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Abstract

Background: It is often assumed that selection (including participation and dropout) does
not represent an important source of bias in genetic studies. However, there is little evi-
dence to date on the effect of genetic factors on participation.

Methods: Using data on mothers (N=7486) and children (N=7508) from the Avon
Longitudinal Study of Parents and Children, we: (i) examined the association of polygenic
risk scores for a range of sociodemographic and lifestyle characteristics and health condi-
tions related to continued participation; (ii) investigated whether associations of polygenic
scores with body mass index (BMI; derived from self-reported weight and height) and self-
reported smoking differed in the largest sample with genetic data and a subsample who
participated in a recent follow-up; and (iii) determined the proportion of variation in partici-
pation explained by common genetic variants, using genome-wide data.

Results: We found evidence that polygenic scores for higher education, agreeableness
and openness were associated with higher participation; and polygenic scores for smok-
ing initiation, higher BMI, neuroticism, schizophrenia, attention-deficit hyperactivity
disorder (ADHD) and depression were associated with lower participation. Associations
between the polygenic score for education and self-reported smoking differed between
the largest sample with genetic data [odds ratio (OR) for ever smoking per standard devi-
ation (SD) increase in polygenic score: 0.85, 95% confidence interval (Cl): 0.81, 0.89} and
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subsample (OR: 0.96, 95% CI: 0.89, 1.03). In genome-wide analysis, single nucleotide
polymorphism based heritability explained 18-32% of variability in participation.
Conclusions: Genetic association studies, including Mendelian randomization, can be
biased by selection, including loss to follow-up. Genetic risk for dropout should be con-
sidered in all analyses of studies with selective participation.

Key words: ALSPAC, missing data, genetics, participation, selection bias

Key Messages

by selection.

ation studies.

* Polygenic scores for a range of sociodemographic, health and lifestyle factors are related to continued participation
after enrolment in the Avon Longitudinal Study of Parents and Children.

* There was evidence that associations between polygenic scores and measured phenotypes differed between the full
sample with genetic data and a more selected subsample, indicating that genetic association studies can be biased

* Common genetic variation explained a moderate amount (18-32%) of variability in participation.
* Researchers should consider selective participation as a potential source of bias in genetic and non-genetic associ-

Introduction

Missing data are a pervasive problem in cohort studies,
with decreasing participation over the duration of the
study, and concern about the extent to which this biases
analyses.'* Individual characteristics, including social and
lifestyle characteristics, may influence both initial enrol-
ment and continued participation.>* Throughout this
paper we use the word ‘participation’ to mean both initial
enrolment in a study and continued participation (e.g. via
questionnaire completion or attendance at research clinics)
once involved. However, our analyses all relate to contin-
ued participation after enrolment.

Sample representativeness is critical for estimating
prevalence of exposure or disease,’ but may not be essen-
tial for estimating associations between exposures and out-
comes.”™” The bias arising from selection into studies is
often relatively small and may not always qualitatively af-

8.2 Selection bias might be

fect interpretation of results.
less problematic in genetic epidemiology because individ-
uals are generally unaware of their genotype (so will not
self-select into a study on the basis of this) and genetic vari-
ants that influence a given trait should not be associated
with confounding factors which could also influence selec-
tion.® 'Y However, when both exposure and outcome relate
to participation in a study, this can induce spurious associ-
ations between them, or between genetic variants that
influence them, in participants.''* For example, the asso-
ciation between higher genetic risk for schizophrenia and

reduced participation in the Avon Longitudinal Study of

Parents and Children (ALSPAC)" indicates that selection
bias may be a problem in both genetic and non-genetic
analyses of schizophrenia.

To estimate the impact of selective participation for a
given analysis, we need to know which factors cause par-
ticipation. Here, we extend previous work relating partici-
pation and polygenic risk for schizophrenia and autism
in ALSPAC'*'* by: (i) investigating polygenic scores for
other factors which could influence participation in the
ALSPAC mothers and children; (ii) investigating the poten-
tial impact of selection bias by comparing associations be-
tween genetic factors and measured phenotypes in the
largest sample with genetic data and a more selected sub-
sample; and (iii) conducting genome-wide association stud-
ies of participation measures.

Methods

Study population

ALSPAC is a longitudinal birth cohort that recruited 14 541
pregnant women resident in Avon, UK, with expected dates
of delivery between 1 April 1991 and 3 December 1992. Of
these initial pregnancies, there were a total of 14 676 fetuses,
resulting in 14 062 live births and 13 988 children who were
alive at 1year of age. The children and their mothers have
been followed up through postal questionnaires and at clin-
ics.>!* We included only children who had been enrolled in
the study during the first phase of data collection and sur-
vived to age 1year (resulting in the exclusion of five children
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and 43 mothers from the analysis sample). Please note that
the study website contains details of all the data that are
available through a fully searchable data dictionary: [http://
www.bris.ac.uk/alspac/researchers/data-access/data-diction

ary|. Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the local research

ethics committees.

Participation

Participation was defined by responding to a questionnaire
or attending a clinic for which the whole cohort was eligible
to participate (i.e. we excluded clinics and questionnaires tar-
geted at a subset of the cohort). The ALSPAC mothers have
answered questionnaires about themselves (mother question-
naires) and about their children (child-based questionnaires).
The ALSPAC children have answered questionnaires about
themselves (child-completed questionnaires). A full list of
the questionnaires and clinics included is provided in
Supplementary Table 1, available as Supplementary data at
IJE online. From these, we calculated the following continu-
ous phenotypes by summing the number of questionnaires/
clinics completed: total participation [all questionnaires and
clinics for both mother and child (including child-based and
child-completed)]; total questionnaire (all questionnaires for
mothers and children); mother questionnaire (mother ques-
tionnaires); child questionnaire (child-completed question-
naires); and child clinic (child clinics attended). We created
two binary variables for the mothers and children indicating:
(i) participation in the most recent clinic; and (ii) completion
of the most recent questionnaire. For both mothers and the
offspring, we generated variables from data collected at clin-
ics 17-18years after the child’s birth and from question-
naires 19-20 years after birth.

Genetic data

ALSPAC children were genotyped using the Illumina
HumanHap550 quad chip genotyping platforms. ALSPAC
mothers were genotyped using the Illumina Human660W-
quad array at the Centre National de Genotypage (CNG),
and genotypes were called with Illumina GenomeStudio.
Imputation was performed using Impute V2.2.2 against
the 1000 genomes phase 1 version 3 reference panel.
Quality control procedures removed related individuals
and individuals of non-European genetic ancestry (see
Supplementary materials for full details, available as
Supplementary data at IJE online).

Polygenic scores

We calculated polygenic scores for a number of traits that
could be related to participation and for which genome-

wide summary statistics were publicly available: body
mass index,'® height,'” smoking initiation,'® depression,'’
attention-deficit hyperactivity disorder (ADHD),*° bipolar
disorder,”! autism,*' schizophrenia,”” years of educa-
tion,”* sleep duration,** chronotype (morningness),** age
at menarche,” personality traits (openness, agreeableness,
conscientiousness, extraversion and neuroticism)*® and
Alzheimer’s disease.”” For the purposes of this paper, we
use the term ‘trait’ to describe the phenotype each genome-
wide association study (GWAS) was conducted on but ac-
knowledge that, for binary phenotypes, we are looking at
genetic liability for that phenotype. Full details of sources
for each of these scores are shown in Supplementary
Table 2, available as Supplementary data at IJE online.
The ALSPAC cohort was not included in the GWAS that
generated the summary statistics for these traits, except for
education and age at menarche. For education, we used
summary statistics excluding ALSPAC and 23andme,
which were obtained directly from the study authors. For
age at menarche, the ALSPAC sample made up 7% of the
GWAS discovery sample.”> To minimize potential bias
from sample overlap, we used an unweighted polygenic
score for age at menarche.”® All other scores were weighted
according to the association magnitude of each single nu-
cleotide polymorphism (SNP) in the original GWAS.

Statistical analysis

All analyses were performed separately in mothers and
children and were adjusted for sex (in the children) and the
first 10 genetic principal components.

Polygenic scores

Polygenic scores were derived using the PRSice software
[http://prsice.info/]*” for each trait within the ALSPAC
genome-wide data using the following P-value thresholds:
0.0005, 0.005, 0.05, 0.1, 0.5 (see Supplementary Methods,
available as Supplementary data at IJE online). In addition,
we generated scores in PRSice by inputting only the independ-
ent genome-wide significant SNPs reported by the discovery
samples (Supplementary Table 3, available as Supplementary
data at IJE online). We assessed associations of standardized
polygenic scores with participation phenotypes using linear
and logistic regression in Stata (version 14.1).>° We used ro-
bust standard errors to account for the non-normal distribu-
tion of the continuous participation variables. For age at
menarche, analyses were conducted in females only.

Genome-wide association analysis

Analyses were conducted separately for mothers and chil-
dren. We used SNPTEST?' to test associations between
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Table 1. Summary of participation phenotypes

Mother (N = 7486) Child (N =7508)

Range Median (IQR) Median (IQR)
Total participation 0-77 59 (31,71) 62 (39,72)
Total questionnaire 0-67 53(29,63) 55(35,63)
Mother questionnaire 0-19 16 (10,18) -
Child questionnaire 0-24 - 17 (8,22)
Child clinic 0-9 - 7(3,9)

N (%) N (%)

Mother attended most recent clinic 3215 (43.0) -
Mother completed most recent questionnaire 3052 (40.8) -
Child attended most recent clinic - 3538 (47.1)
Child completed most recent questionnaire - 2957 (39.4)

IQR, interquartile range.

dosage scores for each genetic variant and missingness
phenotypes using univariate regression models and assuming
an additive genetic model. Continuous phenotypes were ini-
tially tested in linear models, and then dichotomized at
arbitrary midpoints (Supplementary Table 4, available as
Supplementary data at IJE online) and re-tested in logistic
models to ensure results were robust to any assumption on
the distribution of residuals. Genome-wide results were fil-
tered to remove SNPs with a minor allele frequency of <0.01
and imputation quality (info) score of <0.8. Genome-wide

significance was considered to be P <5 x 107872

Heritability

SNP-based heritability estimates h*snp were calculated for
each participation phenotype using the genetic restricted
maximum likelihood (GREML) method implemented
within the GCTA software.*?

Investigating the impact of selection bias in
ALSPAC

We used linear and logistic regression to calculate associ-
ations between polygenic scores for BMI, smoking, educa-
tion and schizophrenia (constructed at aP-value threshold
of 0.05) and body mass index and smoking status (ever vs
never smoking) which were self-reported by the ALSPAC
mothers in questionnaires administered during pregnancy.
These analyses were conducted first in the largest sample
with genome-wide data and then in the sample attending
the most recent clinic.

Results

Of the 13 793 mothers with 13 988 children alive at 1 year,
11 560 mothers and 10 780 children had provided DNA

samples. After removal of non-Europeans, related individuals
and samples which did not pass quality control, 7486 moth-
ers and 7508 children were eligible for analysis (Table 1,
Supplementary Figures 1 and 2, available as Supplementary
data at IJE online). Individuals included in the analysis had
than
(Supplementary Table 5, available as Supplementary data at

higher participation levels the enrolled cohort
IJE online). Continuous participation phenotypes were
highly correlated (Pearson’s correlation coefficients ranged
between 0.71 and 0.99) (Supplementary Table 6, available

as Supplementary data at IJE online).

Associations of polygenic scores with
participation phenotypes

Only the results for total participation and last question-
naire completion are presented, with results for all other
participation measures in Supplementary material, avail-
able as Supplementary data at IJE online.

In ALSPAC mothers, we found strong evidence for posi-
tive associations between polygenic scores for years of edu-
cation and participation. This was observed consistently
across all participation phenotypes (Figures 1 and 2, and
Supplementary Figures 3-5, available as Supplementary
data at IJE online). Higher values of polygenic scores for
height and agreeableness were also associated with higher
participation across most participation phenotypes. There
was also some evidence that higher polygenic scores for
openness were associated with the mother completing
more questionnaires about herself. In contrast, polygenic
scores for BMI, schizophrenia, ADHD, smoking initiation
and depression were negatively associated with participa-
tion. Polygenic scores for neuroticism were associated with
lower participation by the mothers.

Associations between polygenic scores and participation
were similar for ALSPAC children (Figures 3 and 4, and

Downloaded from https://academic.oup.com/ije/advance-article-abstract/doi/10.1093/ije/dyy060/5001767
by University of Bristol Library user

on 21 June 2018


https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy060#supplementary-data

International Journal of Epidemiology, 2018, Vol. 0, No. 0

miw_theashokd  N_SNPs €5(95% CI) new_ihoashold  N_SHPs
B
a8 n o 02 ADMD
0005 1008 —— -1.36, 0. Seb
006 3078 —— 14803 0.0005 1 .
05 14188 e SEgry 0008 13 —
1 24482 e~ 181, .0 74 0.08 e —
s B — 1 52, 0 44 01 oMt ——
s 130284 pu——
Ecucaton
oy 5 —.— 1780125, 2.32)
o005 882 —e— 2Bz a3n Azemers.
005 sr13 —e— 3150282 67| Se-B 18
05 donE2 —— A5 (292 .98} 0.0005 o
1 T e 150 (297, 4.04) 0.005 s
5 Tesany —— 338282 2N 008 138
o1 53160
o
el 835 028 (025, 04%) 93 T
DS a4k —— o Em 138
o8 1i0a - 023 (024 nai Autaen
05 32734 — gz i Sef 1
1 44830 —— 085012 1. IOI 0.0008 so8
5 Basan —— QA7 (034, 141 noos bret
008 21959
Monarcra
o1 7B
58-3 108 0.02 (051,056
0005 11 85805y 854 as Thag
008 4383 011 (041, 084
05 z0z90 077 1026 08 Bipolar
1 320z 018 (034,072 Se-8 "
5 B30 0.32 (021, 0 85) 0.0005 sa7
noos
ot 008 17881
59-8 T 0.11 (043, 0.65)
o005 1320 EE e 01 29170
008 206 <0.30 {0 T4, D%} as
08 38488 -0.2%-0 80, 0 i
1 ed -0.29i-0.83. 0.28) D
5 i68480 {00 038 P
00008 st
ﬂ: 2 -0.55 (-1.09. -0 00} 0008 s
0005 4 oo F!nss_nss;’ oos S
005 864 .46 (.08 093 i 15812 ——
08 e 058 (005 1.14) os 120422 —lies
1 7750 04 P}IZ o :
5 185279 034 [-0.20. 0 87} Schioghers
—_—
gy 00008 e
0.8 0190038 073
o005 480 SRR s TH. -
005 —— BN 00 005 44901 ——
06 1 —— 181,052 1) wazse —
1 31241 e 188078 08 17o3es —
5 — 19, 090)

EB 5% Ci) new_threshold N_SNPs ES {85% CI)
Conscisnbousness
5o 8 026 (.28, 0.80)
0.0005 300 0.02 (052, 0.56)
005 2244 000 (063, 044)
005 15277 0.34 (40,19, 0.86)
] 26200 0.26(0.28. 0.80)
AR 08 476 027 (027.081)
<037 (0.9, 0.17)
Q31 (085, 0.22) Openness
3uimom o8 013 (087,041
08, 0. 0.0005 s 0051054, 0.48)
el 0005 2n —— 068014, 122)
005 16243 — 0.78 (023, 1.33)
oz 04 25983 061 (D06, 1.18)
LR an 05 R — 0.71 (0,16, 126)
0.03 {-0.51, 0.57)
0.92 {043, 0.86) lenass.
-8.06 (.86, 0.48) 0.0005 283 048 (4,06 1.03)
0.005 it 053(0.02,1.06)
005 15311 —— 082 (029, 1.36)
DA o1 25650 — 064 (010, 1.18)
012 (43, D68 05 T8 —— 085 (D11, 1.18)
003 (a5, o)
X ' Exiravarsion
0.18 (0.7, 0.74) 0.0005 28 001 (053,055
0211033, 075) gggs z;g 3‘?‘12‘33“'
X 15274 17 (0,36, 0.71)
Saieun 01 25065 0.14 (0,40, 067)
134 (158, 0.81) 05 77575 0.24 (418, 0.87)
A1 187, 0803
31 (181, 078 Mewoticism
0.0005 204 0.06 (451, 0.59)
Q8T a3, 1Y 0.005 2356 011 (0.66.043)
1,03 (4 57, 480 005 15519 —— D83(117,-009)
AR L o1 — 081 (135, 0.27)
TR 05 616 — 082 (137, 0.28)
a8, amm

- ] 4
Change in panic;;)aﬂon per SDuchange in gen‘elic risk score  Change in participation per SD change in genetic risk score

-4 [} 4
Change in participation per SD change in genetic risk score

Figure 1. Association between polygenic scores in ALSPAC mothers and total participation score (N=7468).

e Inreshons  N_SHPY O 95% 1} e frvushokd  H_SAPy
o
Se 3 —r 0.98 {084, 1,03 ity
amos 1008 e BE e ag! e s =
Qs w0 —_ 1.2 {087, 0,08 0005 128 ———
Qg8 T4 o ] war.awg o00s [ e
%) 24482 — 050 085 004 08 1% ——
o oo it 152 085, 0.50) a1 B0441 ——
Esucaion o5 fres —_
sed o —_— 171, 12
aooes —— lae:‘ 2\.!% A
008 51 —_ e.::im.m: fad i) =
ags 002 ——  u30fiadian 20005 o0 e
ay Lni) —e— 1311250130 008 e
as 13002 —— 3R 008 e -
oy B —
iy s -4 100 {195, 1.08) o k] =
008 nz — 108 (162 111
08 12001 —— 107 {1021 12) Autam
I3 xz24 = ¥08 {103, 1.10) a8 ' —
] ) e 1.04 .99 1.08) n0006 558 —
3 b=y = 108 {1.00. 1.90) noos e =5
o8 e -
erarche
) 54781 -
) o8 o 100 {085 1.06)
0o i) — 102 {07 107) L i 1
08 a1 = 102 fo8a. 1.07)
105 Zoas0 e 104 {036, 1.08) Bgolar
1 a2 —— 1 s a8 a
1 a0 —_ 102 {a 7. 107 o005 57
©0os a7 -
omngness
s T —— 101057, 108 e T g
ros T —F R o1 =im -
05 a8 —— o7 (182, 101) oS B —
5 36485 — g7 {83 103
1 sosaa = 98092 101) Osprussion
5 1ea4B0 — 095091 099) S 2 i
il 0005 a5 ——
.8 2 — 88104 103) L B oy
00s. - — 0.99 1094, 1.08) o5
05 otz = 103 fugs. 107} ul a5z —_——
I3 wizm —— 1.06 {101 111 o5 1 —
1 s77eD = 105 {108 110)
5 Tesam ~— 104 {100, 109) rmn—
o4 o —
] bous —]
1] ! —— 104 f0.99. 1.09) o 3384 F
00 40 —— me'gw.nwa [ e i
I3 8 — uEs e ooy 05 =
105 18780 —_— 190 10865 3 8BS0 —t—
1 Faar —_ 1188 {184, 0.53) . 170360 —
5 an — 088 {084, 052
T T T

1 T”‘I{{ [EELAAERALAN

new_threshold N_SNPs OR (85% CI)
68 0 84 1.03; Conscientiousness
080086 D54 1 —— 104 (0,99, 1.08)
i 0.0005 300 —_— 101 (0.98, 1.05)
084 1085, 088 0.005 2244 —_ 1,00 (0.96, 1.05)
84 {080, 088 0.08 18277 Lae 1.04 (0.9, 1.09)
01 26200 boaes 1.04 (0.99, 1,08)
pssase 1o 05 77476 e 103 {0.98, 1.08)
.08 031,11
088 1064, 1.03 Openness
101 (056, 1.06) Se-8 1 - 0.99(0.94, 1.03)
pe e 0.0005 e T 102 (096, 1.07)
. 0.005 2233 — 1.0 (0.99, 1.08)
0.05 15243 —— 1,04 {0.96, 1.09)
101 fse. 100 01 25983 —— 1.04 (0,89, 1.08)
101 05s. 100 o0s T2 e 1.04 (088, 1.08)
102 (0.8 107
102 08 107, Agreeableness
102 07, 1.08 0.0008 283 —f— 1.02 (0.88, 1.07)
0.005 2237 |—e— 105 (1.00, 1.10)
g 0.08 1531 —— 105 (1.01, 1.10)
107 {13 1.3 01 25050 —— 108 (101, 1.11)
1102 {057 1.7 05 77488 —— 108 (1.01, 1.1}
099 {094, 108
0991094 1.03
Extraversion
AL 1 0.0005 299 o 1,02 (0.67. 1.06)
0.005 2220 t— 103 (0.99, 1.08)
103 e, 1.0 0.05 15274 —-— 1.02 (0.97, 1.07)
g 01 25965 T 103 (0.98, 1.08)
090 (095,894} 05 77575 —— 106 (1.01, 1.1}
0.91 {057, 0.05)
891057005} Neuroticism
0.0005 284 0.97 (0.92, 1.01)
050 (084, 1.04) 0.005 2356 T 0.98(D.04, 1.03)
097 {093,103} 0.05 15518 —— 0.98 (0.2, 1.01)
pisia om a1 26235 —— 0.94 (0,90, 0:98)
Wam e 05 77816 —_— 0.93 (0.89, 0.98)
.61 {067, 0.96)
T T

7 ' 14
OR for participation per SD change in genetic risk score

™ + 14
OR for participation per SD change in genetic risk score

75 1 14
OR for participation per SD change in genetic risk score

Figure 2. Association between polygenic scores in ALSPAC mothers and completion of most recent questionnaire (N=7468).

Supplementary Figures 6-9, available as Supplementary
data at IJE online). Polygenic scores for education
and agreeableness were positively associated with
participation. Polygenic scores for smoking initiation,
schizophrenia, ADHD and depression were negatively as-
sociated with participation. In contrast to the ALSPAC
mothers, there was little evidence for associations between
polygenic scores for neuroticism, height or openness and
participation.

We found no consistent evidence that polygenic scores
for morningness (chronotype), sleep, bipolar disorder, aut-
ism, conscientiousness, extraversion, age at menarche or

Alzheimer’s disease were associated with participation.

Correlations between polygenic scores

The degree of correlation between polygenic scores for
different traits at P <0.0005 and P <0.5 is shown in
Supplementary Tables 7-10, available as Supplementary
data at IJE online. Correlations tended to be stronger for
scores derived using the higher P-value thresholds.

Investigating the impact of selection bias in
ALSPAC

Figure 5 shows associations (in the largest sample with
genome-wide data and in a subsample who attended the
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Figure 4. Association between polygenic scores in ALSPAC children and completion of most recent questionnaire (N=7508). Age at menarche

analysis only in females.

most recent clinic) between polygenic scores (constructed
at the P <0.05 threshold) for BMI, smoking, education and
self-reported BMI and
Associations between each polygenic score and smoking or

schizophrenia and smoking.
BMI were in the same direction in both the full sample and
the subsample, and in many cases of similar magnitude.
However, associations between the polygenic score for
education and being an ever smoker were substantially
attenuated in the subsample [odds ratio (OR): 0.96 per
standard deviation (SD) in polygenic score for smoking,
95% confidence interval (CI): 0.89, 1.03, compared with
the full genetic sample (OR: 0.85, 95% CI: 0.81, 0.89)]
(Figure 5A). The association between the education poly-
genic score and BMI was also attenuated in the subsample

compared with the full sample (Figure 5B). In contrast, the
association between the smoking polygenic score and
BMI appeared stronger in the subsample compared with
the full genetic sample, although the confidence intervals
overlapped.

Genome-wide association studies

Only one locus reached genome-wide significance with par-
ticipation in the ALSPAC mothers. In the mothers, variants
located in an intergenic region on chromosome 7:
51995163-52042976 were associated with total participa-
tion, total and mother

questionnaire questionnaire

(Figure 6, Supplementary Figures 10-11 and Supplementary
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Figure 6. Manhattan plots for genome-wide analyses of total participation in the mothers and children and clinic participation in the children. A. Total
participation score in the mothers, B. Total participation score in the children, C. Number of clinics attended by the child. Line represents P=5x 105,

Tables 11-13, available as Supplementary data at IJE on-
line). Genome-wide hits were all in strong linkage disequi-
librium (R* > 0.8), indicating that this represents a single
genetic signal. The SNP with the smallest P-value was
1s10626545 for total (P=1.50 x 107) and total question-
naire (P = 8.55¢'%), and rs406001 for mother questionnaire
(P=8.27 x 107”). SNPs in this region reached genome-wide
significance or close to genome-wide significance (P <7 x
1077) with dichotomized total participation, total question-
naire and mother questionnaire (data not shown). However,
the minor allele frequency of these variants was relatively
low (0.012) and beta-coefficients large (beta for total par-
ticipation for top SNP=10.9), suggesting that this associ-
ation is driven by a few individuals.

In the children, two loci reached genome-wide signifi-
12-13 and
Supplementary Tables 14-16, available as Supplementary
data at IJE online). SNPs in the bradykinin receptor B1
gene (BDKRBI) (chromosome 14: 96721850-96729885)

cance (Figure 6, Supplementary Figures

were associated with total participation, total questionnaire
and child questionnaire. The SNP with the smallest P-value
was 1528631073 for all three participation measures
(P between 1.29 x 107 and 2.27 x 107") and the beta with
total participation was —3.20. Two SNPs in an intergenic
region on chromosome 1 reached genome-wide significance
with child clinic participation: rs1336852 (1: 191752825,
beta: —0.59, P=3.15 x 107%) and rs74626786 (1:
191759598, beta: —0.59, P=3.32 x 107®). Plots showing
linkage disequilibrium and nearest genes for each of the
genome wide significant loci (created using LocusZoom?>?)
are shown in Supplementary material (Figures 14-20, avail-
able as Supplementary data at IJE online).

SNP-based heritability

Estimates of heritability of participation phenotypes from
SNPs included in the genome-wide analyses ranged
20-27% for the mothers and 18-32% for the children
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(P-values all <0.001) (Supplementary Table 17, available
as Supplementary data at IJE online).

Discussion

Continued participation in the ALSPAC cohort is related
to polygenic scores for a number of lifestyle factors, per-
sonal characteristics and health conditions, including level
of education, BMI, height, smoking, agreeableness, open-
ness, schizophrenia, ADHD and depression. We did not
find robust evidence in genome-wide analyses that specific
single genetic variants influence degree of participation in
ALSPAC, though there was evidence of common genetic
variants explaining a modest proportion of the variation in
participation (up to 30%).

Our findings show that genetic variants which are
related to specific phenotypes are also related to participa-
tion. Using a Mendelian randomization framework, this
could imply that these phenotypes cause continued partici-
pation. For example, the polygenic risk score for education
was the score most robustly associated with participa-
tion—implying that higher education causes greater con-
tinued participation in ALSPAC. This interpretation
requires that the key assumptions of Mendelian random-
ization are met,>” namely that: (i) the polygenic score is ro-
bustly associated with the trait of interest; (ii) there are no
confounders of the polygenic score-participation associ-
ation; and (iii) the genetic risk score only affects participa-
tion through the trait of interest. The third of these
assumptions is more likely to be met as the threshold for
polygenic score construction gets closer to genome-wide
significance.

Polygenic scores created using higher P-value thresholds
could explain more of the variance in that trait than gen-
ome-wide significant scores,’® but are likely to be less spe-
cific for the trait of interest and more likely to be
pleiotropic, influencing more than one trait. This is shown
by the stronger correlations between risk scores for differ-
ent traits created at high P-value thresholds than those cre-
ated using low P-value thresholds. We found traits for
which genome-wide scores were not associated with par-
ticipation, but scores at higher P-value thresholds were, for
example depression. This could be explained by low power
in the original GWAS, meaning that truly associated SNPs
are less likely to be included in a score constructed using a
low significance threshold,?” or that effects on participa-
tion are acting through a trait that is only distally related
to the GWAS trait used in score construction. As the
P-value threshold increases, this also introduces more noise
into the polygenic scores and may explain why some scores
at the P=0.5 threshold are less strongly associated with
participation than the scores created at lower thresholds.

We also showed that it is possible to introduce bias
into genetic analyses even when sample sizes are relatively
modest. Therefore, we cannot assume that genetic-
association studies, including GWAS, candidate gene
studies and Mendelian randomization, are not biased by
incomplete participation. We recommend that researchers
consider how likely non-participation is as a potential
source of bias when running genetic association studies
and acknowledge this when reporting findings. The same
implications hold for non-genetic studies—e.g. a study of
the association between education levels and BMI in a se-
lected subsample is likely to be biased by selection, since
our genetic results show that both exposure and outcome
cause participation.

For both genetic and non-genetic studies, there are po-
tential methods to correct for this bias. For example, where
there is some information about participants who have
dropped out, it may be possible to apply inverse probabil-
ity weighting.*® Where such data are not available, other
approaches could be triangulated to examine likelihood of
bias. Negative control exposures and/or outcomes can be
used to see if associations between genetic variants and
outcomes exist that are not biologically plausible and
should only arise through selection bias.>” Similarly, where
there is a well characterized association (replicated in a
number of studies) of known magnitude between a genetic
variant and an outcome, this can be used as a positive con-
trol. Finally, novel associations should be replicated in
populations which have not undergone the same degree of
selection.

We found three loci associated with participation at
genome-wide significance level. SNPs in the genomewide
locus in mothers (e.g. rs406001) were identified in a previ-
ous GWAS of post-traumatic stress disorder (PTSD), but
not replicated in the original GWAS.* Furthermore, this
locus was only nominally associated with PTSD in a much
larger GWAS.*! This, coupled with the low minor allele
frequency of SNPs in the genome-wide significant locus in
our GWAS, suggests that this may be a chance finding, ra-
ther than an effect of PTSD on participation. The signal on
chromosome 14 is located in the bradykinin receptor Bl
gene (BDKRB1). Bradykinin is a peptide hormone which is
a pro-inflammatory mediator and is involved in vascular
permeability and mitogenesis.*> To our knowledge, vari-
ants in this gene and the genome-wide significant SNPs on
chromosome 1 have not been identified in previous GWAS
of any phenotype.**** We have not attempted to replicate
the genome-wide hits in independent samples, as we can-
not assume that different studies would have the same in-
fluences on participation.

There are a number of limitations to this analysis. First,
our analysis sample was restricted to just over half of the
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enrolled sample, due to availability of DNA samples for
GWAS and exclusion criteria (non-Europeans and related
individuals). Individuals in the analysis sample had higher
participation rates than the full sample, meaning that asso-
ciations between polygenic scores and participation are
likely to be weaker than we would observe if we had full
genetic data for the whole cohort. Second, our results may
not be generalizable to studies with different selection cri-
teria or specific cultural or contextual factors influencing
participation. It is also possible that characteristics influ-
encing participation will change over time and with age.
We have shown here that genetic associations can be used
to shed light on the selection mechanisms operating in a
given study, but this will need repeating in studies in differ-
ent populations or with different recruitment mechanisms.
These are context-specific, rather than biological associ-
ations—although there is evidence that some associations
(e.g. with education) may be fairly replicable.*> Third, we
have not attempted to disentangle the relative influence of
maternal and offspring genetics on participation. It is likely
that child participation is heavily influenced by maternal
traits in childhood and this may continue into adolescence
and adulthood. Finally, we have not explored all possible
traits that might be associated with participation, since our
analyses required access to GWAS summary statistics.

In conclusion, we demonstrate that polygenic scores
related to a wide range of traits are associated with degree
of participation in ALSPAC, and that this may introduce
bias into genetic and non-genetic analyses. This highlights
the importance of considering selection bias in all studies,
and the need for the development of statistical methods to
account for this issue.

Supplementary Data

Supplementary data are available at IJE online.
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