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Abstract It has long been assessed that continuum

mechanics can be used successfully to address a variety of

mechanical problems at both macroscopic and microscopic

scales. The term ‘‘micromechanics’’, in particular, has been

used in considering elasticity, plasticity, damage, and

fracture mechanics problems at the micron scale involving

metallic, ceramic and polymeric materials, as well as their

composites. Applications to automobile, aerospace, and

concrete industries, as well as to chemical and microelec-

tronic technologies have already been documented. The

recent developments in the field of nanotechnology have

prompted a substantial literature in nanomechanics. While

this term was first introduced by the author in the early 90’s

to advance a generalized continuum mechanics framework

for applications at the nanoscale, it is mainly used today in

considering ‘‘hybrid’’ ab-initio/molecular dynamics/finite

element simulations, usually based on elasticity theory, to

interpret the mechanical response of nano-objects (nano-

tubes, nanowires, nanoaggregates) and extract information

on nano-configurations (dislocation cores, crack tips,

interfaces). The modest goal of this article is to show that

continuum elasticity can indeed be extended to describe a

variety of problems at the micro/nano regime. The resultant

micro/nanoelasticity theory includes long-range or nonlocal

material point interactions and surface effects in the form of

(phenomenological) higher-order stress/strain gradients.

Coupled thermo-diffuso-chemo-mechanical processes can

also be considered within such a higher-order theory. Size

effects on micro/nano holes and micro/nano cracks can

conveniently be modeled, and some standard strength of

materials formulas routinely used for micro/nano beams can

be improved, with potential applications to MEMS/NEMS

devices and micro/nano reliability components.

1 Introduction

While multiscale modeling procedures combining atomistic

molecular dynamics simulations (based on empirical

potentials calibrated or not by ab initio calculations) with

finite element computations (usually based on standard

elasticity theory) are quite fashionable today, a different

modeling approach will be discussed in this paper. This

approach is motivated by the desire to properly extend

continuum classical elasticity (CE) to address deformation

and fracture problems at micron and nano scales in an

effective and computationally robust manner. In fact, clas-

sical elasticity theory has been used successfully to model

the response of certain nanotube configurations and of other

nano-objects, in excellent agreement with respective

molecular dynamics (MD) simulations (e.g. Ru 2003, and

references quoted therein; nonlocal elasticity has been used,

among others, by Wang and Hu 2005 and Zhang et al. 2005).

At the same time it is well known that standard

mechanics and material science models, which do not

contain an internal length scale, fail to provide reasonable

results at the micron and nano regimes. A compromise

between the CE and MD approaches, which is reasonably

suited for problems at the micro/nano transition is the so-
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called gradient elasticity theory. This may be viewed as (a

special case of) a direct extension of the CE approach to

include gradient or nonlocal terms (Aifantis 1978; Trian-

tafyllidis and Aifantis 1986) in the constitutive equations

(and sometimes in the balance laws). These terms account

for the interaction of length scales (i.e. the scale of the

representative elementary volume on which theory and

measurement is based upon, and the scale of the underlying

material substructure governing the evolution of deforma-

tion) as the size of the component or material system under

consideration is decreasing.

The interest in higher-order gradient and nonlocal

elasticity theories has been revived recently among

researchers in various disciplines (solid mechanics, theo-

retical condensed matter physics, and materials science)

due to the ability of the higher-order or nonlocal terms to

model phenomena not previously captured by classical

elasticity which does not involve an internal length scale in

its constitutive structure. Such phenomena include, among

other things, the occurrence of size effects (i.e. the

dependence of strength or other macroscopic properties on

specimen size), as well as fracture and/or interface pro-

cesses where the detailed ‘‘non-singular’’ or ‘‘continuous’’

distribution of stress and strain fields near the crack tip or

the interface is of prime importance. Such distributions of

stress/strain fields are extremely useful for the design/

processing and operation of micro/nano devices which

often feature geometric singularities or material disconti-

nuities and exhibit size effects.

In this connection it is emphasized that novel experi-

mental mechanics techniques have been developed recently

to capture the details of deformation and stress fields near

regions of high local strain gradients where application of

classical theories predicts singularities (e.g. crack tips) or

discontinuities (e.g. interfaces). For this type of experi-

mental work which focuses on capturing the effect of high

localized strain gradients, the reader may consult, for

example, the work of Sciammarella et al. (2003), and ref-

erences quoted therein). With respect to the problem of size

effect in particular, the author has pointed out in a SEM

lecture back in 2000 (Aifantis 2000) to the need of con-

ducting experimental work on microtensile perforated

specimens in order to determine the existence of such

effects at the micron and submicron scales, in analogy to

those observed at the macroscale when the underlying

microstructural effects become dominant (e.g. Aifantis

1999, and references quoted therein). This suggestion has

been taken up, among others, by Chasiotis who addressed

the question of size effects on microtensile perforated

specimens in his PhD thesis at Caltech (Chasiotis 2002).

Earlier than that, the problem of necking instabilities in

polymeric fibers has been considered by him in his

Diploma Thesis at Aristotle University by using a simple

version of nonlinear gradient elasticity theory (Chasiotis

1996). More recently, the same author and co-workers have

produced very interesting results on both types of prob-

lems, i.e. size effects of perforated microtensile MEMS

specimens and on stress-strain curves of free-standing thin

films (Chasiotis and Knauss 2003; Chasiotis et al. 2007), as

discussed later on in this article.

Along similar experimental lines, the theory of gradient

elasticity can be used for evaluating possible size effects

related to the determination of residual stresses by the

microscopic ‘‘hole’’ method as used recently by Michel’s

group at the Micro-Nano Reliability Center in Berlin. This

consists of a hole milling by focused ion beam (FIB) in a

thin membrane followed by an evaluation of the stress

relief through SEM analysis of the obtained displacement

patterns via digital image correlation (DIC). This meth-

odology, which is promoted under the name FibDAC (e.g.

Vogel and Michel 2001; Wunderle and Michel 2006;

Sabate et al. 2007), is based on classical elasticity solutions

for a hollowed thin plate; and, can thus be revisited and

modified to include surface stress and gradient-dependent

size effects that may be present in such micro/nano con-

figurations. The same holds for related measurements and

calculations pertaining to the determination of displace-

ment and stress intensity factors at crack tips.

The plan of the paper is as follows: Sect. 2 provides a brief

historical account of higher-order elasticity theories as they

were developed in the past (mainly in the 60’s) for elastic

continua with microstructure and their (ir)relevance to cur-

rent technology-related applications. Section 3 includes an

outline of the author’s simplest version of gradient elasticity

theory along with a brief discussion for the corresponding

phenomenological gradient coefficients (or internal length

parameters). Section 4 describes applications of gradient

elasticity to certain micro/nano configurations which may be

of interest to micro/nano reliability assessment procedures.

Finally, Sect. 5 considers briefly extensions of the gradient

approach to thermoelasticity and diffusoelasticity problems.

2 Highlights of gradient elasticity theory

2.1 Historical background

An account of recent advances in gradient theory can be

found in an article by Aifantis (2003). A partial list of

recent references pertaining, in particular, to the so-called

strain gradient elasticity theory can be found there, while

an account of the early contributions and related references

which led to this development can be found in an overview

by Altan and Aifantis (1997). Higher-order or generalized

theories of elastic continua have been proposed in the

1900’s (brothers Cosserat) and later in 1960–1970’s (by

110 Microsyst Technol (2009) 15:109–115

123



Mindlin, Toupin, Eringen, etc.), but these developments

involved too many phenomenological coefficients (usually

undetermined by microscopic or experimental consider-

ations) and their applicability to real problems was

examined mainly in relation to wave propagation studies.

In the above mentioned overview, a summary of these

early developments can be found, along with a derivation

and related applications of the author’s a simple gradient

elasticity model involving only one extra gradient coeffi-

cient. This model is discussed, in particular, with emphasis

on the elimination of strain singularities in elastic crack

problems, and on vibration/wave propagation studies.

With respect to the application of Cosserat type elastic

theories for interpreting size effects in torsion and bending

of elastic materials with microstructure (bones, foams), the

experimental work of Lakes (Lakes 1983, 1986; Yang and

Lakes 1981) deserves to be mentioned. This seems to be the

first work undertaking the task of measuring the extra phe-

nomenological coefficients associated with the non-standard

higher-order terms. More recent efforts for the experimental

determination of gradient coefficients for elastic metallic,

polymeric and biological materials, as well as elastic ge-

omaterials with microstructure are described in the work of

Aifantis (1999) and Vardoulakis et al. (1998), respectively.

It follows from the above discussion that is desirable, if

not necessary, to classify the available gradient elasticity

models, discuss the physical origin of the gradient terms

and develop suitable experiments for the measurement of

the new phenomenological coefficients introduced. This

becomes even more demanding in view of recent efforts to

employ gradient theory to interpret scale effects and model

the deformation and fracture of nanomaterials and com-

ponents used in micro/nano electronic packaging and other

micro/nano technology applications. Progress along these

lines is discussed below where, among other things, some

microscopic expressions for gradient coefficients and sug-

gestions pertaining to corresponding experiments for their

determination are given.

2.2 Outline of the simplest form of gradient elasticity

theory

Only the gradient elasticity model (in its simplest form)

developed by Aifantis and co-workers will be summarized

below. The appropriate constitutive equations for a gradi-

ent-dependent elastic deformation (gradient elasticity) may

be written as follows:

�rij ¼ k�ejjdij þ 2l�eij; �rij ¼ rij þ crr2rij;

�eij ¼ eij þ cer2eij;
ð1Þ

where (rij, eij) denote the stress and strain tensors for

elastic deformation. The quantities (k, l) are the usual

Lamé constants. The gradient coefficients c’s are new

phenomenological coefficients to be determined from

appropriate experiments and/or appropriate microscopic

arguments depending on the prevailing deformation

mechanisms and the underlying microstructure. It should

be pointed out that the sign and the values of the gradient

coefficients c’s depend on the deformation state at hand

(hardening or softening) and the underlying micro/nano

structure. (In fact, the simplest form of gradient elasticity

theory corresponds to the case cr = 0.)

As already mentioned, the gradient-elasticity expression

of Eq. 1 has been used successfully for interpreting size

effects, as well as for eliminating strain singularities from

dislocation lines and elastic crack tips (e.g. Aifantis 2003,

and references quoted therein). The value of the gradient

coefficients may be inferred, in principle, from such mea-

surements pertaining to the extent of dislocation cores and

the structure of crack tip opening profiles. Direct estimates

for the gradient coefficients may also be obtained from

properly designed experiments. For example, pure bending

experiments of asymmetrically deforming beams (due to an

engineered spatially-inhomogeneous microstructure—e.g.

grain size distribution along the beam axis) can provide

estimates for the gradient coefficient ce in Eq. 1, as this

coefficient turns out to relate directly to the (non-constant)

radius of curvature of the non-homogeneous beam. Pre-

liminary results have already been reported for the case of

plasticity (Aifantis 1992; Murphy et al. 2003) and analo-

gous considerations could be applied, in principle, for

elastically bent beams and foils. Theoretical estimates for

the gradient coefficient have also been obtained for elas-

toplastic polycrystals by using self-consistent arguments

(Aifantis 1995) and these results can be specialized to

elastic deformations to arrive at a proportionality relation

between the gradient coefficient ce : c (or internal length)

and the grain size d of an elastically deforming polycrystal;

i.e., c * A d2, where the numerical parameter A relates

explicitly to the elastic constants of the material in a

fashion depending on the self-consistent model used. For

random elastic polycrystals the gradient coefficient c turns

out to be related to the autocorrelation function K(r)

through the relationship c�B½o2KðrÞ=or2
r¼0j ��1; where B

denotes another numerical parameter.

A most exciting but cumbersome evaluation of the gra-

dient coefficient c in the gradient elasticity model of Eq. 1

can be obtained on the basis of recently developed high-

resolution optical methods in conjunction with the non-

singular solutions obtained for the strain field of dislocation

(see, for example, the recent paper by Kioseoglou et al.

2006) and crack problems. This is possible due to the fact

that the model of Eq. 1 can estimate the size of dislocation

‘‘core’’ and the size of the ‘‘cohesive zone’’ at crack tips.

Other possible estimates for the gradient elasticity coeffi-

cient c of Eq. 1 may be obtained from wave propagation
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with dispersion studies (see, for example, Altan and

Aifantis (1997), and the references quoted therein).

3 Applications to specific micro/nano configurations

In this section we discuss briefly the application of gradient

elasticity, as summarized by Eq. 1, to particular problems

at the micron and submicron scale range. The specific

configurations we examine may be potentially useful to

micro/nano technology and micro/nano design and

manufacturing.

3.1 Micro/nano beams and plates

Beams and plates of micro/nano dimensions are exten-

sively used as sensors in various micro/nano technology

applications, as well as for interpreting experimental

measurements for material constants (e.g. elastic moduli)

and assessing small scale phenomena (e.g. interfacial/

internal stresses). The gradient or micro/nano elasticity

relations summarized by Eq. 1, can be used to revisit

various classical strength of materials or structural

mechanics relationships and derive new modified ones,

more suitable for design requirements of micro/nano

components and devices.

For example, under certain assumptions, the celebrated

Stoney formula may easily be modified (by the second term

in the parenthesis in the formula below) to read.

rf ¼ j
�Esh

2
s

6hf
1þ 3cs

hs

� �
; ð2Þ

where the index f refers to the film and the index s to the

substrate, with ðr; j; �E; hÞ denoting, respectively, film

stress, curvature, elastic modulus and thickness. The elastic

modulus �Es is given by �Es ¼ Es

�
1� m2

s

� �
- with ms

denoting Poisson’s ratio of the substrate—for plane strain

conditions, while cs denotes as usual the relevant gradient

coefficient or internal length parameter. It is noted that a

variant of the gradient elasticity theory summarized by

Eq. 1 has been used for the derivation of Eq. 2. This var-

iant, which includes the first strain gradient as well, arrives

at the following expression for the axial beam stress: r ¼
E eþ c signðeÞ rej j½ �

�
1� m2ð Þ in terms of the axial strain e

and the gradient r along the beam’s thickness direction;

and, thus, the parameter c has the dimensions of length

here. For bending problems within a strength of materials

approach, the axial strain distribution is assumed to be

linear in the thickness direction; thus, the r2 vanishes and

the gradient contribution comes from the r term.

Another example is concerned with the bending of a

mirco/nano cantilever beam, as this configuration is rele-

vant, among other things, to the design of actuators and

micro/nano probes for chemical and medical applications.

A modified expression for the elastic modulus E can easily

be derived, under certain conditions, in terms of the dis-

placement d and the applied load P at the free end of the

beam of length L and moment of inertia I. It reads

E ¼ PL3

3dI
1þ 3

Lffiffiffi
c
p
� ��3

tan h
Lffiffiffi
c
p
� �

� 3
Lffiffiffi
c
p
� ��2

" #
: ð3Þ

This formula is derived for appropriate boundary

conditions on the basis of a one-dimensional gradient

constitutive equation forthe axial stress r ¼ Eðe� cr2eÞ,
in terms of the axial strain e and the Laplacian (second

derivative along the direction of the beam axis) r2. The

coefficient c in this case has the dimensions of length

square, as also suggested by Eq. 1.

Typical graphs for rf and E corresponding to the above

relation are plotted in Fig. 1.

3.2 Nanoscale crack tips

The problem of eliminating the strain singularity from

crack tips was addressed within the structure of the

simplest form of gradient elasticity theory in Aifantis

(1992) (see also Altan and Aifantis 1997); for subsequent

Fig. 1 The effect of gradient coefficient c on (a) the internal film stress rf as calculated from a gradient modification of Stoney’s formula and (b)

the elastic modulus E as calculated from a gradient modification of a bent cantilever beam by a point load applied at its end
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treatments the reader may consult the list of references

given in Aifantis (2003). This treatment leads to Barenbl-

att’s ‘‘smooth closure condition’’ for the crack faces

without any undesirable property of the strain at the tran-

sition boundary between ‘‘mathematical’’ and ‘‘physical’’

crack, and without imposing any cohesive force distribu-

tion requirements at the outset. It turns out that the stress

singularity may most conveniently be eliminated within the

structure of the theory summarized by Eq. 1. This follows

from the solution of the inhomogeneous Helmholtz

equation

ð1� cr2Þrij ¼ r0
ij; ð4Þ

where rij is the actual stress field and r0
ij is the classical

singular elastic stress field.

For the simplest case of a Mode-III crack, it turns out

that the only non-vanishing stress components ra3 (a = 1,

2) are given by

ra3 ¼ r0
a3 1� e�r=

ffiffi
c
p� �

; ð5Þ

where r0
13 ¼ � KIIIffiffiffiffi

2p
p

r
sin h

2
; r0

23 ¼ KIIIffiffiffiffi
2p
p

r
cos h

2
; KIII ¼

s1
ffiffiffiffiffiffi
pa
p

, with (r, h) denoting as usual the polar coordinates

from the crack tip, s? is the applied shear, and a is the half

crack length. The stress component r13 distribution in the

case of classical and gradient elasticity is shown in Fig. 2.

3.3 Size effects in MEMS

Figure 3 shows a perforated MEMS polycrystalline silicon

tensile specimen used by Chasiotis and Knauss (see, for

example, Chasiotis and Knauss 2003, and references quo-

ted therein) and the type of perforations used. The

parameters K and q designate the stress concentration

factor and the radius of curvature for each type of perfo-

ration used. Figure 4a shows the experimental trends for

the strength of each type of perforated specimen used and

the corresponding theoretical graph obtained by using

gradient elasticity theory is depicted in Fig. 4b. The sim-

plified gradient elastic model used for obtaining these

results is given by the constitutive equation.

e ¼ 1þ m
E

r� m
E
ðtr rÞ1� c

m
E
r2ðtr rÞ1: ð6Þ

The corresponding maximum hoop stress for an infinite

plate with a central hole of radius a subjected to uniaxial

tension r reads (m and E denote, as usual, Poisson’s ratio

and Young’s modulus).

rhjmax¼ r 3� K0ðhÞ
1

Th
þ 2ð1þ 3mÞh

Fh

	 
� �
; ð7Þ

where, Th � hK1ðhÞ þ K0ðhÞ; Fh � 3ð1þ mÞhK0ðhÞ þ
½ð1þ mÞh2 þ 4�K1 hð Þ; h � a=

ffiffiffiffiffi
mc
p

; and K0 and K1 denote

Fig. 2 Distribution of r13 in

Mode-III in the case of: (a)

Classical elasticity; (b) Gradient

elasticity

Fig. 3 Perforated MEMS

polycrystalline silicon tensile

specimen and type of

perforation used (Chasiotis

2002; Chasiotis and Knauss

2003)
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Bessel functions of the second kind. If a failure criterion of

the form rhjmax¼ rc (with rc denoting a material constant)

is adopted, then one obtains the graph depicted in Fig. 4b

for rc = 0.85 GPa, m = 0.22 and
ffiffiffi
c
p
¼ 0:67 lm, i.e. an

internal length comparable to the average grain size of

0.3 lm of the polysilicon material used.

4 Coupled thermo-chemo-mechanical problems

In this final section an extension of gradient elasticity

theory is suggested for coupled thermoelasticity and elas-

todiffusion problems. Fourier’s and Fick’s law for heat

conduction and mass diffusion may not be applicable for

such transports processes at micro/nano scales. Higher-

order gradients and nonlocal effects may also be relevant

here and a brief discussion of the respective modifications

in the constitutive response of stress and heat/diffusion

fields is outlined below.

In the case that diffusion of a solute takes place within a

deformable elastic solid the stress-strain relation of Eq. 1 is

modified as follows

�rij ¼ k�ejjdij þ 2l�eij � a�qdij; ð8Þ

where �q is an apparent solute concentration, a is a new

phenomenological coefficient and the rest of the symbols

are as in Eq. 1. The quantity �q is given by a gradient-

dependent constitutive equation analogous to those of

Eq. 12,3, i.e.

�q ¼ qþ cqr2q; ð9Þ

where q is the actual local concentration field and cq is a

corresponding gradient coefficient measuring nonlocal

diffusion effects having the dimension of length square

(internal diffusion length).

The evolution of the variable �q may be assumed to obey

the uncoupled Fick’s law of diffusion, i.e.

ot�q ¼ Dr2�q; ð10Þ

where D is the macroscopic diffusion coefficient. Eq. 10

can be re-written in terms of the local concentration q,

giving the following higher-order diffusion equation

otq ¼ Dr2q� cqotr2qþ Dcqr4q: ð11Þ

Various diffusion models are possible depending on the

signs of D and cq, as well as the relative magnitude of these

constants. When Eq. 11 is combined with Eq. 8 and Eq. 12,3

a higher-order fully gradient-dependent but uncoupled

elasto-diffusion theory is obtained. It is uncoupled in the

sense that the strain or stress field does not enter into the

higher-order diffusion equation given by Eq. 1 and, thus, this

can be solved first to determine q, while the determination of

(rij, eij) can be obtained afterwards by combining Eq. 8 with

the corresponding equilibrium equation. An uncoupled

gradient theory of thermoelasticity may also be obtained in

a similar way by replacing the concentration field q with the

local temperature field h. Higher-order transport theories of

the form discussed herein have first been proposed by the

author within a somewhat more general mechanics

framework in 1980’s (e.g. Aifantis 1980).
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