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Abstract Intelligent tutoring systems are highly interactive learning environments that have
been shown to improve upon typical classroom instruction. Cognitive Tutors are a type of
intelligent tutor based on cognitive psychology theory of problem solving and learning.
Cognitive Tutors provide a rich problem-solving environment with tutorial guidance in the
form of step-by-step feedback, specific messages in response to common errors, and on-
demand instructional hints. They also select problems based on individual student performance.
The learning benefits of these forms of interactivity are supported, to varying extents, by a
growing number of results from experimental studies. As Cognitive Tutors have matured and
are being applied in new subject-matter areas, they have been used as a research platform and,
particularly, to explore interactive methods to support metacognition. We review experiments
with Cognitive Tutors that have compared different forms of interactivity and we reinterpret
their results as partial answers to the general question: How should learning environments
balance information or assistance giving and withholding to achieve optimal student learning?
How best to achieve this balance remains a fundamental open problem in instructional
science. We call this problem the “assistance dilemma” and emphasize the need for further
science to yield specific conditions and parameters that indicate when and to what extent to
use information giving versus information withholding forms of interaction.
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In designing learning environments that effectively support student learning, one faces many
choices with respect to the interactive and non-interactive features the system will provide.
While instructional options like text and video are non-interactive, they will continue to have
their place in learning environments (cf., Schwartz and Bransford 1998). Homework problems,
learning-by-doing projects (e.g., Duch et al. 2001; Krajcik and Starr 2001) or self-explanation
prompts (Chi et al. 1994) may seem to be more interactive forms of instruction than text and
video, but they are not in and of themselves interactive. They may facilitate interactive forms
of learning, if the student engages with them, but there is nothing about the instructional
materials themselves that contributes to the interaction. They are not dynamically responsive
to an individual student’s approach to a particular example or problem, nor to the difficulties
that an individual student may experience. The materials stay what they are.

Tutoring, on the other hand is a genuinely interactive form of instruction. Human one-
on-one tutoring is highly effective, with experienced tutors achieving a two standard
deviation improvement over classroom instruction (Bloom 1984). Interactive learning
environments that mimic aspects of human tutors have been highly successful as well. For
instance, Intelligent Tutoring Systems have been shown to be highly effective in improving
students’ learning in real classrooms (VanLehn 2006). Intelligent Tutors draw on artificial
intelligence technology to provide interactive instruction that adapts to individual students’
needs and, most typically, supports student practice in learning complex problem solving
and reasoning. Among computer-based interactive learning environments, intelligent
tutoring systems are typically found toward the high end of the interactivity spectrum.
The interactive capabilities of these systems usually include step-by-step feedback and hints
that are specific to the particular solution path that a student has chosen and to the particular
step with which the student is experiencing difficulties. Other forms of interactivity may be
available as well, such as keeping track of students’ mastery of skills and concomitant
individualized problem selection. Although we focus on intelligent tutoring systems, our
analytical framework, introduced next, is likely to pertain to a broader range of instructional
interventions including e-learning as well as non-technology approaches.

Framework: Our View on What Counts as Interactivity

As an organizing framework throughout this paper, we classify kinds of instructional
techniques or events along two dimensions, summarized in Table 1. The first dimension
(represented by the rows in Table 1) concerns whether the information presented to or
requested of the student involves explicit verbal generalizations or whether it involves
instances or examples of such generalizations or activities that engage the use of them
without explicit expression of them. The second dimension (represented by the columns in
Table 1) concerns the direction of communication after the system presents a learning task
or learning materials to a student: whether or not the student responds to this initial
presentation, and if so, whether the system provides feedback on the student’s response.
The first column in Table 1 shows passive instructional events, like textbook descriptions or
worked examples, where the learner is presented information to process, but is not
requested to produce anything.1 The second column shows active instructional events, like
asking students to solve problems or “self-explain” a worked example (Chi et al. 1989).
Unlike passive instructional events, in active instructional events some information is

1 While texts come with an at least implicit request to have students try to understand them, they do not
explicitly request students to produce a written or spoken output. The student “learning event” that may
result from a passive instructional event may be active (e.g., taking notes), but passive instructional events do
not explicitly prompt for such activity.
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withheld and the student is required to fill in that information, that is, give a response like a
problem solution or self-explanation of an example. The third column shows interactive
instructional events, like problem-solving practice with a tutor, that not only require a
student response, but also provide feedback on students’ responses, allow students to
change responses, provide feedback on the changes, and so on. This iteration of response,
feedback, and potential response change and further feedback (or “feedforward” in the form
of hints on how to proceed with the problem) is a hallmark of interactive instruction. As in
active instructional events, some information is initially withheld from the learner. Unlike
active instructional events, in interactive instructional events additional information is later
given, if the learner fails to construct it him or herself.

Whether an instructional event is passive, active, or interactive does not guarantee that a
student will or will not interactively engage with it. Indeed, well-written texts can be quite
engaging and students can interact with them, for instance, after reading a later sentence a
new interpretation emerges that leads the student to reread a prior sentence to check (get
feedback on) that interpretation. However, the focus of our framework is on first
distinguishing differences in instructional methods themselves. The framework then sets
the stage for discussing whether and how such differences may cause students to
interactively engage or not.

The rows in Table 1 contrast more explicit verbal instructional events from more
implicit, instance-based ones. Explicit verbal instructional events involve the expression, by
the instructor or student, of generalizations or rules that describe or explain concepts and
principles in the domain. Implicit or instance-based kinds of instructional events, like
examples and practice activities, illustrate or demand the application of these general
concepts or principles sometimes without explicitly stating them. Instruction usually
involves combinations of cells in the rows and columns in Table 1 (that’s why we call these
cells instructional “events” rather than “methods”). For instance, traditional textbook
instruction tends to combine passive reading of general explicit descriptions of concepts
(cell 1, passive/explicit) followed by active practice with problem-solving instances (cell 5,
active/implicit). New forms of instruction like self-explanation combine passive examples
(cell 4, passive/implicit) followed by active explication of generalizations (cell 2, active/
explicit). The “action-generalization” principle (Koedinger 2002) combines instance-based
problem solving (cell 5) followed by active explication (cell 2).

The kinds of instructional events in Table 1 differ in terms of whether and how they give or
withhold information or assistance. Instruction would not be instruction if it did not provide
some information or assistance to students, but many lines of research and theory suggest the
importance of practice, learning by doing, self-testing during study, or, more generally,
requiring students to construct knowledge. These approaches involve withholding information
from students so that they can exercise, test, or reason toward new knowledge on their own.
For example, often textbooks provide explanations (cell 1), but in self-explanation (cell 2), the

Table 1 Examples of Instructional Events in Terms of (See the Columns) Whether Students Must Respond
(Active) and Get Feedback (Interactive) and (See the Rows) Whether the Instruction Involves or Encourages
Explicit Verbal Generalizations or Whether it Involves Implicit Instances of those Generalizations

Non-interactive Interactive

Passive Active

Explicit, verbal generalization 1. Description 2. Self-explanation 3. Self-explanation with feedback
Implicit, instances 4. Example 5. Unguided practice 6. Tutored practice
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explanation is withheld and the student is asked to provide one. Table 2 summarizes our view
on the benefits and costs of information giving versus information withholding.

Given the trade-offs between information giving and withholding, the instructional
designer faces the assistance dilemma. To what degree should an interactive learning
environment provide students with information relevant to their learning processes and
what are the most opportune moments for doing so? And when is student learning
supported more effectively by withholding information, either temporarily, until the student
has had an opportunity to generate or synthesize the information for him or herself, or even
permanently? For example, what is the appropriate balance between passive examples versus
problem solving? Should students be given explanations or asked to generate them themselves?
Should feedback in interactive systems be immediate (providing timely information) or
delayed (withholding information to a later time)? Should instructional hints be more specific
or more general? Should they provide informative descriptions of principles or examples that
the student can use to infer those principles themselves? Should information or problems on
the same knowledge be placed close together (providing the student with assistance in
retrieving information from one problem to the next) or spaced more widely (withholding
easy information carry-over from one problem to the next)? Under what circumstances is
guided problem solving more effective than (pure or guided) discovery learning?

The assistance dilemma is related to Bjork’s “desirable difficulties” and the notion that
while assisting performance during instruction can sometimes improve learning, in some
cases making performance more difficult during instruction improves learning (Schmidt and
Bjork 1992). For instance, Paas and Van Merrienboer (1994) found, on one hand, that
worked examples made performance easier during instruction and led to better learning
and, on the other hand, that introducing variability in example and problem content made
performance harder during instruction but also led to better learning. The explanation that
worked examples reduce “extraneous” cognitive load that distracts from learning whereas
variability induces “germane” cognitive load that enhances learning is a first step. However,
this explanation begs the question of what forms of instruction yield extraneous versus
germane load. It does not resolve the assistance dilemma.

Several authors advocate more information/assistance giving (Kirschner et al. 2006;
Klahr and Nigam 2004), relative to more discovery oriented, situated, or constructivist
approaches (cf., Anderson et al. 1996, 1998). While the experiments referenced in these
papers represent progress toward addressing the assistance dilemma, this work is not clear

Table 2 The Assistance Dilemma: Finding the Balance Between Information or Assistance Giving and
Withholding is a Fundamental Challenge in Designing Effective Instruction

Benefit Cost

Giving information or assistancea Accuracy Shallow processing
Efficiency of communication Lack of attention
Thrill of (supported) success May not engage long-term memory

Stealing chance to shine
Withholding information or assistance Generation effect Cost of errors

Forces attention Floundering, confusion, wasted time
Engages long-term memory Frustration of failure
Thrill of independent success

a Since information giving vs withholding seems a better description for non-interactive forms of instruction,
where as assistance giving vs withholding seems a better description for interactive forms of instruction, we
use both terms
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and precise enough about how much more information/assistance to provide and under what
circumstances. They do not define clear boundaries for how much information giving is too
much and when information withholding is more effective. For example, Kirschner et al.
2006 state, “a worked example constitutes the epitome of strongly guided instruction,” but
they surely do not mean to advocate that instruction should consist only of worked examples.
Indeed, many studies on worked examples show benefits of interleaving worked examples
with problem solving practice (assistance withholding) relative to all problem-solving
practice (e.g., Trafton and Reiser 1993; Ward and Sweller 1990). The extreme no-dilemma
position, that information giving is always better, would predict that all worked examples
would be better than interleaving worked examples and problem solving. We do not know of
such a direct comparison, though it seems unlikely to hold in general given results like those
of Trafton and Reiser’s (1993) interleaving effect, expertise reversal effect (Kalyuga et al.
2001), and generation effects (Slamecka and Graf 1978).

In this paper, we consider the assistance dilemma as it relates to Cognitive Tutors, a form
of interactive learning environments that have been shown to be highly successful in
improving students learning in a range of domains including high-school mathematics
(Koedinger et al. 1997) and Lisp programming (Anderson et al. 1989). Cognitive Tutors
grew out of an attempt to apply and test the ACT-R theory of cognition and rely on
cognitive psychology research in their design and development (Anderson et al. 1995).
Cognitive Tutors make an interesting case study for two reasons: First, their designers (like
those of all interactive learning environments) have faced the assistance dilemma in various
manifestations and have proposed some methods for resolving it. Such methods have some
theoretical support, through application of the ACT-R theory of cognition and learning
(Anderson 1993; Anderson and Lebiere 1998), as well as empirical support from a range of
studies that evaluated both the effectiveness of the tutors as a whole and of individual tutor
features. Second, Cognitive Tutors (and intelligent tutoring systems more generally)
provide suitable testbeds for further research on the assistance dilemma. We are only
beginning to understand how to resolve the dilemma. It is quite likely that there are better
ways of resolving the dilemma than we have explored in Cognitive Tutors. Other student-
related and system-related factors may need to be considered. Before we can establish a
strong theory, a wider empirical base is needed. Cognitive Tutors provide an attractive
platform for such studies, given their presence in many schools in the US and given the fact
that they facilitate detailed logging of students’ learning events.

Thus, our program in this paper is as follows: After a brief overview of the Cognitive
Tutor technology, we re-cast some of the prior research involving Cognitive Tutors as
investigating the balancing of information giving and information withholding, and
consider whether this re-casting helps in formulating further hypotheses with respect to
this issue. Finally, we address potential additions to Cognitive Tutors that may better
address the assistance dilemma.

Brief Overview of Cognitive Tutors

Cognitive Tutors are interactive learning environments that provide various kinds of
assistance as students learn a complex cognitive skill through practice. Cognitive Tutors for
high-school mathematics and college-level genetics have been successful in real
educational settings, as detailed below. Cognitive Tutors for high-school math have also
been successful in the market place, with the Cognitive Tutor Algebra curriculum being
used in over 2,000 schools at the time of this writing (see http://carnegielearning.com). All
Cognitive Tutors share a set of interactive elements, listed in Table 3.
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Each Cognitive Tutor provides the student with a rich problem-solving environment with
a variety of representational tools and presents authentic problem scenarios for the student
to solve. For example, the Algebra Cognitive Tutor, shown in Fig. 1, provides students with
real-world scenarios that require algebraic reasoning, as well as various tools, such as a
worksheet, a grapher, and a symbolic equation solver (which can be viewed by clicking on
the Solver button in the upper right).

As students analyze the scenario, they enter intermediate steps into the tutor’s graphical
user interface as illustrated in Fig. 2. The tutor provides implicit feedback on the correctness
of their steps, accepting correct steps without any fanfare and “flagging” erroneous steps

Table 3 Main Elements of Interactivity in Cognitive Tutors

Key ways cognitive tutors achieve interactivity

1. Problem-solving environment, often with interactive tools
2. Tutorial guidance, in the form of
a. implicit yes–no feedback on correctness on a step-by-step basis
b. specific feedback messages for commonly-occurring errors
c. next-step hints (on demand or tutor initiated)

3. Adaptive problem selection based on student performance solving problems with the tutor

Fig. 1 The Algebra Cognitive Tutor presents students with authentic problem scenarios (left) and a problem-
solving environment made up of representational tools including a table/spreadsheet (top), graphing tool
(bottom), and a symbolic equation solver (available by clicking on the Solver button at the top). Instructional
facilities include feedback on entries in these tools, hints on request (by clicking on the Hint button at top),
an on-line glossary (Glossary at top), and feedback on learning progress (skill bar chart at top)
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(see Fig. 2a). For certain errors that students commonly make, the tutor presents an error
feedback message that explains why the step is wrong (see Fig. 2b, c).

In addition to error feedback messages, at any point in the problem scenario, students
can request help from the tutor. The tutor presents hints that are specific to the solution
strategy taken by the student. Typically, multiple levels of hints are available, as shown in
Fig. 3, with each giving progressively more specific advice. The hints explain which
problem-solving principle can be applied and how. The last hint in the sequence (sometimes
referred to as the “bottom-out hint”) often states what the next step should be (i.e., provides
the answer—or something close to it, such as an arithmetic or algebraic expression that can
be used to find the answer). For instance, the “bottom-out” hint shown in Fig. 3 is “Enter

Fig. 2 Student–tutor interactions on the problem shown in Fig. 1. a The student has made correct entries in
the Worksheet for the quantity names (time, height) and units (minutes, feet) for the relationship described in
the scenario. The tutor accepts multiple possible correct answers (e.g., “time” could be “climbing time”) and
multiple possible orders (e.g., time and height columns could be swapped). The student has entered t to
represent time and the incorrect expression 2t for the height. The tutor flags this error by turning the entry red
and displaying the exclamation mark. b Here the student tries 67 and it is flagged as an error this time with a
question mark. c The student rolls the mouse over the question mark to display the error feedback message
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2.5t+67.0.” This message also illustrates how hints are adapted to students’ solutions—here
using the variable t that the student had earlier entered as the expression for time. Had the
student used a different name for the variable, the hint would have referred to that variable.
Some Cognitive Tutors provide hints proactively when students make multiple errors on a
step without requesting a hint.

In addition to on-demand hints, many Cognitive Tutors provide an on-line glossary,
which contains definitions of terms as well as statements of important theorems and
definitions, often illustrated with an example. Figure 4 shows an example of a glossary
entry (see the bottom middle) in the Geometry Cognitive Tutor. The students can browse
the glossary freely. One motivation for adding the glossary is that general reference
resources like the glossary are part of doing math, not just of learning math.

Finally, Cognitive Tutors select problems for students on an individual basis. They keep
track of students’ knowledge growth over time in order to implement a mastery-learning
approach. The system tracks individual “knowledge components,” which include skills, like

Fig. 3 After the student error illustrated in Fig. 2b, the student requests a hint message by clicking on the
Hint button in the upper right. The hint message “Enter an expression to calculate ...” appears. If the student
needs more help, she can click on the Next Hint button. All five levels of hint are illustrated with the last
“bottom-out” hint being “Enter 2.5t+67.0” (The tutor has only a single hint window and displays only one
hint level at a time within this window. The multiple hint windows represent different content displayed in
the hint window at different times.)
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knowing how to express a linear function in algebraic symbols, and concepts, like the slope
of a function. For each knowledge component targeted in the instruction, the tutor maintains
an estimate of the probability that an individual student has learned that knowledge
component, based on the student’s performance on the assigned problems. The tutor uses the
probability estimates to select problems on an individual basis. After a student completes the
required problems within any given curriculum section, the tutor selects problems that
involve knowledge components that the student has not mastered yet, meaning that its
probability estimate is below a pre-defined threshold, typically set to 0.95. When all targeted
knowledge components in the given curriculum section are mastered, the student is promoted
to the next section. The tutor keeps the student informed about its assessment of their
knowledge, displaying the estimates as a set of “skill bars” (see top right in Fig. 1).
Knowledge components that are mastered are ticked off in the skill bars pane and displayed
in gold. The skill bars provide students with an up-to-date measure of their progress
through the tutor’s problem set. Students can click on the small skill bar panel to see an
enlarged version that contains a brief descriptive phrase for each knowledge component.

Cognitive Tutors are grounded in the ACT-R theory of cognition (Anderson 1993). They
were created partly as an effort to test key tenets of this theory. One of those tenets is that a
complex cognitive domain can be understood in terms of small knowledge components
called production rules that are learned independently of each other. Thus, each Cognitive
Tutor has a production rule model that explicitly represents the target competence that the
tutor is meant to help students acquire. The production rules are fine-grained condition-

Fig. 4 Support for self-explanation in the Geometry Cognitive Tutor. In problem scenarios such as the one
shown at the top left, students compute angle measures and explain their answers, with feedback from the
tutor, in the worksheet at the top right. To explain each step, they enter the name of a geometry theorem or
definition that was applied. They can either type the name or select it from the tutor’s glossary of geometry
knowledge, shown at the bottom. In the example shown above, the student entered “triangle sum” as the
reason for one of their steps. After the tutor’s feedback indicates that the explanation is wrong (by means of
an exclamation mark and red font), a hint from the tutor (shown at the student’s request in the window just
below the worksheet) reveals the correct reason
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action pairs that tie particular actions (such as writing out an intermediate result or final
answer) or subgoals to particular higher-level goals and context features. A model for a
complex domain like solving linear equations would typically contain several hundreds of
production rules, depending somewhat on the grain size with which knowledge components
are modeled (e.g., Koedinger and Corbett 2006).

The production rule model provides the domain intelligence, that is the tutoring system’s
knowledge of algebra or geometry. The model enables the tutor to solve the same class of
problems that it asks students to solve. The tutoring intelligence comes from two algorithms
called model tracing and knowledge tracing. Model tracing uses the model to interpret each
student action and to follow students’ different strategies as they work through problem
scenarios. The results of model tracing are used to provide students with correctness and
error feedback and to individualize instructional advice to each student’s particular
reasoning steps or chosen strategy. An algorithm called knowledge tracing is used to
estimate how well an individual student has mastered each key production rule. The results
of knowledge tracing are used to determine (a) the selection of problems relevant to
individual student needs and (b) when the student has mastered the all the knowledge
components, the concepts and skills, in a curriculum unit.

Evidence in support of ACT-R’s notion of the production rule as the unit of procedural
knowledge comes from research that involves Cognitive Tutors (Anderson 1993; Anderson
et al. 1995). In particular, a production rule analysis was key in accounting for “learning
curve” data generated from logs of students’ interactions with the Cognitive Tutor for LISP
programming. Without using production rules to guide analysis, these data do not yield a
smooth learning curve, that is, there is not a systematic decline in student error rate on
successive actions they perform in solving problems. However, when those actions are
categorized in terms of the corresponding production rules, a smooth learning curve is
revealed consistent with the overall improvement seen from pre-test to post-test. Error rate
does not go down in the generic curve because students are not learning “programming” as
a large-grain general skill, but in smaller production-rule-sized components. Later problems
in a curriculum require new ideas or production rules and students initially struggle with
these new production rules (error rate goes up). Students later show successive im-
provement (error rate goes down) on actions involving the same production rules. These
patterns provide evidence that learning occurs at a grain size about the size of a production
rule. Ohlsson and Mitrovic (2006) have also applied this approach of using smooth learning
curves as a empirical method to zero in on the grain size of knowledge acquisition. They
used “constraints” instead of production rules as their unit of analysis, but the same pattern
emerges. Debates about knowledge representation aside, the key point is that the
knowledge components that students acquire, whether production rules, constraints, skills,
or concepts, are quite specific and differentiated.

Algorithms that support interactivity in cognitive tutors

The model-tracing algorithm evaluates the correctness of each student attempt at solving a
step by comparing the student’s step to the possible steps that the cognitive model would
take in the same situation. If the action taken by the student is among these actions, the
tutor provides implicit positive feedback, and the student is assumed to have used the
production rules that were used by the model to produce the given action. If a student action
corresponds to a production rule that models incorrect behavior, the tutor provides negative
feedback and presents an error feedback message associated with the corresponding
production rule (see Fig. 2b, c). If the student action does not correspond to any production,
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the tutor provides negative feedback without further explanation. The model-tracing
algorithm is used in a similar manner to provide hints upon a student’s request. When the
student requests a hint, the tutor selects one of the productions that could apply to generate a
next step at this point. A hint template attached to this production is filled in with problem-
specific information and then presented to the student. Variants of this model-tracing
technique are used in a number of other intelligent tutoring systems, for example, the Andes
tutor for physics (VanLehn et al. 2005) and the SlideTutor for interpreting diagnostic images
related to skin diseases (Crowley et al. 2005; Crowley and Medvedeva 2006).

A second major algorithm, knowledge tracing, maintains estimates of the probability that
the student knows each knowledge component in the model, represented by a key
production rule (Corbett and Anderson 1995). The knowledge tracer uses information
provided by the model-tracing algorithm: when the student action is correct, the production
rules involved in that correct action; when the student action is incorrect, those that should
have been used. For each step in a problem, the estimates of the relevant knowledge
components are updated (i.e., the production rules determined by the model-tracing
algorithm), contingent upon whether the student performed the step correctly on her first
attempt or whether she made an error or requested a hint. The updating procedure is based
on a simple Bayesian formula, which assumes that the student is in one of two states with
respect to a given production rule: the student either knows the rule or not. The Bayesian
formula expresses the probability that the student knows the knowledge component as a
function of three parameters, assumed to be fixed: (a) a probability that a student learns the
knowledge component as a result of encountering it (once) in any given tutor problem, (b) a
probability of guessing right even when the knowledge component is not mastered, and (c)
a probability of not getting the step right even if the knowledge component is mastered. The
knowledge-tracing procedure enables the tutor to determine when a student is ready to move on
to the next curriculum unit and, before that, to select problems that give students more practice
and instruction on un-mastered knowledge components.

Characterizing the interactive elements of cognitive tutors

It is informative to compare Cognitive Tutors to various alternatives, along the dimensions
displayed in Table 1. We would place Cognitive Tutors squarely in the Interactive column—
we stress that the table in spite of its “discrete” character really represents a continuum.
With respect to the implicit/explicit dimension, some features may be considered implicit
learning (e.g., yes/no feedback), others exemplify a more explicit instructional approach (e.g.,
principle-based hints). Along the interactivity dimension, it may be clear that Cognitive
Tutors are significantly more interactive than alternatives such as having students solve
textbook problems as homework, or having them solve problems with the help of typical
computer-assisted instruction (Eberts 1997). A student who solves problems at the end of a
textbook chapter receives feedback only after the teacher has graded the solutions, a day
later. Since there is feedback, the instruction is Interactive, but it is low on the interactivity
scale. Typical CAI systems are more interactive: they offer feedback at the end of each
problem. In addition to indicating whether an overall problem solution is correct, they may
provide short explanations with respect to certain anticipated wrong answers. Cognitive
Tutors are even more interactive. Compared to these alternatives, the assistance provided by
Cognitive Tutors is more frequent, often more detailed, and more explicit. Cognitive Tutors
offer feedback on problem steps, not just final solutions. Further, they offer solution-
specific step-by-step hints and adaptive problem selection. These differences in interactivity
are sometimes analyzed in terms of nested (instructional) loops (VanLehn 2006).
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Compared to a skilled human tutor, often thought to be the most effective form of
instruction (Bloom 1984), Cognitive Tutors are close in their level of interactivity. They
have much in common with the way human tutors support students as they work through
problems (Merrill et al. 1992), even if human tutors are capable of more flexible dialogue
with students and may have a wider range of instructional and motivational strategies than
Cognitive Tutors do (Lepper and Malone 1987).

Related to the framework outlined in the introduction, it is interesting to consider how
Cognitive Tutors balance the giving and withholding of information. At first blush, it may
seem that Cognitive Tutors are heavy “information givers.” They provide yes/no feedback
after each attempt by a student at solving a step, sometimes accompanied by an error
feedback message. They also provide detailed solution-specific hints for each step.
However, Cognitive Tutors also withhold a considerable amount of information: First, these
systems present problems, not worked-out examples. It is up to the student to generate the
solution steps. Second, hints are given mainly at the student’s request, and far less often, at
the tutor’s initiative. Within hint sequences, information is revealed gradually, with
subsequent hint levels being displayed only when the student requests more information.
Also, there is an incentive for students not to ask for hints before their first attempt at
solving a step, namely, that such hint requests typically cause the tutor to revise its estimate
of their knowledge component mastery in the downward direction. Third, even when yes/no
feedback is provided, information is being withheld: the feedback does not give the answer,
for example. This combination of features was thought to balance the benefits of
information giving and withholding in a reasonable way—see related discussion by
Anderson (1993) and a summary by Aleven et al. (2003).

The separate elements of this strategy are consistent to varying degrees with the ACT-R
theory, which has served as both a guide to Cognitive Tutor design and as a target for
insights from tutor experiments that have led to revisions in the theory. Learning by doing
(i.e., by solving problems) is a key tenet of the ACT-R theory (Anderson 1993; Anderson
and Lebiere 1998), which claims that production rules are acquired and strengthened
through use in problem solving and reasoning. In designing the Cognitive Tutor feedback
strategy, an overriding concern was to minimize floundering on the part of students. Under
the ACT-R theory, learning occurs when production rules are applied successfully in the
course of problem solving. Allowing students to spend extended time to pursue incorrect
paths does not contribute to this process and thus can waste valuable learning time (see
Anderson et al. 1995). To keep students focused on successful learning experiences,
Cognitive Tutors provide feedback immediately whenever a student makes an error in
attempting to apply a targeted knowledge component.

Since hints are given mostly at the student’s request, Cognitive Tutors rely on students to
find a good balance between the provision and withholding of explanatory information (as
opposed to yes/no feedback on the correctness of their solution steps). It was thought that
students would be in a better position than the tutor to judge when they could benefit from
more explicit information than that contained in the tutor feedback. For example, after an
error, it may be difficult for the tutor to judge whether the error is the result of a fundamental
difficulty or is simply a slip. A student may be in a better position to make that judgment.

Empirical Support for Interactivity in Cognitive Tutors

Two strands of empirical evidence support the interactive features found in Cognitive
Tutors: studies focused on the overall effectiveness of the tutors and the curricula of which
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they are part, and studies focused on the effect of individual elements of interactivity.
Together, these studies make a strong case that Cognitive Tutors are highly effective and
that many interactive elements contribute to their overall effectiveness. Other relevant
research on related issues comes from the older computer-aided instruction tradition, which
has yielded similar conclusions and open questions (Eberts 1997; Kluger and DeNisi 1996).
We re-interpret the studies focused on individual interactive elements as investigating where
the balance between information giving and information withholding should lie, within a
context of problem-solving practice. By doing so we take a modest first step toward theory
formation around this issue.

Overall effectiveness

Evaluations of the overall effectiveness of Cognitive Tutors show significant advantages
over common learning environments that do not involve computer tutors, such as
mathematics classroom instruction or a traditional programming environment for Lisp.
An early study of the Geometry Proof Tutor (a pre-cursor of the Geometry Cognitive Tutor
shown in Fig. 4) in classrooms, showed large learning gains, due to the tutor, and showed
that students who had worked with this tutor scored about one standard deviation better
than students taught by the same teacher who did not work with the tutor (Anderson et al.
1995). The benefit was not observed for students working with the tutor in pairs, indicating
that the tutors support individual learning more effectively than collaborative learning.
Further, early studies involving the Lisp Tutor showed 30–43% higher learning gains and
30–64% more efficient learning, compared to working in a standard Lisp programming
environment (Anderson et al. 1995).

A number of studies have evaluated the effectiveness of the complete Cognitive Tutor
Algebra course. This year-long course combines text materials and classroom activities,
which students typically use for 3 days a week, and the Algebra Cognitive Tutor, which
they typically use 2 days a week. In studies in Pittsburgh and Milwaukee, students in the
Algebra Cognitive Tutor curriculum were compared to students in a standard algebra
curriculum (Koedinger et al. 1997). Students in the Cognitive Tutor curriculum scored 15–
25% higher on items taken from standardized tests and 50–100% higher on test items that
involved problem solving and the use of representations. A number of subsequent studies,
some of which were conducted by third parties, confirmed the advantages of the Cognitive
Tutor curriculum (Morgan and Ritter 2002; Plano 2004; Sarkis 2004; Shneyderman 2001).
In a number of these studies, the effect was particularly pronounced for special education
students, non-native speakers of English, and low-income students (Plano 2004; Sarkis
2004). See also http://www.carnegielearning.com/approach_research_reports.cfm. Data
collected in the Pittsburgh School District show that students taking a three-course
sequence of Cognitive Tutor Algebra, Geometry, and Algebra II, did 30% better on TIMMS
test items and 227% better on a task involving real-world problem solving than did students
in a comparable school who took traditional courses. Finally, evaluations of the Cognitive
Tutor curricula for middle-school math also indicate that students learn better with the
Cognitive Tutor math curricula than with other curricula (Koedinger 2002).

The studies discussed above provide evidence of the overall effectiveness of Cognitive
Tutors curricula, compared to other forms of instruction. They however do not show that it
is the tutors’ interactivity per se that causes the effect, given that there were a number of
additional differences between the Cognitive Tutor curricula and the comparison curricula.
In the next section we discuss a number of studies focused on individual elements of
interactivity that do allow for tighter causal attributions.
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Interactivity 1: immediate yes/no feedback

Although we have argued that good instruction should find an appropriate balance between
the giving and withholding of information, there is not as yet a strong theoretical basis for
predicting where the balance should lie—currently, finding the right balance is an empirical
question. Let us consider where the balance should lie immediately following a student’s
attempt at solving a step in a tutor problem.

As mentioned, in designing the Cognitive Tutors’ feedback strategy, an overriding concern
was to minimize students’ floundering in an attempt to detect and fix errors, for which the
ACT-R theory predicts no benefit. Therefore, Cognitive Tutors inform students of the
correctness of solution steps as soon as students enter them. One might wonder, however,
whether it would not be better to allow potential advantages of information withholding to
occur after students enter solution steps, for example by delaying the feedback until it is clear
that the student is not going to repair any errors they may have made.

A study by Corbett and Anderson (1995), however, provided no support for the
effectiveness of information withholding via simple forms of delayed feedback. Using the
Lisp tutor, they compared four feedback conditions: immediate feedback (where feedback is
given immediately following a student’s attempt at solving a step, as in the regular
Cognitive Tutor), flag feedback (where the tutor flags errors but provides no feedback
messages until the student asks for them), on demand feedback (where errors are not
flagged until the student requests feedback), and no feedback (where feedback is given only
at the end of each programming exercise). They found that the three feedback conditions
led to better and faster learning compared to the no feedback condition. There was no
difference in the learning results between the three feedback conditions, but there was a
difference in the amount of time spent to complete a fixed set of problems. The students in
the immediate feedback condition did so the fastest, about three times faster than the
students in the no feedback condition. Somewhat surprisingly, the students in the demand
feedback condition did not request feedback very often. In 90% of the programming
exercises, they did not ask for feedback until they had reached a preliminary solution.

This result provides strong experimental support for one of the key interactive features
of Cognitive Tutors, namely, the immediate provision of yes/no feedback after student
problem-solving steps. Withholding of this information was shown to be counterproductive.
On the other hand, the study result does leave open the possibility that a different method of
timing yes/no feedback is more successful. A study addressing this issue is described in a
later section of the paper.

Interactivity 2: feedback content

If it is fruitful to provide yes/no feedback after problem-solving steps, how about providing
even more information? For example, the tutor could provide explanatory feedback, in
addition to yes/no feedback, in an effort to make the learning process more “explicit” or to
reduce floundering. But what kinds of explanations are most helpful in this regard?

A study by McKendree (1990) varied the feedback content in the Geometry Proof Tutor
along two dimensions, which were crossed in a 2×2 design: whether the feedback included
goal information (i.e., pointed out the subgoal that the student should be pursuing, if they
made a wrong choice) and whether it included condition violation information (i.e., pointed
out an error in the way the student applied a chosen geometry theorem or definition). She
found that feedback with explanatory content supports performance and learning better than
yes/no feedback. The difference was statistically significant for the post-test error rate and
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marginally significant for the error rate during training. She found also that students who
received explanatory feedback were more likely to correct their errors on subsequent
attempts than did students who only received yes/no feedback. The advantages were
strongest in the groups who received feedback on goals.

A likely interpretation of the result is that the goal statements in the feedback messages
helped reduce floundering after errors. The better performance on the post-test suggests
perhaps that they also led to a more explicit learning process. (See also Anderson et al.
1995, p. 191.) The result of the study suggests further that it is not necessary to be
concerned that meaningful feedback after errors is difficult to provide if the tutor does not
know the exact nature of the students’ difficulties (see the discussion above). Apparently,
when a good guess can be made about how to help students proceed with the current
problem, it is an effective strategy to provide that information. Different information may
be helpful in different domains. For example, in solving algebraic equations, it may be
helpful to provide goal information, but not in a situation where the next goal to work on is
obvious (e.g., in a worksheet-style interface). The broader conclusion however is that
giving more information after problem-solving errors than just yes/no feedback is helpful,
in particular if that information helps to reduce floundering or make learning more explicit.

Interactivity 3: hint content and timing

In contrast to feedback messages, which are given in reaction to a student’s previous attempt at
a problem-solving step, tutor hints provide information about the next step a student may
perform. Two questions about the current Cognitive Tutor approach to providing hints are
relevant: (1) are hints containing principle-based explanations effective in supporting learning
beyond hints that simply provide the next step? and (2) is it better to provide hints on demand
only (a kind of information withholding) or also for the tutor to proactively provide hints?
Although these questions have not been fully answered yet by empirical studies, the tentative
answer to the first question appears to be yes, and to the second question appears to be no.

Anderson et al. (1989) conducted a study in which they evaluated the effect of the tutor’s
mastery learning method and of explanatory content in both the tutor’s hints and its
feedback messages. They compared the regular Lisp Tutor, which provides explanatory
content in its hints and in some of its error feedback messages, with a version that simply
told students they were wrong when they made errors, or gave them the correct answer
when they requested a hint. They found that explanatory messages help students learn
faster, but not better. They speculated that the students in the no explanations condition,
after seeing the answers provided by the system, were able to generate their own
explanations of the answers, but that it took extra time to do so.

Together, these studies provide suggestive evidence (albeit not decisive evidence) that
the content of on-demand hints can have an effect on students learning results. Aleven et al.
(2003) provide a review of similar results including studies by Schworm and Renkl (2002)
that showed that on-demand hints lead to better learning in a system for example studying.

Given that principle-based explanations are effective, how can we make sure that
students get them when they need them? As mentioned, Cognitive Tutors give hints
primarily at the student’s request. Thus, it is the student (and not the system) who works
toward achieving an effective balance between information received and information
generated. It was thought that students would be better at doing so than computer tutors.
The evidence is mounting, however, that students are not good at seeking assistance or
information at the right time. The evidence stems both from middle-school to high-school
students (e.g., Aleven and Koedinger 2000a; Aleven et al. 2006, 2003; Baker et al. 2004;
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Koedinger and Anderson 1993). For example, log data from the Geometry tutor indicate
that students frequently use bottom-out hints to obtain answers, without reading prior hints
that explain why the answer is what it is. Other forms of poor help seeking were quite frequent
as well. For example, even after multiple errors on a step, students often do not request help.
These results contradict the notion that students may be better able than the system to decide
when they can benefit from the tutor’s help messages. It is hard for them to request help at the
right time, just as it is hard for them, as we saw above, to request feedback at the right time.

There are a number of different ways of thinking about the design implications of these
findings. The first is to redesign the tutor so that it achieves a better balance between
withholding and providing problem-solving hints, for example by making it provide more
information proactively after problem-solving errors. The second is to focus on helping
students learn to create a better balance for themselves. For example, the system could provide
remedial instruction to mitigate the negative effects of poor help-seeking decisions (“gaming”
the system; e.g., Baker et al. 2004). Alternatively, one could extend the tutor so that it provides
tutoring not just with respect to domain-specific knowledge components (e.g., algebra or
geometry) but also with respect to students’ help-seeking skills (Aleven et al. 2006; Baker et
al. 2006; Roll et al. 2006). The aim of this kind of metacognitive instruction is for students to
learn to balance, themselves, when to seek information and assistance versus when to try to
think on their own. If that ability can be successfully acquired in a domain-general
transferable way, it would enable students to do better in learning environments that do not
provide a good balance between information-giving and information-withholding. This tough
challenge for tutor designers is discussed further below.

Interactivity 4: knowledge component assessment and mastery learning

The third main form of interactivity in Cognitive Tutors (see Table 3) is the mastery
learning method. It represents a form of assistance giving that involves choosing problems
for students to solve as opposed to students choosing problems themselves (it is information
giving at the metacognitive level). As mentioned, Cognitive Tutors select problems on an
individual basis, focusing on knowledge components that the student has not mastered yet,
until sufficient evidence has accumulated that the student masters all knowledge
components targeted in a given curriculum section. Three studies provide evidence of the
effectiveness of the tutor’s mastery learning method, suggesting that information providing
at the meta-cognitive level is a good thing to do.

Mastery learning is of course not new with Cognitive Tutors (e.g., Bloom 1984; Guskey
1987), although its implementation in Cognitive Tutors is different from most other
implementations in that students’ mastery is evaluated on an individual basis and with respect
to detailed knowledge components (Anderson et al. 1995). Thus, the main question addressed
in the studies of mastery learning in Cognitive Tutors is whether individual mastery learning
focused on production rules as the units of learning is successful, and whether the tutor’s
particular implementation of this idea is adequate. Specifically, whether the model-tracing and
knowledge-tracing algorithms working in tandem assess a student’s skill accurately and
whether the tutor’s problem selection algorithm selects appropriately difficult problems.

Two early studies involving the Lisp Cognitive Tutor showed that the tutor’s mastery
learning method leads to improved learning (Anderson et al. 1989; Corbett and Anderson
1995). In these studies, a version of the tutor with the mastery learning approach was
compared against a version that assigned a fixed set of tutor problems to all students,
regardless of their performance. The students in the mastery condition had significantly
higher learning gains, confirming that the tutor was successful in assigning extra problems
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that were not redundant with what the students knew already. A third study took into
account the time that students spent. The study showed that the mastery approach leads to
large learning gains at the cost of only very little extra time spent (Corbett 2001). An
interesting finding from this study is that the students in the mastery learning condition
solve many more problems, but spend almost no extra time.

The three studies described above provided ample evidence that the mastery-learning
mechanism is an effective way of improving student learning, without great cost in terms of
time spent. Thus, they indicate that information giving at the meta-cognitive level can be
effective. As a practical matter, the mastery learning method is a valuable addition to
Cognitive Tutor technology. It is used in both the Algebra and Geometry Cognitive Tutors
(see Figs. 1 and 4). In addition to supporting individualized problem selection, the mastery
learning mechanism helps provide students with a goal to work for, namely, to get their skill
bars ticked off by the tutor. Also, the mastery-level criterion discourages a “gaming”
strategy by which students repeatedly ask for hints until the next problem-solving step is
revealed to them. Under the mastery-level criterion, this strategy yields short-term success
only. It helps in getting through the problem at hand, but it will lead the tutor to assign more
problems later on. Students typically are aware of that fact, although that does not always
stop them from using this strategy. It remains an open question for future experimentation
whether displaying the skill bars provides motivational and learning benefits above and
beyond the benefits of knowledge tracing for problem selection and pacing.

Implications

The studies presented above provide strong evidence for the effectiveness of Cognitive Tutors
over other forms of instruction, including typical classroom instruction. They also support the
main interactive features listed in Table 3 (yes/no feedback, on-demand hints, and mastery
learning). With respect to the information giving/withholding dimension, the results of the
studies on yes/no feedback, feedback content, and hint timing consistently indicate that
giving information after a problem-solving step is better than withholding it. This conclusion
should not be interpreted as sweeping support for information giving in general, because it is
important to recall that these strategies were evaluated in a context in which students were
engaged in active problem solving, which is an important kind of information/assistance
withholding. Instead, these techniques for tutored problem solving provide a particular
approach to effective balancing of giving and withholding. The Corbett et al. study showed
that immediate yes/no feedback is better than no feedback or delayed feedback. The
McKendree study showed that explanatory error feedback is better than just yes/no feedback.
Finally, the study on hint use confirms that on-demand hints are often not used as intended by
students. Generalizing beyond the specifics of the studies, it seems implied that within a
context of tutored problem solving, information should be withheld very sparingly and that
subsequent research on improving tutored problem solving may be more successful if it
focuses on methods to give more information rather than methods to withhold it.

Enhancing Cognitive Tutors: What Does and Does Not Work

Should worked examples be added to cognitive tutors?

Given numerous laboratory results showing benefits of alternating worked examples with
problem solving over problem solving alone (Atkinson et al. 2000; Renkl 2002; Sweller
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and Cooper 1985; Trafton and Reiser 1993; Zhu and Simon 1987), we began to wonder
whether Cognitive Tutors, which have students performing problem solving, might be
enhanced by adding worked examples. Mathan (2003) began investigating the addition of
worked examples within a Cognitive Tutor for Excel Programming.2 Given the passive
nature of worked examples (cell 4 in Table 1, passive/implicit), Mathan (2003) decided to
create a more active form of worked example whereby students were told the steps to
perform, but were required to answer questions about reasoning toward these steps and
perform the steps themselves. These “walkthroughs,” as Mathan (2003) called them, require
activity on the students’ part and included feedback. They thus belong in the interactive
column of Table 1. He found increased learning due to walkthroughs in two of four
comparisons and no difference in the other two. The results suggest benefits of adding such
interactive worked examples to Cognitive Tutors in certain situations. However, they were
not a necessary part of the conditions that achieved the best results in Mathan’s (2003)
studies (discussed further below).

In a more direct adaptation of successful laboratory results on worked examples,
McLaren et al. (2006) inserted worked examples between tutored problems in a Cognitive
Tutor for chemistry. In contrast to numerous prior studies, they found no benefit for the
addition of these worked examples. Students in the problem-solving condition learned just
as much as those in the interspersed worked-example and problem-solving condition. This
result was replicated with both college and high school students and thus, appears to not be
a consequence of an “expertise-reversal effect” whereby the benefits of examples fade and
reverse as students develop expertise (Kalyuga et al. 2001). It appears the key difference is
that in prior studies, the problem-solving or practice activities did not involve regular
feedback (they are active, but not interactive), whereas in the study of McLaren et al.
(2006) the problem-solving activity was tutored, that is interactive.

Tables 1 and 2 can be used to interpret the difference in the results. In the prior studies,
combining worked examples and problem-solving practice (the passive/implicit and active/
implicit cells 4 and 5 in Table 1) improves on problem-solving practice alone (cell 5, active/
implicit) because the combination represents a better mix of information giving (examples) and
withholding (practice). Problem-solving practice alone has too many of the costs of information
withholding (Table 2)—without having a good sense for what are the correct domain know-
ledge components (operators, concepts, principles or strategies) students flounder and make
too many errors. This interpretation is similar to the “extraneous cognitive load” explanation
provided by others (Clark and Mayer 2003; Paas and Van Merrienboer 1994; Sweller 1988).
However, what is extraneous in this interpretation is not the reasoning needed during problem
solving per se, as posited by Sweller (1988), but the errors and non-productive search that
occur due to lack of available information on correct domain knowledge.

In contrast, in the study of McLaren et al. (2006) study, worked examples are not added
to unsupported problem-solving practice, but to tutored problem-solving practice. Because
the tutored problem-solving practice group (interactive/implicit cell 6 in Table 1) gets
feedback on their errors and can request hints if needed, they too have a mix of information/
assistance giving and withholding. Information is withheld while students are successfully

2 This effort was not the first to incorporate examples in Cognitive Tutors as the original LISP tutor had
hypercard declarative instruction and examples interspersed with problem-solving practice in the tutor. Use
of worked examples in the Cognitive Tutor Algebra course, both in text materials and in the tutor, were
discouraged by our collaborating instructors (cf., Koedinger et al. 1997) because it was thought that urban
students, if they processed the examples at all, would do so shallowly, which would impede deeper
conceptual understanding that might better come from classroom discussion and collaborative projects.
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engaging in problem solving, but the potential error/floundering cost of withholding is reduced
because students are immediately cued when they make errors. Further, the benefits of
information giving are present because accurate and timely information is provided, through
hints at the students’ request (which often follow an error). In the context of tutored practice as
opposed to untutored practice, the information-giving benefits of worked examples may
essentially be redundant. In essence, the tutor dynamically converts a problem-solving
experience into an annotated worked example when the student is having enough trouble such
that they request the final “bottom-out” level of hint that tells them what to do next.

To summarize, while untutored problem solving practice may suffer from not enough
information giving for beginning learners, interactive tutoring of problem solving may
provide sufficient information, in the form of immediate step-based feedback, just when
students need it. Relative to tutored problem solving, the information giving in interleaved
worked example study may be superfluous in beginning learning and may tip into too much
information giving in later learning.

In contrast to the McLaren et al. (2006) result, Schwonke et al. (2007) found a benefit of
adding worked examples to the Geometry Cognitive Tutor, but with a twist. To adjust
information giving/withholding to learners’ growing competence, they implemented a gradual
transition from example study to problem solving in the form of “faded” worked examples
(Renkl et al. 2004). Students first see an example, where answers to all problem steps are
given, and then in subsequent examples the answers to steps are gradually taken away or
“faded” as so as to convert examples into problems. Both example steps and problem-solving
steps are interactive (or tutored). On the example steps, students are asked to explain the
worked-out steps and receive feedback on their explanations (see the next section on self-
explanation). Students in the faded-example condition learned more efficiently, taking
significantly less instructional time to achieve better post-test outcomes on declarative
knowledge and equal outcomes on procedural knowledge (Schwonke et al. 2007). These
results highlight the possibility that in interactive instruction that involves interleaving
examples and problems, it may be better for beginning learners to have information-giving
examples come before information-withholding problems. And then transition to tutoring,
where examples follow problems in the form of as-needed hints, as learners begin to develop
greater independent competence on targeted knowledge components.

Exploring self-explanation in cognitive tutors

Perhaps one of the most important findings regarding learning and instruction in the past
20 years is the role of “self-explanation” in effective learning of complex reasoning and
problem solving. Chi et al. (1989) found that poor learners of physics skim worked-examples
in textbooks and make shallow analogies when solving homework problems whereas good
learners try to explain to themselves the reasoning from one step to the next and then make
deeper analogies during problem-solving practice. In terms of Table 1, while implicit
example-based induction is powerful for learning (cell 4, passive/implicit), it can be enhanced
by the more explicit rule-based reasoning behind self-explanation (cell 2, active/explicit).
VanLehn et al. (1992) provided a computational model of good versus poor learners in terms
of how good learners are more likely to try to fill the gap between steps in an example by
chaining together existing, perhaps intuitive, knowledge to derive the result of the step.

Prompting students to self-explain has been shown in laboratory studies to enhance
learning (Atkinson et al. 2003; Chi et al. 1994; Renkl et al. 1998; Siegler 2002). Self-
explanation support has also been shown to be effective in classroom use (Aleven and
Koedinger 2002) and has “gone to scale” as it is implemented as part of the Cognitive Tutor
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Geometry course. Such benefits can be successfully implemented in a computer-
interpretable form (explaining by reference to names of reasons in a glossary, which is
essentially a long menu) that facilitates automatic feedback on the correctness of those
explanations.

We can contrast self-explanation without feedback (cell 2 in Table 1, active/explicit) with
self-explanation with feedback (cell 3, interactive/explicit). Most past studies have
prompted for self-explanations without providing students with feedback on whether or
not those self-explanations are correct and accurate. They typically involve the presence of
an experimenter in a one-on-one interpersonal setting. This setting produces social demands
for the student to comply with the request that they try to self-explain. Self-explanation
without feedback may work in this lab setting because of the presence of the experimenter
and the implicit “demand characteristics” on the student to make an effort.

In contrast, compliance may be reduced in a classroom or homework setting where students
do not have an adult nearby. Indeed, we created a new self-explanation version of the Geometry
Cognitive Tutor where students were prompted to type principle-based self-explanations (e.g.,
“the angles in a triangle sum to 180”) instead of referencing a reason in glossary. In an initial
pilot study in a high school (Aleven and Koedinger 2000b), students were not given feedback
on their explanations and we found they only rarely made reasonable attempts at explanations
(less than 10% of the time) and instead often provided inadequate explanations, and even
more often gave off-task explanation responses like “because I said so.”

These students appear to be missing the motivation, self-discipline, or meta-cognitive
skills to seriously engage in self-explanation without feedback. For such students, inter-
active forms of instruction that provide feedback may be fairly critical to keeping them on
task. It may be that for more motivated and better-prepared students, feedback on self-
explanations is not necessary.

Indeed, the best students learn reasonably effectively (though perhaps not as efficiently
as possible)3 from passive forms of instruction like textbook descriptions and examples
(cells 1 and 4 in Table 1). Can we help poor students become better learners through more
direct forms of metacognitive instruction (cf., Schoenfeld 1983; White and Frederiksen
1998)? As described in the next section, we have been exploring this question in the context
of Cognitive Tutors.

Other cognitive tutor studies of metacognitive support

Improving learning through error self-detection and correction Despite the successful
demonstration of immediate feedback in the LISP tutor study described above, many have been
critical of the notion of immediate feedback in tutors. To some, immediate feedback seems to play
the assistance dilemma too much in the direction of assistance giving. In fact, some critics view
Cognitive Tutors as being on the information/assistance-giving end of a simple dichotomy—a
view that is oversimplified as indeed tutors that provide immediate feedback during problem-
solving practice withhold more information than textbooks or worked-examples. Nevertheless, it
is possible that immediate feedback is stealing from students an opportunity to learn to detect
their own errors and to learn from them4 (Schmidt and Bjork 1992).

3 As described above, even excellent college students at Carnegie Mellon University benefited in time
savings from the immediate feedback of the LISP tutor.
4 In fact, immediate feedback tutors do allow students to learn from their errors—after all students are
required to correct their errors and can and often do so without further assistance. However, they are not
given the opportunity to learn from the downstream consequences of their errors.
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Using the Cognitive Tutor for Excel described above, Mathan and Koedinger (2005)
explored whether a particular form of delayed feedback can improve student learning. They
reinterpreted the feedback debate as being more about the “model of desired performance”
that is the goal of instruction than about the delay between student response and tutor
feedback. In contrast to the goal of producing error-free experts, one might want to produce
“intelligent novices” who may make initial errors, but are able to detect them and correct
them. If immediate feedback is given relative to an intelligent novice model of desired
performance (where certain initial errors are allowed, provided that the student catches them
right away), it will appear delayed in comparison to immediate feedback relative to an
expert model of desired performance (where all errors get immediate feedback). Students
learned more from the intelligent novice tutor. Why? It was probably not by improving
meta-cognitive “evaluative” skills (as Schmidt and Bjork call them). We would expect such
skills to be acquired gradually over time, but a learning curve analysis showed that the
benefit was already present after students’ first opportunity to experience the feedback
manipulation. In addition, improvement in evaluative skills would be consistent with a
pattern of post-test results whereby the groups are equal on an immediate post-test, but
separate on measures of robust learning, like long-term retention and transfer. In fact, the
treatment was better on all measures, both immediate and robust learning measures.

An alternative interpretation is that through seeing the consequences of their errors,
which are particularly apparent in Excel, students were able to explicitly reason about how
their initial attempts led to errors and how they could be modified to achieve the desired
outcome. This interpretation appears consistent with Siegler’s (2002) results that having
students do self-explanations not only of correct solutions, but also incorrect solutions
improves their learning. He argues that learners must not only acquire and strengthen
correct knowledge components, but also weaken and eliminate incorrect knowledge. In
effect, the intelligent novice condition helped students rationalize, like the derivations in the
self-explanation model by VanLehn et al. (1992), why their misconceptions do not work. It
also helped them rationalize why critical relevant features must be included in correct
knowledge components. Nathan (1998) also demonstrated benefits of providing feedback
that helps students see meaningful downstream consequences of their errors and Ohlsson
(1996) provided a detailed theory and computational model of learning from errors.

Cognitive Tutors for improving help-seeking skills and reducing ‘gaming’ Besides meta-
cognitive support for self-explanation and error self-correction, we have explored providing
meta-cognitive support for improving student help-seeking skills and reducing unproduc-
tive learning behaviors. This work was inspired by data mining of logged student–tutor
interactions in which we noticed a high frequency of what appeared to be non-ideal student
behaviors that were correlated with poor learning (Aleven and Koedinger 2000a). As
mentioned above, despite the feelings of many advocates for greater student control in
interactive systems, when given that control students do not always use interactive features
as intended. On the one hand, students sometimes attempt to circumvent information
withholding (i.e., avoid thinking) by engaging in fast and repeated guessing or asking for
hints more often or faster than appropriate—Baker coined the phrase “gaming the system”
to describe such behaviors (Baker et al. 2004). On the other hand, students sometimes avoid
information giving by not seeking help when it is likely needed.

Early efforts to create Cognitive Tutors to improve help seeking and reduce gaming have
resulted in some limited success. We developed a help-seeking tutor and integrated it into
the Geometry Cognitive Tutor. This adjunct tutor provides feedback on students’ help-
seeking behavior, as they use the tutor to solve geometry problems. For example, the help-
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seeking tutor provides feedback when students engage in the maladaptive help-seeking
behaviors described above. An initial study showed reductions in some poor help-seeking
behaviors during instruction, but no consequent improvements in geometry learning (Roll
et al. 2006). In a different effort, a Data Analysis Cognitive Tutor was enhanced with a
machine-learning-based gaming detector (Baker et al. 2006). When the enhanced tutor
detected gaming behavior, it responded by emotional displays of an animated agent and by
presenting supplementary exercises on related material. Students with the gaming tutor
showed reduced overall gaming behavior and the number of supplementary exercises
received was associated with better learning. However, the difference in domain learning
was not statistically reliable across the whole sample, perhaps because harmful gaming was
present in a relatively small subset (about 10%) of the students.

It is still an open question as to why students engage in gaming behavior. It may be in
part a rational effort by less knowledgeable students to compensate for what may be, from
their perspective, premature information withholding. Some “gamers” may be hurrying to
get an example of a correct step in order to have something to study because they are, as of
yet, incapable of correctly generating the step themselves. For instance, Crowley and
Medvedeva (2006) found that a subset of medical students using an intelligent tutor engage
in gaming-like behavior during early problems in the curriculum and evidence greater
independent success on later problems. These arguably established good learners may
essentially be using the tutor’s bottom-out hints to create worked-examples for themselves
and may be choosing to engage in self-explanation rather than be explained to.

Conclusion

Instructional interaction should optimize student involvement, not maximize or minimize it.
The potential benefits of withholding information or assistance are many, including allowing
students to learn by doing, to construct knowledge, to benefit from generation effects, to reduce
zoning out, to engage recall from long-term memory, and to provide knowledge checks that
prevent them from thinking they knowwhen they do not. The costs are also numerous. Students
may get stuck, make mistakes and strengthen error pathways, find it too hard and cognitively
disengage. We have provided a number of examples of how experiments within Cognitive
Tutors have explored trade-offs between giving and withholding instructional assistance.

Cognitive Tutors initially withhold information about problem solutions and solution
steps, and then interactively add information, only as needed, through yes/no feedback,
explanatory hints, and dynamic problem selection. The reviewed studies provide support
for this particular approach to balancing the giving and withholding of information and for
its individual interactive elements. This result should not be construed as supporting
information giving in general, or greater interactivity in general. We also do not mean to
claim that Cognitive Tutors currently strike an ideal balance—additional studies show that
faded examples (a subtle form of information giving) and feedback based on an intelligent
novice model (a subtle form of information withholding) sometimes are improvements. It is
likely that additional interactive elements will be found to be more effective than existing
approaches.

Given that a key downside of information withholding is errors and floundering (if not
complete failure), a rough criterion for deciding to give rather than withhold is when the task
gets too difficult and thus the probability of error or unproductive thinking is high. What is the
probability of error that is the ideal threshold point? That is a great question for future research.
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In related work, Pavlik (2007) proposed an ideal error rate of about 5–25% to decide on the
length of delay between practice trials (long delay between practice trials is a kind of
information withholding). This estimate was based on ACT-R simulations and is supported in
experiments comparing practice-scheduling algorithms where the derived expanded spacing
schedule led to greater learning than alternatives based on prior theory and standard practice.
To what extent and in what ways such an error rate threshold might generalize to more
complex learning objectives than the fact associations explored by Pavlik is wide open.

The crux of the assistance dilemma is prescribing decision criteria (e.g., conditions and cut-
off parameters) for when it is best to switch between information giving (more assistance) and
information withholding (less assistance). This dilemmamay be the fundamental open problem
in learning and instructional science. Given the many different ways to provide information or
assistance, there is not going to be one solution to the assistance dilemma. However, we believe
it is critical to not only acknowledge the dilemma, as others have (e.g., Vygotsky 1978), but to
strive toward characterizing qualitative conditions and quantitative threshold parameters that
can aid instructional designers and instructors in making good decisions.

Further experimental studies and theoretical unification will be necessary to achieve this
ambitious goal. The Pittsburgh Science of Learning Center (http://learnlab.org) is com-
mitted to supporting such an effort through both joint theory development and through
providing an infrastructure, called LearnLab, to aid researchers in running tightly controlled
experiments in real classroom settings and in doing microgenetic analyses of detailed logs
of student interactions in these classrooms.
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