapters 13 and 57), the

Pisa/IIT SoftHand is designed to be safe and robust, to make

its use outside of strictly controlled lab environments a real

possibility. An anthropomorphic hand was designed with 19

DOFs, 4 on each of 4 fingers, and 3 on the thumb. At

rest, the hand measures roughly 23 cm from the tip of the

thumb to the tip of the little finger, 23.5 cm from the wrist
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interface to the tip of the middle finger, and 4 cm thick

at the palm. The fingers are capable of flexion/extension as

well as ab/adduction. For ab/adduction of the fingers and

at the equivalent of the carpometacarpal joint of the thumb

(responsible for rotating the thumb from lateral pinch to C

grasp, for example), traditional revolute joints were employed.

The rest of the joints incorporate rolling contact joints with

elastic ligaments, which ensure physiologically correct mo-

tions when actuated, but easily disengage on impact to allow

safe interaction with humans while preserving the hand. The

elastic ligaments also allow deformation while ensuring the

hand returns to its original configuration. A single tendon runs

though all joints to simultaneously flex and adduct the fingers

upon actuation. The hand is actuated by a single DC motor

which moves the fingers on the path of the first synergy as

described in [23] allowing the SoftHand to mold around the

desired object. The motor employed is a 6 Watt Maxon motor

RE-max21 with an 84:1 gear reduction and a 12 bit magnetic

encoder, resolution of 0.0875o (Austrian Microsystems) and

has a maximum holding torque of 2 Nm and force of 20 N

perpendicular to the palm.

3 HUMAN-SOFTHAND INTERFACE

Synergies are often thought of as kinematically coordinated

movements of the hand joints [23]. Others give evidence to

the existence of such pattern in dynamic coordinates [29], i.e.,

in the space of muscular activations [30], [31]. Aiming to

use the minimum number of muscles necessary to decode and

extract the hand stiffness and posture references, we used the

major finger antagonist pair: the extensor digitorum communis

(EDC) and flexor digitorum superficialis (FDS).

It is well known that muscle force increases with muscular

activity [32]. While individual muscular forces affect and

modify joint torques, their synchronized increase in antag-

onistic configuration actively adjusts the impedance of the

corresponding joint [33]. By taking into account the forward

dynamics of the grasp along the first synergy, we can write

τ = aτ δ ,

aτ δ = Iq̈s + cq̇s +Ks(qs −q0)+ τE ,
(1)

where τ , aτ and τE denote the torque synergy, its gain and

external torques, respectively; qs and q0 are the position of the

hand and the object along the first synergy; δ is a function of

the difference in activation of the antagonistic muscles (FDS−
EDC), and I, c and Ks are the inertia, damping and stiffness of

the hand along the first synergy, respectively. FDS and EDC

are the processed EMG signals of the corresponding muscles.

Now, by neglecting the effect of inertia and external torques

in the above equation and rearranging it, we can write

q̇s =
−Ks

c
(qs −q0)+

aτ

c
δ . (2)

The dynamics can be estimated in discrete time as follows

qsk+1
= (1−

KsT

c
)qsk

+
Taτ

c
δ +

KsT

c
q0 (3)

where T and k are the time step and iteration number. To

establish δ and Ks mappings based on experimental data, we

used two functions of a modified hyperbolic tangent shape.

The flexibility and capability of this function in the generation

of various output profiles have been discussed in [34]. We

write

δ =
aq[1− e−bq(FDS−EDC)]

[1+ e−bq(FDS−EDC)]
, (4)

where aq and bq are the constant gains, to be identified

experimentally. Similarly for the stiffness

Ks =
ak[1− e−bk(FDS+EDC)]

[1+ e−bk(FDS+EDC)]
, (5)

where ak and bk are similar as above and Ks denotes the

stiffness synergy reference, which is allocated in the stiffness

interval of the robotic hand.

To identify the above parameters, FDS and EDC activity

was recorded as subjects opened and closed the hand. As

a reference, the SoftHand was slowly opened and closed.

Subjects performed 20 grasping trials. Next, subjects were

asked to perform the grasp at 5 different FDS and EDC co-

contraction levels with visual feedback of co-contraction to

assist in maintaining steady co-contraction levels. Four trials

were recorded for each level, resulting in 40 trials total, 20

slow grasps and 20 grasps at various co-contraction levels.

Parameter identification of δ and stiffness model (Ks), and

the corresponding motor position reference and SoftHand

stiffness level, respectively, was performed on even numbered

trials while using FDS and EDC inputs. The odd numbered

trials were used for the evaluation of the mappings. This led

to the normalized root-mean-squared error (NRMSE) values

of 17.6% and 13.4% for the postural and stiffness test trials,

respectively, averaged across subjects. In the future, parameter

identification of the models in amputees is likely feasible

through standard training techniques such as mental imagery,

teacher imitation, or bilateral action via mirror box [35].

4 INTERACTION TORQUE OBSERVER

As mentioned previously, a single DC motor is incorporated

in the design of the SoftHand to pull the tendon and drive the

finger joints according to the first hand synergy. The equation

of motor dynamics1 is then defined by:

Jnq̈ = KtnIre f − τdist , (6)

with q̈, Ktn, and Ire f denoting the motor angular acceleration,

torque constant, and motor current, respectively. Jn = Jm +
Jh

N2 represents the total inertia (motor inertia plus hand inertia

reflected to the motor side).

In our setup, due to the low velocity profiles of the hand

closure and the relatively high gear ratio, the reflected inertia

of the hand,
Jh

N2 , is neglected. The disturbance torque, τdist ,

combines all the internal and external disturbance torques and

is assumed to be formed by four components: the elastic

torque generated by the hand tendons during closure (τte), the

gravitational effect (τgrav), the frictional torque due to friction

1. In this paper, if not stated explicitly, all the variables and equations
are described on the motor side (including interaction torque). Therefore, a
gearbox ratio of N = 84 must be taken into account for the presentation of
the variables after the gearbox.
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in the hand joints and pulleys (τ f ), and the interaction torque

(τint ). We can write:

τdist = τmodel + τint

= τte + τ f + τgrav + τint .
(7)

Given the lightweight design of the hand, we can neglect

τgrav above. τte is modeled as a function of the motor shaft

rotation angle. In addition, the viscous and Coulomb friction

of the hand is modeled using an antisymmetric piecewise-

linear function of the motor speed and tendon tension [36],

as follows,

τ f (q̇) =

{
D1q̇+ns1

Kte(q−qo) q̇ > 0

D2q̇−ns2
Kte(q−qo) q̇ < 0,

(8)

with Di, nsi
, Kte, and qo representing the viscous damping

and Coulomb friction coefficients, the reflected hand tendon

stiffness, and motor angular position at rest (hand open),

respectively. Incorporating the above assumptions in the dis-

turbance model of the hand will result in:

τmodel =

{
(1+ns1

)Kte(q−qo)+D1q̇ q̇ > 0

(1−ns2
)Kte(q−qo)+D2q̇ q̇ < 0,

(9)

Therefore, the hand closure and opening models will be

identified separately, as described below.

Supposing that the hand has not come in contact with the

object to be grasped (i.e. τint = 0 in eq. 7), the hand model

torque (τmodel) can be computed from the motor current and its

motion response. Such calculation would require motor current

and acceleration sensing with the latter being sensitive to noise

if computed from position differentiation. To achieve reliable

hand model torque estimation while taking into account the

minimum hardware requirements, a robust torque observation

technique is used here (Fig. 1). In particular, the hand model

torque is estimated based on the angular velocity as follows:

τ̂model = KtnIre f − Jnq̈

τ̂model(s)≃
λ

s+λ
(KtnIre f − Jnsq̇)

≃
λ

s+λ
(KtnIre f +λJnq̇)−λJnq̇.

(10)

Here, s is the Laplace operator and λ represents the filter cutoff

frequency which affects the disturbance rejection capability

[37]. The major design criterion is to choose λ low enough to

result in a robust system, while considering the introduced

filtering delay. To estimate the reflected interaction torque

caused by the contact of the hand with the environment, we

take equations (6) and (10) into account and subtract the

identified hand model torque (equation (9)), from the external

torque effect as follows:

τ̂int =
λ

s+λ
(KtnIre f +λJnq̇− τ̂model)−λJnq̇. (11)

To identify the parameters of the hand model (equation 9),

the hand controller was driven with fixed and low velocity

(quasi-static) reference trajectories from the fully open to

fully closed position. This process was repeated in the reverse

direction as well, to account for the antisymmetric and velocity

dependent properties of the friction model during opening and

gravft τττ ++

Ktn

+ +refI

λ

λ

+s

Interaction Torque O

_

λ+s

+
_intτ

mq&
nJλ

Observer

Fig. 1: Interaction torque observer block diagram.

c1 c2

Fig. 2: The SoftHand molds around the obstacle with two (c1) or
three (c2) fingers during grasping.

closure. Next, the resultant current, position, and velocity pro-

files were used to estimate the components of equation (9), by

means of conventional least squares identification algorithm.

The identification process led to two feed-forward, velocity

dependent estimates of the hand disturbance model, τ̂model .

To evaluate our friction model, the hand stiffness parameter

(outer position loop gain) was set to low values and a desired

trajectory was tracked at different speeds through the full range

of motion both with and without the presence of identified

friction model. In each experiment, the mean absolute error

(MAE) value for the motor position was calculated. In all

cases, incorporation of the friction model resulted in more

accurate tracking of the desired trajectory (e.g. %35 reduction

of MAE when the hand stiffness was set to 5 Nm/rad),

that gives evidence to the accuracy of the identified hand

disturbance model.

In order to validate the accuracy of the identified hand

model, the hand controller was provided with a sine wave

position trajectory. The trajectory led to the execution of

four SoftHand half-closure and full-opening movements. A

soft, deformable ball was grasped during the second and

third closures and removed on the first and the last. By pre-

determined placement of the soft obstacle along the hand

closure, the hand conformed around the obstacle with two (Fig.

2-c1) or three fingers (Fig. 2-c2) contacting the object, causing

small deformations on the ball’s surface. The motor current

(Iext ) was measured and used for the detection of contact and

estimation of the interaction torque while grasping the ball.

Fig. (3) illustrates the results of this experiment. The top

three plots demonstrate the position tracking, motor current,

and motor voltage profiles, from the top down. Observed
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interaction torques once the soft obstacle is squeezed by two

(c1) or three (c2) fingers are provided in the bottom plot.

During the first and last closures, the fingers did not contact the

object, resulting in low interaction torques. Although a soft and

deformable object was grasped by only two or three fingers,

interaction torque fluctuations were efficiently monitored.

5 TACTILE INTERFACES

The interaction that happens between the external environ-

ment and the user, mediated by a robotic or prosthetic

hand, represents a typical tele-operation scenario, where the

human user is the master and the artificial hand, explor-

ing/grasping/manipulating external objects, is the slave. Under

these conditions, in order to enable realistic perception, it is

fundamental to provide the user with the haptic sensations

arising from this interaction. More specifically, tool medi-

ated activities comprise both low-frequency forces and high-

frequency accelerations or vibrotactile stimuli. While it is

straightforward to understand the need and the role of force-

feedback, e.g. to properly accomplish grasp operations and

achieve stability, vibrotactile cues also convey essential haptic

information, the absence of which might cause a haptic system

to feel less natural [38].

5.1 Mechano-tactile Feedback

Mechanotactile displays have seen a large amount of progress,

rendering relevant feedback stimuli to the human. Such tactile

feedback is suggested to be beneficial for intuitive control of

a prosthetic limb for transradial amputees and healthy users

[39]. In our setup, a custom made, adjustable pressure cuff

worn on the upper arm provided users with task interaction
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Fig. 3: Results of a grasping experiment with fixed stiffness gain.
A soft, deformable ball was grasped during the second and third
closures. The top three plots demonstrate the position tracking, motor
current and motor voltage profiles, from the top down. Observed
interaction torques once the soft obstacle was squeezed by two (c1)
or three (c2) fingers are provided in the bottom plot.

Pulley DC motor with encodery

(a)

load�

elK

r

Arm

Pulley
Tendon

(b)

Fig. 4: Upper arm cuff, actuated by a DC motor picture (a) and
loading scheme (b).

forces (see Fig. 4 and equation 11). A belt on the cuff is

driven by a small DC motor to adjust the amount of applied

mechanical pressure. The motor was driven by an active

impedance controller, providing the possibility of establishing

safe and reliable control of the applied pressure. The gains

of the impedance controller were set experimentally and kept

fixed among all experiments. The loading scheme of the upper

arm cuff is shown in Fig. 4(b).

The estimated interaction torques (section 4) were con-

verted, scaled, and tracked by the cuff’s controller. To do

so, the required amount of displacement for the cuff’s motor

(θload) was calculated based on the following equation

δxload ≃
acu f f τint

Kel

, (12)

where acu f f is an experimentally chosen coefficient that scales

the observed interaction torques to a desired force to be applied

with the cuff, varying between 0 and 14 N, and Kel is the outer

position gain of the cuff’s controller (stiffness gain, chosen

experimentally). xload is the tendon displacement2 and can be

calculated from r and θload in Fig. 4(b).

5.2 Vibro-tactile Feedback

Among surface properties, texture is one of the most impor-

tant in everyday haptic perception [20], relying on surface

irregularities and acceleration signals. In order to enhance the

immersiveness of the haptic experience during tool-mediated

and tele-operation tasks, it is, thus, crucial to replicate this

high-frequency information arising from the contact of real

objects and recorded on the tool (slave) side on the human

(master) side. To achieve this goal, we developed an electronic

acquisition and control circuit, following the scheme proposed

in [21].

Acceleration data were recorded using an Analog Devices

ADXL327 MEMS-based accelerometer, which is a small, low

power, 3-axis accelerometer with signal conditioned voltage

outputs and a minimum full-scale range of ±2 g. The sensors

were mounted on the dorsal part of the distal phalanges of

the five robotic fingers, chosen to minimize finger motion

interference. We replicated on the master (human) side only

2. Here we assume that the cuff’s tendon stiffness is very high and the
damping effect is negligible due to the slow variations of the observed
interaction torques.
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the x-axis acceleration sensed by the robotic fingers, by means

of vibrational feedback. The main motivations for this choice

were: first, to maintain the simplicity of the acquisition/control

circuit, in agreement with the synergy-driven design philoso-

phy. Second, although we know that the complete accelera-

tion signal depends on the sensing along all three axes, for

our purposes the tangential x-oriented acceleration contains

the most useful information for dragging tasks and slip-

prevention applications. Third, trying to appropriately map

multi-dimensional inputs to single axis actuators such as the

ones we used introduces some technological problems. For

a complete description of these problems as well as for a

comparison and discussion of different solutions see [22].

Replicating only one axis acceleration from the slave to

the master side represents a good trade-off between control

simplicity and immersiveness of the haptic experience; it is

also important to note that this information can be reproduced

using a single axis actuator, despite its axis orientation, since

the human hand can not discriminate vibration directions from

one another [20].

As in [21], the accelerometer bandwidth is configured using

an on-board first-order low-pass filter set at 1000 Hz, followed

by a DC block capacitor. Afterward, the signal is amplified

with an adjustable gain A (ranging from 0 to 4) and band-

pass filtered. The band is from 46 to 307 Hz and is coherent

with the one reported in [21]. It was chosen also to take into

account the behavior of Pacinian corpuscles in human skin,

which are sensitive to vibratory stimuli from 20 to 1000 Hz,

with a peak sensitivity between 250 and 550 Hz [40].

Finally the signal is applied to the motor, after current

amplification (scaling factor up to 7), using a push-pull con-

figuration. Four3 small (24×7 mm), low-cost vibration motors

(Precision MicrodrivesTM) were sewn 15 mm apart on an

adjustable-size cuff. The cuff was worn on the dorsal side of

the forearm to avoid pressure on the vibrotactile motors from

the forearm support. Fig. 5 demonstrates additional compo-

nents of the SoftHand for the haptic experimental setup; the

additional support/interface parts seen in the figure permit the

attachment of the hand to non-amputee users for experimental

validation of the system.

5.3 Texture Rendering and Psychophysical Consid-

erations

The stimuli provided by the vibrotactile system are related

to the texture of the surface explored by the robotic hand.

To be effective, such artificial feedback must be related to

human perception capabilities and the physical roughness of

the surface touched by the prosthetic hand. We took the

vibrotactile detection thresholds and discriminating increments

reported in [41] into consideration when designing our setup.

Note also that vibration is strictly connected to roughness

(texture) perception; indeed, vibration and hence the relative

motion between skin and surface is the sine qua non for texture

perception. In [42], the perception of roughness by active and

passive touch was analyzed, revealing no difference between

3. To allow adequate spacing of the motors in the vibrotactile cuff, only
digits 1-4, thumb to ring finger, were used to provide texture feedback.

Fingertip

Accelerometers

Forearm

Support

Wrist Electronics Boxx

x

Fig. 5: SoftHand equipped with the able-bodied adapter (forearm
support) and fingertip accelerometers.

the two haptic modalities. The results on vibration and texture

perception as well as the findings on two-point discrimination

reported in the previous subsection have been used to craft

the proposed haptic system. To more closely approximate the

surface roughness, the amplitude modulation of the vibromotor

is directly related to the voltage provided by the control

circuit and hence to the texture of the surface. To better

clarify this point, we have performed some experiments using

a KUKA/DLR Lightweight Robot arm with an ADXL327

MEMS-based accelerometer end-effector.

This accelerometer provided inputs to the control circuit

that drives the motor. The Kuka arm was moved along the

y-axis (distance 13 cm) with a linear trajectory and controlled

in force in order to exert a maximum normal force along the

z-axis of 5 N. The velocity was 5 cm/s and the joint stiffness

was set to 2000 N/mm along the y and x-axes and to 1 N/mm

along the z-axis (perpendicular to the surface). Both force

and velocity values were heuristically chosen to match typical

parameters of the explorative actions performed by humans

with the Pisa/IIT SoftHand. The Kuka was moved along two

different surfaces: one smooth surface and one covered with

sandpaper no. 40. While the end effector moved over each

surface, the accelerometer recorded along the motion axis (y-

axis). Meanwhile, the voltage output from the power stage of

the circuit was measured and recorded with an oscilloscope.

The Root Mean Square (RMS) of the voltage output for the

sandpaper no. 40 was 0.8840 V, while for the smooth surface

it was 0.3859 V. Interpolating from the specs of the motor,

such values lead to motor vibration of 0.4119 g at 120 Hz and

no vibration for the smooth case. The maximum operating

voltage for the motor is 1.8 V.

6 CONTROL ARCHITECTURE

As an alternative method to the bilateral master-slave teleoper-

ation, teleimpedance control has been previously presented to

overcome the stability issues raised in classical force-reflecting

teleoperation scenarios, as well as enabling more natural task

completion [9], [8]. In our proposed algorithm, task-oriented

equilibrium position and stiffness profiles are estimated on the

master side and realized by the teleoperated slave robot, in

realtime.
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Fig. 6: Block diagram of the synergy-driven hand teleimpedance controller.

Here, to incorporate user intent into grasp control, a novel

teleimpedance controller is developed. The block diagram of

the proposed controller is shown in Fig. (6). The inner hand

motor control loop is a high bandwidth current regulator

while the outer loop implements an impedance controller,

incorporating a time varying gain, and is updated by the

user’s hand stiffness synergy profile in realtime, based on

the stiffness synergy model in section 3. The bounds of the

stiffness gain ([5 50] Nm/rad) were experimentally chosen to

guarantee good tracking performance, stability, and high grasp

compliance. Simultaneously, acquired muscular activities were

used to determine reference position profiles as described

earlier in section 3.

The hand disturbance model block estimates the hand model

torque, based on the feed-forward models (equation 9). The

estimated torque is then converted to the current and fed to the

inner current controller as Idist . Simultaneously, the estimated

hand model torque is used by the interaction torque observer

(Fig. 1), to estimate the interaction torques due to contact

with the grasped object. Subsequently, the resulting interaction

torque is converted, scaled, and applied to the cuff’s controller

in order to provide the user with some indication of the grasp

state and force (section 5.1).

7 EXPERIMENTAL SETUP

Analog electromyography signals were measured and am-

plified with a Delsys-Bangoli 16 (Delsys Inc.) apparatus.

Acquired signals were band-pass filtered within the 20-450

Hz frequency range. Resulting signals were sampled at 2

kHz (PCI-6220, National Instruments) and full rectified for

further processing. A digital, non-causal FIR linear phase low-

pass filter was used for the detection of the envelope of the

signal, which approximately corresponds to muscle activity.

EMG normalization was performed automatically. Each time

the system was activated, subjects were given 5 seconds to

perform a large, brief co-contraction. This input was then

used to normalize the EMG signals online. In addition, two

online moving-average filters were implemented to detect

the magnitude of drift in the lower bounds of each EMG

channel, resulting from noise or change in limb configuration.

The averaging was performed on a narrow and predefined

amplitude interval of the normalized signals. At each time

step, corresponding values were subtracted from the processed

EMG measurements. Finally, resultant signals were fed into

the model described in section 3.

The hand unit and power driver for the motors (SoftHand

and force feedback cuff) are custom control boards based on

the Texas Instruments Luminary DSP chip LM3S8962. The

DSP control loop is executed at 1KHz while the communica-

tion with the host PC is achieved through a real time Ethernet

link. Motor current measurement is performed by a hall effect

based current sensor (ACS714, Allegro Microsystems Inc.)

and appropriate signal conditioning integrated in the motor

power driver module. The data acquisition and synchronization

interfaces between the motor controller boards, the interaction

torque observer, the hand model torque, the EMG acquisition

board, the hand synergy reference model, and the upper-arm

cuff were developed in C++. The acquisition, processing and

control ran at 1KHz sampling frequency.

7.1 Grasping Experiments

The first experimental setup was designed to evaluate the

effectiveness of fedback interaction forces and user-modified

compliance in controlling the natural, robust grasp of the Soft-

Hand. Objects with different elastic properties were grasped

under the following hand controller parameters: i) fixed and

relatively high stiffness gain (Stiff), ii) fixed and relatively

low stiffness gain (Compliant), and iii) user modified hand

compliance (Teleimpedance), all with or without the effect of

interaction force feedback. Postural synergy commands were

derived from the model, described in section 3, and were con-

sistent among all experiments. Subjects were seated in front

of a table and reached to grasp an object. Successful grasp

was achieved when the SoftHand held the object securely off

the surface of the table. Each grasp was attempted 3 times. To

minimize any learning effects, subjects were provided with
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adequate training before the experiments and the order of the

trials was randomized. Five right-handed subjects (one female,

four male, mean age=28.6) participated in this setup.

7.2 Haptic Experiments

For the second experimental setup, five right-handed subjects

(two female, three male, mean age=27) wore the SoftHand

and the series of vibrotactile surface feedback motors on the

forearm and the mechanotactile force feedback cuff on the

upper arm (see Fig. 7). The setup for interacting with the test

objects was modeled after the Haptic Black Box (HBB [43])

design. The objects were constrained within an experimental

tray with low sides. A screen was placed parallel to this

surface to occlude the objects from view without limiting the

subject’s visual feedback from the surrounding environment

(to avoid balance issues, etc). Subjects were also provided

with music via headphones to minimize the effect of auditory

feedback which may impart texture information. Subjects were

presented three pairs of objects before the experiment and then

asked to retrieve the objects without visual or audio feedback.

Each pair was formed by two objects of similar size, shape,

and weight but with different surface properties. Object pairs

were chosen to represent various typical shapes encountered

and grasps used in activities of daily living. The first pair

(Obvious) consisted of two similar plastic bars (3 × 18 cm),

one with a smooth surface and the other covered with a fine

sand paper. An average-size apple and orange were used in

the second (Mid) pair. And finally, the third pair (Subtle) was

formed by two round, metal files (25 cm long, with 1 cm file

diameter, and 3 cm handle diameter) with either parallel or

cross-cut teeth (see Fig. 7).

Each object pair was tested four times for each of three

modes (36 trials for each subject): with mechanotactile feed-

back only (Mech), with Mech and partial (index and thumb)

vibrotactile surface feedback (Half), and with Mech and full

surface feedback (Full). For each object pair in each mode,

subjects were asked to explore the space to find the desired

object (two times for each object, in each object pair), and

then grasp and lift it off the table. To minimize learning

effects, subjects were allowed a familiarization period with

each mode and the order of modes and object retrieval was

randomized. Each trial was rated as successful or unsuccessful

in two categories: choice, based on the selection of the correct

object, and grasp, based on subjects ability to lift the object

within three attempts.

In order to test for statistical significance of the results,

the effects of the main factors (feedback modality and object

pair) as well as the effects of their interaction must be

analyzed. Since our data are binomial, and non-normally

distributed, a classic two-way repeated measures ANOVA

approach is not applicable; at the same time a Fisher-test

for proportions can not be used since it does not take into

account the within-subject vs. between-subject variability and

the interaction effect between main factors. For these reasons,

results were processed using Generalized Linear Mixed Mod-

els (GLMM), which are proven to be useful for the analysis

of clustered/binomial data [44]. In GLMMs the overall vari-

ability consists of two different components: a fixed and a

Fig. 7: At left, plastic bars (a) and the filing tools (b) used in haptic
experiments; experimental setup at right.

random component. The fixed component takes into account

and estimates the effects of interest, i.e. the experimental

effects. In our case they are the feedback modality (Full,

Half, Mech) and the object pair (Obvious, Mid, Subtle). The

random component can estimate the heterogeneity between

subjects. In this manner, a single model can be estimated

across all subjects, but allowing each subject to have a different

variability. Let Y be the dependent variable, which is the

dichotomous response variable (1 for a successful trial or 0

otherwise), whose values can be regarded as observations from

the binomial distribution, with i : 1...N subjects and j = 1...ni

repeated observations nested within each subject. In this case

a classic mixed-effect logistic regression model can be used,

whose formulation within the general GLMM framework can

be expressed as

P(Yi, j = 1|νi,xij,zij) = g−1(ηi, j) = Ψ(ηi j) (13)

where ηi j, the linear predictor, is given as: ηi j = xi,j
Tβ +zij

Tνi.

xi,j is the vector of regressors, β contains the fixed effect

coefficients4, zi,j is the vector of variables having random

effects and νi the vector of random effects. g is the link

function, which relates the response variables to the linear

predictors. The logit function was used as the link function,

g(µi j) = logit(µi j) = log [
µi j

1−µi j

] = ηi j (14)

where µi j = E(Yi j|νi,xij) is the conditional expectation of

the response variable, which equals P(Yi j = 1|νi,xij), i.e. the

conditional probability of a response given the random effects.

Ψ(ηi j) is the inverse link function, in this case the logistic

cumulative distribution function (cd f ).

8 RESULTS

8.1 Grasping Experiments

As noted above, five subjects participated in grasping exper-

iments. Subjects were able to grasp objects with different

elastic properties with all controllers (see section 7 for details

of the setup). Typical results of a trial grasping a rigid

object (mug) are shown in Fig. 8 under Stiff (top), Compliant

(mid), and Teleimpedance (bottom) controllers. The desired

4. Usually the intercept of the fit model is indicated by β0.
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Fig. 9: SoftHand making an espresso.

Fig. 8: Sample results of the SoftHand grasping a hard object (mug),
with the controller under high, fixed stiffness gain (top pair, K=40
Nm/rad), low, fixed stiffness gain (mid pair, K=10 Nm/rad), and
teleimpedance (bottom four, aqnorm

= 1, bq = 5.03, ak = 1.87, and bk

= 0.579).

and measured postural synergy references and the observed in-

teraction torques between the hand and the grasped object are

shown for all controllers. Additionally, the subject’s muscular

activities and stiffness synergy reference, Ks normalized to

the chosen maximum stiffness gain (50 Nm/rad), while using

the Teleimpedance controller are shown in the bottommost

plot. As shown, the Stiff controller results in high interaction

forces, which can cause damage or deformation to the object

or prosthesis. In addition, abrupt changes in interaction forces

are seen due to the rigidity of the hand. On the other hand,

the Compliant controller with reduced stiffness gain produced

lower interaction forces but was unable to provide the grasp

forces required to complete the task. Unlike the Compliant

and Stiff cases, user-modified compliance of the hand used

in Teleimpedance control, together with the postural synergy

profiles, provided the possibility of adjusting task-related grasp

forces. Similar results were seen across subjects and trials:

the Compliant controller had a higher failure rate than the

other modes despite fairly good position tracking, while the

Stiff controller more frequently caused undesired deformations

on the object’s surface. In contrast, with Teleimpedance,

lower co-contractions resulted in high compliance, allowing

gentle grasping of fragile or deformable objects, while higher

stiffness values were generated with higher co-contractions to

grasp heavier or more rigid objects. Fig. 10.a shows the aver-

age interaction forces across subjects and objects grasped with

each controller, further illustrating the above. Fig. 10.b shows

the effect of feedback on co-contraction (FDS + EDC) levels

with Teleimpedance. The SoftHand teleimpedance controller

was also tested with activities of daily living (e.g. opening and

closing a jar lid, etc). In Fig. (9), a subject uses the SoftHand

to demonstrate the steps to make an espresso.

(a) (b)

Fig. 10: a) Average interaction forces for five subjects grasping
different objects with SoftHand controlled under Stiff, Compliant and
Teleimpedance controllers. b) Average processed EMG signals for
five subjects, grasping different objects. The averaging was performed
on all trials either with or without the effect of interaction force
feedback in Teleimpedance experiments.

8.2 Haptic Experiments

As described in the Experimental Setup section above, we

used a GLMM to analyze the Haptic Experiment results.

Let Y , the dichotomous response variable, be the dependent

variable. The explanatory variables for the fixed component

we used as regressors (in xij in eq. (13)) are the two main

factors we want to investigate: feedback modality (Fd), with

levels Full, Hal f , and Mech, and object pair (Ob), with levels

Obvious, Mid, and Subtle. The random effect (modeled in

zij in eq. (13)) takes into account the heterogeneity between

subjects, for example the variance in distribution of response.

The model assumes a single random effect (random intercept),

which allows each participant to have a different intercept.

The single random effect is assumed to have a Gaussian

distribution with zero mean and variance estimated from the

data (fitted variance equal to 1.628× 10−10 and 0.4629 for
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the haptic data and grasp data, respectively). GLMM models

were fit to grasp and haptic data: (1) in the first model

(Fd∗Ob) both the main effects and their interaction were taken

into account; (2) in the second model (Fd +Ob), only main

effects without interaction were considered. (For a complete

discussion on fitting GLMMs, the reader is referred to [45].

A maximum likelihood (ML) estimation was used to find the

coefficients of the model, solved numerically using the Gauss-

Hermite quadrature implemented in the function glmer in R

package lme45. The Likelihood Ratio test (LR) and the Akaike

Information Criterion (AIC) [44] are common procedures for

model comparison. (Note: lower AIC values indicate better

fit.) Likelihood Ratio test (LR) reveals no significant difference

(p > 0.4) between the fit of the two models 1 and 2 described

above. This means that the interaction term between the two

effects of interest does not add any significant factor for model

fitting to the data, hence it can be disregarded. Furthermore,

model (Fd +Ob) exhibits the smallest value for the Akaike

Information Criterion (AIC), for both grasp and haptic data.

These observations lead us to use model Fd + Ob and to

disregard any interaction between the two main factors. The

following tables contain the results of data fitting, where fitting

coefficients (β ) for the fixed effects are listed along with their

significance assessed by Wald statistics. Note that the fitting

coefficients for the fixed effects provide contrasts between the

indicated level and the omitted reference level. For both types

of data, we considered two pairs of reference levels for a total

of four tests: Full and Obvious (Tables 1 and 3, for haptic and

grasp data, respectively) and Hal f and Mid (Tables 2 and 4,

for haptic and grasp data, respectively).

We adopted Bonferroni post-hoc correction for multiple

comparisons. For the haptic data, results from Table 1 sug-

gest a trend towards a positive effect of Full compared to

Mech, although this does not reach significance after post-hoc

correction. A possible conclusion that can be drawn from the

experimental outcomes is that the full vibrotactile feedback

compared with the purely mechanical one seems to provide

important additional information for haptic discrimination. For

Object Pair, a significant positive effect of Obvious w.r.t. Mid

was observed (p = 0.002). A trend towards a positive effect

was also observed for Subtle vs. Obvious and Subtle vs.

Mid that are not significant after post-hoc correction. These

results might indicate a difficulty in the discrimination for

the subtle object pair, which might be solved by increasing

the training period for participants during the experiments

while they manipulate different object pairs. For grasp data,

a positive, significant effect of Full compared to Mech was

observed (p= 0.001), suggesting a significant effect of the full

vibrotactile feedback compared with the purely mechanical

one for grasp actions. For object pairs, a significant positive

effect of Obvious w.r.t Mid and Obvious w.r.t Subtle was

observed (p = 0.03 and p = 0.001, respectively). These results

suggest that full vibrotactile feedback seems to enhance both

haptic discrimination and grasp actions and that object pairing

also plays a significant role in both of these.

5. The R Project for Statistical Computing – www.r-project.org; package
”lme4: Linear mixed-effects models using s4 classes. r package version
0.999375-39” 2011. D. Bates, M. Maechler, and B. Bolker

TABLE 1: Results of the fit of Fd+Ob applied to haptic discrimina-
tion data using Full and Obvious reference levels. In the first column
the Coe f f icients are reported, then their estimate and standard (Std)
error. The z values refer to the standard normal distribution Z used to
get the p-values reported in the last column (Wald statistics). Signif.
codes: 0 ∗∗∗, 0.001 ∗∗, 0.01 ∗, 0.05 ., 0.1 , 1.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) 4.0454 0.8345 4.848 1.25e-06 ***
Half -0.6394 0.5757 -1.111 0.266755

Mech -1.1153 0.5544 -2.012 0.044266 *
Mid -2.6524 0.7767 -3.415 0.000638 ***

Subtle -1.6544 0.8091 -2.045 0.040873 *

TABLE 2: Similar to Table 1. Results of haptic data fit with Fd+Ob
using Hal f and Mid reference levels.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) 0.7536 0.4080 1.847 0.064774 .
Full 0.6394 0.5757 1.111 0.266758

Mech -0.4759 0.4917 -0.968 0.333123
Obvious 2.6524 0.7767 3.415 0.000638 ***
Subtle 0.9980 0.4639 2.151 0.031448 *

9 DISCUSSION

A novel synergy-based teleimpedance controller was devel-

oped to gather the user’s postural and stiffness synergy ref-

erences from two EMG channels. Two nonlinear functions

were used to map the EMGs to the postural and stiffness

synergies. Resulting synergy commands were then tracked by

the developed SoftHand controller in realtime. In addition,

two haptic interfaces (Mechano- and vibrotactile) were devel-

oped to facilitate natural control of the prosthetic limb. The

mechanotactile interface provided the user with information on

grasp forces, to enable intuitive modulations of task-required

forces, while the vibrotactile interface provided the user with

information about object slippage and perception of surface

properties such as texture.

The teleimpedance controller, both with and without haptic

interfaces, was evaluated through two sets of experiments.

The first set was designed to assess the capabilities of the

teleimpedance controller with force feedback in natural grasp-

ing. Modification of grasp compliance via Teleimpedance

controller resulted in robust and reliable grasps, regardless of

the elastic properties of the grasped object. This study showed

a slight but not significant reduction of physiological load with

force feedback, possibly because of the limited training time

and/or the small number of subjects used in this pilot study.

Future work will expand these results and tease out the effects

of the mechanotactile force feedback.

In the second set of experiments, force feedback and the

teleimpedance controller were used in combination with vi-

brotactile texture feedback for the detection and grasping of

objects with different surface properties. The results suggest

the full vibrotactile feedback modality seems to enhance

both haptic discrimination and grasp ability. However, full

vibrotactile feedback appears to play a more dominant and sig-

nificant role in grasp tasks than in haptic discrimination tasks.

Object pair also played a role in both haptic discrimination,

as expected, and grasp ability, with the large spheres being
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TABLE 3: Similar to Table 1. Results of grasp data fit with Fd+Ob
using Full and Obvious reference levels.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.6804 1.2114 4.633 3.61e-06 ***
Half -0.7647 0.6335 -1.207 0.227379

Mech -2.1214 0.6021 -3.523 0.000427 ***
Mid -2.9315 1.1052 - 2.653 0.007990 **

Subtle -3.8765 1.0983 -3.530 0.000416 ***

TABLE 4: Similar to Table 1. Results of grasp data fit with Fd+Ob
using Hal f and Mid reference levels.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) 1.9158 0.5808 3.299 0.000972 ***
Full 0.7647 0.6335 1.207 0.227366

Mech -1.3567 0.5163 -2.628 0.008598 **
Obvious 2.9316 1.1052 2.653 0.007989 **
Subtle -0.9450 0.4678 -2.020 0.043360 *

most difficult to grasp successfully. Although these results are

preliminary and should be validated with a larger number of

subjects and trials, they illustrate the feasibility of effective

and simple haptic interfaces to control artificial robotic hands

in common actions.

The mechanotactile-only results suggest meaningful texture

information transfers through the device and forearm support

to inform the user. However, additional feedback may provide

added benefit, as seen with the full- and half-haptic results,

especially in amputees where socket liners provide additional

damping. The additional haptic feedback also provided benefit

in blind grasping, a feature potentially useful to amputees

given the current reliance on visual feedback to execute

successful grasps. With respect to grasp success by object

shape, it is worth noting the ease with which users grasped

the cylinder and the high failure rate and variability for the

sphere. Anecdotally, the SoftHand was able to mold around the

cylinder from a myriad of starting positions. In comparison,

subjects would misalign the SoftHand with the sphere, result-

ing in object slippage before lift off or orient the SoftHand

palm at the top of the sphere, resulting in the fingers failing to

reach the sphere. This phenomenon is likely also attributable

to the large size of the spheres tested; smaller and/or more

compliant spheres would lend themselves to a wider variety of

grasping strategies and likely have higher grasp success rates.

Grasping of the sphere was best with full-haptic feedback,

likely because users were better able to understand the position

of the SoftHand relative to sphere.

In the future, further investigation of optimal stimulation

sites and spacing for various feedback modalities will be

examined and this investigation will be extended to amputees.

While these results need to be validated with amputees,

they provide preliminary evidence that a low-cost, robust

hand employing hardware-based synergies might be a good

alternative to traditional myoelectric prostheses. Furthermore,

they illustrate the benefits of incorporating tactile interfaces

for more intuitive control of the SoftHand.
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