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Accurate and reliable timing is an  essential 
component of nearly every purposeful 
behavior. Just as the brain contains mecha-
nisms to track and orient the body in space, 
so too must it be able to orient itself in 
time. Coincidence detection – the integra-
tion of simultaneous activation of  multiple 
inputs – is a proposed solution to the ques-
tion of how the brain tracks the duration 
of events in the seconds-to-minutes range 
using millisecond-scale neural processes 
(Matell and Meck, 2000). The striatal 
beat-frequency (SBF) model is one of the 
most successful attempts at explaining the 
neural basis of interval timing in terms of 
coincidence detection of oscillatory pro-
cesses (Matell and Meck, 2004; Lustig et al., 
2005; Harrington et al., 2010; Oprisan and 
Buhusi, 2011,  submitted). The SBF model 
involves a set of cortical timekeeper neu-
rons that oscillate at regular, but distinct 
frequencies, allowing a unique pattern of 
activation to occur at each point in time. 
These activation patterns project onto stri-
atal integrators that combine their infor-
mation with feedback (e.g., reward input) 
and form the basis of interval timing.

Independent lines of research appear 
to converge on the conclusion that func-
tional circuits composed of the prefrontal 
cortex, striatum, and thalamus are instru-
mental to both time perception and timed 
performance (Coull et al., 2004, 2011; 
Hinton and Meck, 2004; Buhusi and Meck, 
2005; Meck, 2006a,b; Yin, 2009; Allman 
and Meck, 2011). This frontal–striatal sys-
tem is hypothesized to correspond to the 
functional components of the SBF model 
(Meck, 1996, 2006a,b; Meck and Benson, 
2002; Matell et al., 2003; Matell and Meck, 
2004; Meck et al., 2008), wherein corti-
cal oscillatory neurons, and reward input 
from the substantia nigra are integrated by 
striatal medium spiny neurons (MSNs). 
These neurons can hold temporal “memo-
ries” via dopamine-facilitated long-term 
potentiation and long-term depression 

that, possibly via α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid recep-
tor (AMPAR) trafficking (Centonze et al., 
2001), modulate synaptic weights. Later, 
when the same signal duration is timed 
again, these neurons compare the current 
pattern of cortical activation with the stored 
“memories”; if coincidence is detected, then 
the spiny neurons fire to indicate the target 
duration has elapsed.

These neural structures contained within 
cortico-striatal circuits may not be the only 
ones involved in interval timing, however. 
The role of the hippocampus in timing and 
time perception for durations in the supra-
seconds range was initially explored by Meck 
et al. (1984). Since then, numerous studies 
have demonstrated reliable changes in the 
accuracy and precision of interval timing 
following a variety of techniques impacting 
hippocampal function (e.g., transection of 
the fimbria fornix, lesions of the medial sep-
tal area, resection of the temporal lobe, selec-
tive lesions of the dorsal hippocampus, and 
destruction of the entire hippocampus – see 
Balci et al., 2009 for a review). Nevertheless, 
an explanation of the effects of hippocampal 
damage within the context of a theoretical 
model of interval timing has been elusive 
(Grossberg and Merrill, 1992, 1996; Lytton 
and Lipton, 1999; Onoda et al., 2003; Matell 
and Meck, 2004; Sakata, 2006; Lewis et al., 
2011). As a consequence, the primary goal of 
this opinion article is to outline mechanisms 
by which the hippocampus could have spe-
cific effects on the modulation of the neu-
ral circuits specified by the SBF model of 
interval timing.

Rats and mice with lesions of the hip-
pocampus and related areas demonstrate 
a proportional “leftward” shift in distribu-
tions of timing judgments for intervals in the 
range of 2–8 s for temporal bisection proce-
dures and 10–40 s for peak-interval timing 
procedures – that is, when faced with tasks 
requiring them to estimate or reproduce a 
specific duration, they respond earlier on 

average than normal subjects indicating an 
over estimation/under production of dura-
tion proportional to the anchor durations 
or target duration(s) being timed (Meck 
et al., 1984, 1987; Olton et al., 1987, 1988; 
Buhusi et al., 2004; Balci et al., 2009). Similar 
effects on timing have also been observed 
in human participants with hippocampal 
damage following temporal lobe resection 
for anchor durations spanning the ranges 
of 50 vs. 200 ms, 1 vs. 2 s, and 2 vs. 8 s in 
temporal bisection procedures and 0.5–8 s 
for temporal reproduction procedures 
(Vidalaki et al., 1999; Melgire et al., 2005). 
Interestingly, in both rodents and humans, 
an increase in the precision of timing often 
accompanies the distortion in the accuracy 
of the temporal representations (Meck et al., 
1984; Vidalaki et al., 1999; Meck, 2002, 2005; 
Melgire et al., 2005). These “classic” effects 
of hippocampal lesions on the performance 
of rats in the peak-interval procedure are 
illustrated in Figure 1.

Though there have been a number of 
studies that suggest a lack of any effect on 
peak-interval timing procedures in hip-
pocampally lesioned animals (Dietrich 
et al., 1997; Dietrich and Allen, 1998), these 
experiments included extensive post-lesion 
training with explicit reinforcement contin-
gencies for probe trials. Evidence suggests 
that, with extensive training, it is possible 
for timing behavior to become habitual and 
to enter a “locked” state where the “classic” 
horizontal shifts of response functions to 
pharmacological challenges are no longer 
apparent (Yin and Knowlton, 2006; Cheng 
et al., 2007a,b; Yin et al., 2009). It is also 
known that in cases of extensive training, 
hippocampal function can be transferred to 
other brain areas such as the cortex (Wiltgen 
and Silva, 2007; Wiltgen et al., 2010).

There are several important roles that the 
hippocampus could play in the SBF timing 
circuit. Firstly, it could function as a feedback 
control mediator (Meck, 1988),  participating 
in the determination of  temporal  expectancy, 

Frontiers in Integrative Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 36 | 1

OpiniOn Article
published: 11 August 2011

doi: 10.3389/fnint.2011.00036

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/Integrative_Neuroscience/about
http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/integrative_neuroscience/10.3389/fnint.2011.00036/abstract
http://www.frontiersin.org/people/binyin/36287
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/archive


 leftward shift of the timing function in early 
trials followed by a return to a more normal 
response distribution following repeated 
testing, again possibly explaining the lack 
of an observed shift in lesioned animals with 
extensive training.

A third possibility is that the hip-
pocampus might function in a down-
stream decision-making process that 
controls motor output. It has been sug-
gested that the decision-making processes 
downstream of the “clock stage” deserve 
further investigation (Harrington et al., 
2004, 2011; Wearden, 2004; Meck, 2005). 
A subject’s selection and execution of 
motor action based on the clock’s output 
(which in the SBF model is determined 
by striatal firing rates) may depend on a 
“threshold gating” mechanism located in 
another brain region (Gibbon et al., 1997; 
Jin et al., 2009; Höhn, et al., 2011). This 
would predict variation in timing behav-
ior between subjects that have identical 
perceptions of duration. For example, in 
a peak-interval procedure, an “impulsive” 
subject may press the lever well before its 
perception of the time in the current trial 
matches a sample taken from its memory 
distribution of times of reinforcement on 
previous trials. Conversely, a “less impul-
sive” subject demonstrating a higher 
degree of “self control” may be reluctant 
to press a lever until the time on the cur-
rent time is much closer to the remem-
bered target duration – or even past this 
duration (Church et al., 1994).

Regions that might be involved in this 
subsequent action–selection process are the 
ventral and dorsomedial striatum, orbito-
frontal cortex, and possibly the hippocam-
pus (Johnson et al., 2007; MacDonald et al., 
2011). Indeed, it has been reported that the 
hippocampus may have a role in controlling 
impulsivity (Cheung and Cardinal, 2005; 
McHugh et. al., 2008; Sala et al., 2011). On 
the other hand, it has been shown that ven-
tral/medial striatal neurons are entrained 
to the hippocampal theta rhythm (Berke 
et al., 2004). Therefore, it seems reasonable 
to speculate that the hippocampus might 
interfere with the downstream temporal 
control of action sequences (most likely 
via inhibitory control) in tandem with the 
ventral/medial striatal neurons. Lesions of 
the hippocampus may diminish this inhibi-
tory control, thereby resulting in earlier 
start times, leading to leftward horizontal 

Properties of sub-threshold signal integra-
tion in MSNs are determined by the distri-
bution of synaptic inputs and differential 
activation of multiple postsynaptic con-
ductances (Carter et al., 2007).

On this basis, we can suggest two pos-
sible ways that hippocampal input could 
directly contribute to modulating stri-
atal neuron firing: phasic excitation and 
tonic inhibition. The hippocampus could 
desensitize membrane AMPARs on MSNs 
with its phasic excitatory output when it 
detects minor environmental changes, 
such as at the beginning of a new “to be 
timed” signal. This would render a varying 
set of MSNs unable to use “memories” of 
the previous signal duration. These MSNs 
must then update their “memories” on a 
trial-by-trial basis. This would produce 
more trial-by-trial variation, and would 
be expected to contribute to the Gaussian-
like noise that generates scalar timing 
(see Matell and Meck, 2004; Oprisan and 
Buhusi, 2011,  submitted).

The hippocampus could also tonically 
inhibit, and thus lower the sub-threshold 
membrane potential of striatal neurons 
such that firing is delayed by a small dura-
tion in some proportion of MSNs. Such an 
effect would be more pronounced in heavily 
weighted synapses of MSNs corresponding 
with the “representation” of the previous 
trial’s temporal sequence of responding 
and reward outcome. In this case, striatal 
neurons could display “overexcitement” 
in the absence of hippocampal inhibition 
 followed by habituation, resulting in a 

which is a  continuously updated function 
of memory, and clock-reading that supports 
the anticipation of outcomes tied to specific 
durations. Separate cortical areas exist that 
participate in the cortico-striatal and fronto-
hippocampal circuits, respectively. The for-
mer is the basis of the “clock” stage while 
the latter may modulate the “memory” stage, 
updating temporal expectancy on a trial-by-
trial basis. This memory- modulating corti-
cal area also sends input to the striatal MSNs. 
Given that hippocampal lesions produce a 
progressive leftward shift (under produc-
tion/over estimation) and frontal lesions 
produce a more or less symmetrical progres-
sive rightward shift (over production/under 
estimation), it is possible that the hippocam-
pus works in tandem with this frontal–tem-
poral regulatory circuit to update temporal 
expectancy on a trial-by-trial basis (Meck 
et al., 1987; MacDonald and Meck, 2004; 
Lustig et al., 2005).

A second function that the hippocampus 
might serve in timing and time perception is 
as a regulator of the dynamic firing thresh-
old of striatal MSNs (Matell and Meck, 
2004). Hippocampal–striatal interactions 
have been previously documented (Devan 
and White, 1999; Poldrack and Packard, 
2003; Lee et al., 2008; Graham et al., 2009). 
The MSN is essentially a two-state system 
with a “down-state” that does not allow 
neural firing and an “up-state” that facili-
tates firing. State transitions are driven by 
excitatory inputs. The interspike interval 
varies because the sub-threshold membrane 
potential fluctuates (Stern et al., 1997). 

FIgure 1 | An illustration of the “classic” effects of post-training hippocampal lesions for rats 
trained on a 40-s peak-interval procedure. The peak functions of rats with hippocampal lesions (HPX) 
rats are shifted leftward relative to control (CON) rats and are sharper with less spread around the observed 
peak time. Data are replotted from Buhusi et al. (2004).
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might play in either attention, feedback, 
or memory consolidation mechanisms 
on a trial-by-trial basis (Meck, 1988; 
Buhusi and Meck, 2002; Buhusi et al., 
2003, 2004). It could also provide us with 
clues as to whether or not the “clock stage” 
itself is affected, which would be reflected 
by a proportional horizontal shift of the 
response states (see Church et al., 1994; 
Matell et al., 2006, and MacDonald et al., 
2011). Conversely, if the horizontal (e.g., 
leftward) shift in timing functions result-
ing from hippocampal damage is due to a 
change (e.g., decrease) in the latency to start 
timing rather than in the centering of the 
distribution of responses around the tar-
get duration, then it might suggest the third 
possibility discussed above. Furthermore, in 
order to examine the interaction between 
the hippocampus and either the cortex or 
the striatum, one could employ a cross-
lesioning technique wherein one of each 
structure would be compromised contra-
laterally in addition to a transection of the 
corpus callosum (e.g., Christakou et al., 
2001; Chudasama et al., 2003). Moreover, 
future studies would benefit from the use of 
optogenetic techniques (Yizhar et al., 2011) 
in terms of identifying the functional “con-
nectome” among the hippocampus, stria-
tum, and cortex (Chuhma et al., 2011). This 
would provide regions of interest for more 
traditional electrophysiological and phar-
macological mapping studies of the role of 
the hippocampus and other brain structures 
in time – the fourth dimension of neural 
function (Coull et al., 2011).
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