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Abstract: As the largest source of uncertainty in carbon cycle studies, accurate quantification of
gross primary productivity (GPP) is critical for the global carbon budget in the context of global
climate change. Numerous vegetation indices (VIs) based on satellite data have participated in the
construction of GPP models. However, the relative performance of various VIs in predicting GPP
and what additional factors should be combined with them to reveal the photosynthetic capacity of
vegetation mechanistically better are still poorly understood. We constructed two types of models
(universal and plant functional type [PFT]-specific) for solar-induced chlorophyll fluorescence (SIF),
near-infrared reflectance of vegetation (NIRv), and Leaf Area Index (LAI) based on two widely used
machine learning algorithms, i.e., the random forest (RF) and back propagation neural network
(BPNN) algorithms. A total of thirty plant traits and environmental factors with legacy effects are
considered in the model. We then systematically investigated the ancillary variables that best match
each vegetation index in estimating global GPP. Four types of models (universal and PFT-specific, RF
and BPNN) consistently show that SIF performs best when modeled using a single vegetation index
(R2 = 0.67, RMSE = 2.24 g C·m−2·d−1); however, NIRv combined with CO2, plant traits, and climatic
factors can achieve the highest prediction accuracy (R2 = 0.87, RMSE = 1.40 g C·m−2·d−1). Plant
traits effectively enhance all prediction models’ accuracy, and climatic variables are essential factors
in improving the accuracy of NIRv- or LAI-based GPP models, but not the accuracy of SIF-based
models. Our findings provide valuable information for the configuration of the data-driven models
to improve the accuracy of predicting GPP and provide insights into the physiological and ecological
mechanisms underpinning GPP prediction.

Keywords: gross primary productivity; solar-induced chlorophyll fluorescence; leaf area index; NIRv;
machine learning

1. Introduction

With the massive fossil fuel burning and land use/land cover changes due to human
activities since the industrial revolution, an imbalance between carbon sources and sinks
has been discovered in the investigation of the global carbon budget [1]. Gross primary
productivity (GPP) is primarily used to describe the photosynthetic capability of terrestrial
ecosystems and is the largest source of uncertainty in carbon cycle studies [2]. Improving
the accuracy of GPP estimates is inextricably linked to gaining a better understanding of
the relationship between ecosystems and climate change, as well as laying the foundation
for understanding global carbon cycle processes and ecosystem functions [3–5].

GPP cannot be measured directly at the ecosystem scale, and model simulations,
including process-based models, light-use efficiency (LUE) models, and data-driven mod-
els, are seen as an effective way to overcome this challenge [6]. Process-based models
are developed with rigorous plant physiology and ecological principles coupled with the
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dynamic processes of ecosystems and can accurately simulate vegetation photosynthetic
capacity [7,8]. However, the method is limited by the complexity of the required input
parameters and parameterization over large-scale regions [9,10]. Along with the generation
of eddy covariance (EC) techniques and the advancement of remote sensing technology,
LUE models based on satellite data and flux data are widely popular in ecological stud-
ies [11–14]. However, such models typically do not account for the variation in LUE caused
by radiation intensity and assume that maximum LUE is only related to plant functional
types (PFTs), introducing great uncertainty into GPP simulations [15,16]. Another approach
to estimating GPP is data-driven, generally by establishing relationships between local
vegetation parameters, climate factors, and flux tower GPP and then upscaling to regional
and global scales [17,18]. Data-driven models based on machine learning are widely used
in large-scale studies for predicting vegetation productivity due to their higher accuracy
than traditional regression methods [19,20]. The most widely known MTE GPP model [21]
often serves as a reference to validate and evaluate the simulation of other models [22–24].

Remote sensing vegetation indices (VIs), allowing for the effective detection of changes
in large-scale vegetation growth, have been widely used to construct GPP models. Com-
pared to simple VIs (e.g., the Normalized Difference Vegetation Index [NDVI] [25] and
Enhanced Vegetation Index [EVI] [26]), Leaf Area Index (LAI) quantifies the structure and
growth of vegetation and the Fraction of Photosynthetically Active Radiation absorbed by
vegetation (FPAR) reflects the potential energy utilized by the canopy in photosynthesis,
both of which are critical biophysical parameters in carbon cycle research [27–29]. They
are solely driven by leaf development, are more closely related to actual ground obser-
vations, and are more sensitive to high-density biomes than simple VIs when observing
vegetation phenology [30,31]. The near-infrared reflectance of vegetation (NIRv), a recently
proposed novel vegetation index, has been shown to correlate well with GPP [32]. It has
the advantage of overcoming the sensitivity of the NDVI to the vegetation fraction and
can refine vegetation’s contribution to NIR reflectance no matter how sparse the canopies
are and how bright the soil background is. Nevertheless, the common deficiency of the
above VIs constructed based on the spectral characteristics of vegetation is that they are
insensitive to photosynthetic processes that have not yet caused reflectance changes and
do not correlate well with the photosynthetic activities of plants in the short term, making
it difficult for them to accurately and timely reflect the dynamic changes in vegetation
photosynthesis [33]. Several studies have proven that these indices perform poorly in
ecosystems without high variability in greenness [34,35]. The absorption of sunlight by
vegetation for photosynthesis is accompanied by the re-emission of red and near-infrared
photons, called solar-induced chlorophyll fluorescence (SIF). SIF, which is closely related
to the two processes of nonphotochemical quenching and photochemical quenching, can
capture transient photosynthesis in vegetation even if there is no change in greenness or
structure. One study surprisingly discovered a strong spatiotemporal correlation between
satellite-derived SIF and flux tower-derived GPP estimates [36]. This finding provides new
insight for estimating ecosystem-scale GPP and encourages us to utilize SIF in carbon cycle
research as a reliable proxy for GPP. However, as SIF products have only been available
since 2000, the reasons for the variations in the relationship between SIF and GPP over time
and space need to be clarified [37–39].

Accumulating evidence suggests that ecosystem-scale GPP is influenced by a combina-
tion of vegetation’s biophysical properties [37,38,40–43] and environmental factors [12,44,45].
Data-driven models based on machine learning are good at handling the interaction of
individual factors and can achieve excellent prediction accuracy. It has been shown that
supplementing the vegetation index with other information about vegetation can improve
the prediction results of GPP models [35,46]. On the other hand, the black-box nature of
machine learning results in model performance that depends heavily on how the explanatory
variables are combined. The relative performance of various VIs in predicting GPP and
what additional factors should be combined with them to mechanistically better reveal the
photosynthetic capacity of vegetation are still poorly understood.
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In this study, we used a remote sensing time series, including the GOSIF, MODIS NIRv,
and MODIS LAI, and GPP observations from 197 flux towers to examine their ability to
quantify the spatiotemporal variation in GPP. The objectives of this study are to (1) evaluate
the performance of models in GPP estimation based on two widely used machine learning
models, i.e., the random forest (RF) and back propagation neural network (BPNN) models;
(2) generate several sets of global gridded GPP products for 2003–2018 based on the optimal
machine learning models and compare them to previous products; and (3) systematically
investigate the environmental factors and plant traits that best match each vegetation index
in estimating global GPP.

2. Materials and Methods
2.1. Vegetation Indices

We used three vegetation indices (SIF, NIRv, and LAI) to investigate their performance
in estimating GPP when used in combination with machine learning algorithms. We used
the GOSIF product developed by Li and Xiao [47], which provided global monthly SIF
observations with 0.05◦ × 0.05◦ spatial resolution for the 2001 to 2020 period. This product
extended OCO-2 raw data to a longer period and global coverage through the Cubist re-
gression tree model. The NIRv data were generated based on the BRDF-adjusted reflectance
data (MODIS MCD43C4, Collection 6) according to the methodology described in [32]. The
NIRv data we generated have global coverage from 2001 to 2018, with monthly temporal
resolution and 0.05◦ spatial resolution. LAI data were derived from the Reprocessed MODIS
Leaf Area Index datasets from the Land-Atmosphere Interaction Research Group at Sun
Yat-Sen University, with global coverage at 0.05◦ × 0.05◦ spatial resolution and monthly
temporal resolution for 2003 to 2020 (http://globalchange.bnu.edu.cn/research/laiv6).
The LAI data are more continuous and consistent in time and spatial domains than the
original MODIS LAI product [48].

2.2. FLUXNET Data

The GPP measurements used in this study were derived from FLUXNET2015 Tier1
data (http://fluxnet.fluxdata.org, accessed on 24 December 2021), which provide a col-
lection of EC flux data from 212 sites across multiple regional networks (Figure 1) [49].
The flux data were processed in a standardized protocol to promote consistency and inter-
compatibility among sites. We used monthly GPP estimated by day–time partitioning of
the Net Ecosystem Exchange (NEE) with the variable USTAR threshold following [32,49].
At least 75% of valid GPP observations were required for each site–month and a minimum
of 9 months for each site–year. Detailed information about each site used in this study and
their PFTs can be found in Table S1.

2.3. Plant Traits

Plant traits are closely related to ecosystem functions. Leaf economic traits and
hydraulic traits, which have been shown to affect photosynthetic capacity, have received
much attention [50,51]. In this study, specific leaf area (SLA) and leaf nitrogen content
(Nm), which are related to the carbon economy [52], and canopy height (Hc), which reflects
ecosystem water use strategy, were taken into account [41]. SLA and Nm were derived
from the TRY database [53] and were developed by [54]. The canopy height data were
obtained from ICESat/GLAS LiDAR data (1km spatial resolution) and combined with
other ancillary variables to predict uncovered areas [55].

http://globalchange.bnu.edu.cn/research/laiv6
http://fluxnet.fluxdata.org
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Figure 1. Map of the sites in the FLUXNET2015 dataset used for the models based on each vegetation
characteristic parameter. All sites were classified into 12 PFTs according to the IGBP classification
scheme. The size of the circles represents the number of samples available at the site. The histogram
represents the number of samples for different PFTs. ENF: evergreen needleleaf forests, EBF: evergreen
broadleaf forests, DNF: deciduous needleleaf forests, DBF: deciduous broadleaf forests, MF: mixed
forests, OSH: open shrublands, WSA: woody savannas, SAV: savannas, GRA: grasslands, CRO:
croplands, WET: wetlands.

2.4. Climatic Data

The TerraClimate dataset provides monthly climate measures with a high spatial
resolution (1/24◦) covering global land surfaces [11]. The primary climate variables used
in this study are shown in Table 1, either directly from this product or calculated from the
variables provided by this product. It has been demonstrated that climatic circumstances
might influence vegetation growth [38,56–59], thus the climate factors for the current month,
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the previous month, and the previous two months were considered as input variables for
the model.

Table 1. Details of the datasets used in the data-driven models.

Category Variable Description Source

Vegetation Indices SIF Solar-induced chlorophyll fluorescence [47]
NIRv Near-infrared reflectance of vegetation MCD43C4
LAI Leaf Area Index [48]

Plant Traits Hc Canopy height [55]
SLA Specific leaf area [54]
Nm Foliar nitrogen concentration per unit dry mass [54]

Climatic Factors Tmp Air temperature [11]
Tmax Maximum air temperature [11]
Tmin Minimum air temperature [11]
DTR Diurnal temperature range [11]
Prec Precipitation [11]

SRAD Downward shortwave radiation flux at the surface [11]
SWC Soil water content [11]
VPD Vapor Pressure Deficit [11]

Other Factors PFT Plant functional type MCD12Q1
CO2 Atmospheric carbon dioxide concentration [60]

2.5. Land Cover Data

For the global-scale study, we used the land cover product from MCD12Q1 with
International Geosphere-Biosphere Programme (IGBP) classes at a spatial resolution of
0.05◦ [61]. The time period covered by the selected data ranges from 2001 to 2020, with an
image each year. The twelve major land cover classes, or PFTs, used for model construction
and analysis of results in this study are shown in Figure S1. Note that we did not employ
sites with the land cover class of Snow/Ice.

All data as explanatory variables were resampled into a common spatial resolution
(1/24◦) using the nearest neighbor algorithm.

2.6. Other GPP Products

Three GPP datasets covering the 2003–2018 period (FLUXCOM GPP and GOSIF GPP
based on the data-driven method and TRENDY GPP based on the process-based models)
were used to evaluate the performance of our gridded GPP products. FLUXCOM GPP
(version RS+METEO) was upscaled from EC tower measurements using three machine
learning algorithms with combined remote sensing and meteorological data as inputs [20].
Here, we used the average of three sets of GPP products. The monthly GOSIF-GPP dataset at
0.05◦ spatial resolution was generated using a robust linear relationship between tower GPP
and GOSIF to estimate regional and global terrestrial photosynthesis [62]. TRENDY GPP is
an ensemble of 10 state-of-the-art ecosystem models (CABLE-POP, CLM5.0, ISAM, ISBA-
CTRIP, JULES, LPJ-GUESS, ORCHIDEE, ORCHIDEE-v3, SDGVM, VISIT) that participated
in the TRENDY (v9) multi-model inter-comparison and followed a standard protocol [1].

2.7. Estimation of GPP Based on Machine Learning Algorithms

The Random forest (RF) algorithm is an ensemble learning approach for classification
or regression that integrates many decision trees [63]. The number of decision trees, the
number of features to select for each split, and the minimum number of observations per
leaf are hyper-parameters that need to be modified. The RF algorithm subsamples features
according to the user’s settings before growing each tree, which can reduce the correlation
among individual decision trees and thus improve model accuracy. Furthermore, its ability
to handle high-dimensional information helps us analyze climatic and environmental
factors [64].
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Artificial neural networks (ANNs) are a type of machine learning algorithm inspired
by the structure and function of biological neural networks [65]. A typical ANN usually
consists of input, output, and hidden layers, each containing several artificial neurons. The
back propagation neural network (BPNN) is one of the most popular and proven ANN
algorithms being used for ecological studies [66–68]. During the model training process,
signals flow from the input layer to the output layer, perhaps after passing through several
hidden layers. Errors in the output layer propagate backward to the previous layers until
they meet the user-defined threshold. The network attempts to minimize the discrepancies
between observations and predictions.

We used the RF model to identify the factors with the most powerful explanation
of GPP and to explore the importance of these predictors. We trained six RF models
to select features using the ‘TreeBagger’ function of MATLAB 2021b, i.e., two types of
models (PFT-specific and universal) for each vegetation index (SIF, NIRv, and LAI). RF
was chosen due to the robustness of ranking feature importance under different hyper-
parameters and high interpretability. For each of the six models, one vegetation index
as well as all environmental factors (plant functional type [PFT] and atmospheric carbon
dioxide concentration [CO2]), climatic constraints (air temperature [Tmp], maximum air
temperature [Tmax], minimum air temperature [Tmin], diurnal temperature range [DTR],
precipitation [Prec], downward shortwave radiation flux at the surface [SRAD], soil water
content [SWC], and vapor pressure deficit [VPD] for the current month, the previous month,
and the previous two months), and plant traits (canopy height [Hc], specific leaf area [SLA],
and foliar nitrogen concentration per unit dry mass [Nm]) were initially selected for training
(Table 1). Each model comprised 100 decision trees, was sampled without replacement, and
was trained using 70% of the data. Model performance was evaluated using out-of-bag
(OOB) R-squared (R2) and root mean square error (RMSE) values. The predictor with the
lowest importance score in the iteration was removed and the whole procedure was then
repeated until only the vegetation index, CO2, and PFTs were left. The predictors used to
estimate GPP were identified based on the performance curve of OOB R2 and RMSE. The
determination of the model is based on the principle that further reductions in the number
of predictors would considerably reduce model performance, while increasing the number
of predictors would not significantly improve model performance.

The predictors for each of the six types of models were determined and the construction
of the corresponding types of BPNN models was implemented with the ‘Deep Learning
Toolbox’ in MATLAB 2021b. We divided the training dataset into training, validation,
and test data with proportions of 70%, 15%, and 15%, respectively. The training set and
validation set were used to tune the hyper-parameters, and the test set was used to evaluate
the performance of the network. Over-fitting was defined as a loss of more than 3% in
performance between the training set and validation set in this study, and an early stopping
method was utilized to prevent it.

Bayesian optimization determined the optimum hyper-parameters for each machine
learning method. We ran each routine 50 times to minimize the effects of random model
initialization. Finally, we estimated the predicted R2 and RMSE values using the optimal
model and evaluated the performance of different models by calculating the averages of the
predicted R2 and RMSE values. All the results were produced on a PC running Windows
10 which had a 3.0 GHz CPU and 40.00GB of RAM.

We evaluated the performance of six types of models based on two machine learning
algorithms in terms of GPP estimation for different vegetation types along latitudinal bands.
We then investigated the factors that are the best candidates for developing GPP estimation
models with different VIs. Ten combinations of VIs, CO2, PFT, plant traits, and climate
factors were tested (Table S2).
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3. Results
3.1. The Performance of the Optimal VI-Based GPP Estimation Models

We found that all optimal VI-based GPP estimation models show reasonable accu-
racy in predicting GPP at a global scale (R2 ranges from 0.79 to 0.87, RMSE ranges from
1.40 g C·m−2·d−1 to 1.65 g C·m−2·d−1), but the NIRv-based PFT-specific RF models per-
formed the best (R2 = 0.87, RMSE = 1.40 g C·m−2·d−1). Our results also suggest that the RF
models generally performed better than the BPNN models, and the PFT-specific models
performed better than the universal models, although their differences were minor (Table 2).
For the three VIs, both RF and BPNN methods show that NIRv-based models outperformed
SIF-based models, followed by LAI-based ones.

Table 2. Performance of optimal models for each vegetation index. Note that PFT was used as a
predictor in the PFT-specific models, while it was not included in the universal models.

Type Vegetation
Index

RF BPNN

R2 RMSE
(g C·m−2·d−1) R2 RMSE

(g C·m−2·d−1)

PFT-Specific
SIF 0.86 1.46 0.84 1.43

NIRv 0.87 1.40 0.85 1.43
LAI 0.86 1.45 0.83 1.50

Universal
SIF 0.85 1.54 0.81 1.60

NIRv 0.85 1.51 0.83 1.54
LAI 0.84 1.54 0.79 1.65

Figure 2 shows the latitudinal distribution of universal models’ performance using the
RF method. Prediction accuracy discrepancies are mostly present among various latitudinal
zones and different PFTs, rather than different models. The GPP estimation models derived
from the different combinations of BPNN or RF methods and universal or PFT-specific
configurations show similar performance (Figures 2 and S5–S7), indicating that rather than
the machine learning algorithms, the uncertainties and sample size of the training data
seem to be the main factors that affect the performance of the GPP estimation models when
estimating regional GPP.

The R2 values of the models appear to be greater than or near to 70% in all latitudinal
zones except 70◦N–80◦N (R2 = 0.27–0.34), with minor differences between the models
based on different VIs and machine learning algorithms (Figures 2 and S2–S4). Overall, the
regional and PFT-specific performance of the GPP models, which is also closely related
to the sample size, is much better in the northern latitudes (the median of R2 is 0.85; the
median of RMSE is 1.12 g C·m−2·d−1) than latitudes near the equator (the median of R2 is
0.74; the median of RMSE is 1.19 g C·m−2·d−1). With a dense distribution of flux tower
sites (Figure 1) in the northern mid-high latitudes (30◦N–70◦N), diverse PFTs, and a large
amount of data available, the models performed well on all types of vegetation (forests,
shrublands, grasslands, croplands, and wetlands) in this region (R2 ranges from 0.48 to
0.97, and RMSE ranges from 0.51 to 3.13 g C·m−2·d−1). However, the poor performance in
the northern high latitudes (70◦N–80◦N) is likely because only one flux tower was available
(the open shrublands site, Ru-Cok). Similarly, the poor model performance for EBF near
the equator (R2 = 0.10–0.22) is also due to the limited flux tower observations (Figure 1).
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Figure 2. Universal models’ performance for each PFT along different latitude gradients using the
RF method. (a–c) The R2 values of the universal models that each vegetation index used as one of
the model predictors. (d–f) The RMSE values of the universal models that each vegetation index
used as one of the model predictors. The gray squares represent that there is no flux tower for the
corresponding PFT and latitudinal band.

3.2. Comparison between VIs-Based and Ecosystem Model-Simulated GPP Datasets

A set of three global gridded GPP products for 2003–2018 were generated for each
vegetation index based on universal models with optimal configurations, i.e., the optimal
combination of the VIs and the other associated variables using the RF algorithm. We
compared our Vis- and machine learning-based GPP datasets with three other GPP datasets
(FLUXCOM GPP, GOSIF GPP, and TRENDY GPP).

The spatial patterns of annual mean GPP for the six GPP products are similar: the
highest values are found in tropical rainforest regions, with generally lower GPP values
found in arid regions such as Australia, Central Asia, the southwestern United States, and
southwestern Africa, as well as the cold regions at high northern latitudes (Figure 3). All
products’ latitudinal profiles also have good consistency (Figure S6).

Global land is divided into the northern hemisphere (NH: 30◦N–90◦N) and tropical
and southern hemisphere (SH+Trop: 90◦ S–30◦N). Among our three sets of GPP products,
both globally and regionally, LAI-based GPP had the highest annual mean GPP, whereas
NIRv-based was the lowest; the interannual variability of the three sets is quite similar
(Figure S7). Both SIF-based GPP and GOSIF-GPP were generated from GOSIF, and their
annual mean GPP values are relatively close in the SH+Trop area; however, the former
has higher annual mean and interannual variability in GPP than the latter, both globally
and over the NH (Figures 4 and S7). The rest of the products are within the range of the
10 process-based models for each study scale, except for global LAI-based annual mean
GPP (Figure 3). Interannual variability in FLUXCOM is substantially lower than that of
other products because it did not account for the CO2 fertilization effect (CFE) (Figure S8).
Despite GOSIF-GPP not considering rising CO2 concentrations, its interannual variability



Remote Sens. 2022, 14, 6316 9 of 20

was closer to TRENDY MMEM and our three GPP products. GOSIF may reflect the role of
CO2 in GPP to some extent.
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Figure 3. Spatial patterns of global annual mean GPP for 2003–2018. (a–c) represent GPP estimates
based on each vegetation index with optimal configurations. (d) GOSIF-GPP; (e) FLUXCOM GPP.
(f) represents the average of the multi-model ensemble mean.

On the other hand, the linear trends of the various GPP products are quite different
(Figure S7). Except for FLUXCOM, the remaining GPP products have an increasing trend
in annual mean values (Figure S7a–c). Regarding interannual variability of anomalies
and trends, our three GPP products are very close to each other (Figure S7d—Global:
0.52–0.54Pg C·yr−2; NH: 0.27–0.29 Pg C·yr−2; SH+Trop: 0.24–0.26 Pg C·yr−2). GOSIF-GPP
and TRENDY MMEM all capture the significant increase in GPP in northern Europe, East
Asia, South Asia, and northern North America (Figure S9). However, the Amazon region
displays a wide divergence: our products and GOSIF-GPP show a decreasing trend in GPP
(Figure S9a–d), but TRENDY MMEM shows a significant increase (Figure S9f). Furthermore,
for eastern Siberia, LAI-based GPP, GOSIF-GPP, and TRENDY-MMEM consistently indicate
a decreasing GPP trend (Figure S9c,d,f), but SIF- and NIRv-based GPP regularly show
considerable GPP increases (Figure S9a,b).
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3.3. The Critical Factors for the Machine Learning Algorithms-Based GPP Estimation Model

We further investigated the factors that are the best candidates for developing the GPP
estimation models with different VIs. The GPP models developed based only on VIs suggest
that SIF is the best proxy for the estimation of global GPP using the RF algorithm (R2 = 0.67,
RMSE = 2.24 g C·m−2·d−1), followed by NIRv (R2 = 0.61, RMSE = 2.45 g C·m−2·d−1) and
LAI (R2 = 0.50, RMSE = 2.79 g C·m−2·d−1). Likewise, the models developed based on the
BPNN algorithm also suggest that SIF is the best VI for global GPP estimation if other
variables, i.e., CO2, PFT, plant traits, and climate factors, were not included (R2 = 0.70,
RMSE = 2.13 g C·m−2·d−1, Figure S10). Nevertheless, VIs are the most critical input
when compared to other variables, confirming the usefulness of these VIs in estimating
global GPP.
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Incorporating atmospheric CO2 concentration helps the estimation of GPP based on
VIs and machine learning algorithms (Figure 5). However, the benefits of incorporating
CO2 are different for different VIs. We found that improvement in model performance was
more evident for LAI-based models, with the R2 value increasing from 0.50 to 0.58 and
RMSE decreasing from 2.79 to 2.52 g C·m−2·d−1. The improvements for NIRv-based and
SIF-based models were not that significant, with the R2 value increasing from 0.61 to 0.66
and from 0.67 to 0.70 for NIRv and SIF, respectively, while the RMSE values respectively
decreased from 2.45 to 2.30 g C·m−2·d−1 and from 2.24 to 2.13 g C·m−2·d−1 (Figure 5). We
also found that explicitly including PFT in the RF model achieved similar improvements to
including CO2. Nevertheless, incorporating both CO2 and PFT did not achieve an evident
improvement in model performance compared to the models that incorporated CO2 or PFT.
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Figure 5. The performance of RF models using different combinations of predictors. The hyper-
parameters of the models using other combinations of inputs were consistent with the optimal
model. The left and right axes represent the mean predicted R2 and RMSE values of the models
over 50 repetitions, with negligible differences each time. The variables used to develop the GPP
estimation models are represented by the combination of their abbreviations, i.e., VIs (V), CO2 (C),
PFT (P), plant traits (T), and climate factors (F) (Table S2). For example, ‘VCT’ denotes the RF GPP
model that used VIs, CO2, and plant traits as input.

Including plant traits and/or climate factors led to a further notable improvement
in model performance (Figure 5). For the SIF models, plant traits significantly improved
model performance (R2 increased by 0.13 and RMSE decreased by 0.51 g C·m−2·d−1 from
the SC models to the SCT models) while climate factors did not (R2 and RMSE were 0.70 and
2.13 g C·m−2·d−1 for the SC models and 0.73 and 2.05 g C·m−2·d−1 for the SCF models).
For the NIRv and LAI models (VC models), considering plant traits (VCT models) or
climate factors (VCF models) significantly contributed to model performance. Furthermore,
models that incorporated both plant traits and climatic factors (VCPTF models) achieved
the best performance (R2 = 0.87 and RMSE = 1.40 g C·m−2·d−1 for NIRv; R2 = 0.86 and
RMSE = 1.45 g C·m−2·d−1 for LAI). We found that results did not change for the machine
learning algorithms because the combination test of VIs, PFT, plant traits, and climate
factors based on the BPNN algorithm showed similar results to tests based on the RF
algorithm (Figure S10).

Figure 6 shows the relative importance of the factors in the optimal machine learning
GPP estimation models (see Methods). For the SIF-based and NIRv-based models (both
PFT-specific and universal), vegetation index was the most powerful explanatory variable
with the most significant importance score for estimating GPP. SIF plays a dominant
role in reconstructing GPP (Figure 6a,b). However, a notable decrease in performance
was observed when climate factors and plant traits were excluded from the SIF-based
models (OOB R2 = 0.82 to 0.73 while OOB RMSE = 1.66 to 2.02 g C·m−2·d−1 from four
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to three predictors in Figure S11a and OOB R2 = 0.78 to 0.70 while OOB RMSE = 1.83 to
2.13 g C·m−2·d−1 from three to two predictors in Figure S11b). On the contrary, for the
PFT-specific LAI-based models, PFT is the most critical predictor (Figure 6e), while the
major factor in the universal model is leaf N content (Figure 6f). For the NIRv-based and
LAI-based models, SRAD is the most significant scoring climate variable, while it was not
selected for the optimal SIF-based model. In all six types of models, we consistently found
that preseason temperature was selected as an important factor in estimating GPP.
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Figure 6. Importance of variables for optimal performance in random forest models. (a,c,e) represent
PFT-specific models. (b,d,f) represent universal models. Rows one through three represent the
models constructed based on SIF, NIRv, and LAI, respectively. Variable importance scores were
normalized using the minimum–maximum method. The explanatory variables are marked with “px”
at the end of the abbreviation, indicating the climate factors for the previous x months (e.g., Tminp2
represents the minimum air temperature two months ago).

4. Discussion
4.1. Different Performance of VIs in GPP Estimation

SIF has the strongest linear correlation with flux tower GPP estimates among the three
VIs. When using individual vegetation indices to construct GPP models, the performance
of the SIF-based model is higher than that of the NIRv- and LAI-based models. Unlike
NIRv and LAI, SIF responds to changes in canopy structure and photosynthetically active
radiation absorbed by chlorophyll [69]. In addition, SIF is sensitive to vegetation with
slight interannual variation in greenness and can be retrieved under some clouds and
aerosols [70]. Several studies have shown that SIF measurements are superior for detecting
photosynthetic activity in evergreen forests [34,71,72]. Wang et al. [73] found that SIF is
more accurate than NIRv and EVI in monitoring the phenology of drylands since it is not
contaminated by soil background. Another study found that SIF is superior to traditional
VIs and the new vegetation index NIRv in estimating large-scale GPP [74]. However, the
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shortcomings of SIF are apparent. There is no satellite designed explicitly for SIF, and SIF
retrievals have a relatively short time span and coarse spatial resolution, limiting long-term
global GPP estimation and prediction [75].

Nevertheless, when combined with vegetation’s biophysical properties and environ-
mental and climate factors, the NIRv-based models outperformed SIF-based and LAI-based
models. NIRv is a spectral reflectance-based vegetation index, and LAI is a vegetation char-
acteristic parameter with actual physical significance, both of which can capture structural
changes in vegetation canopies. LAI and leaf level CO2 are almost equally crucial for GPP
according to Hinojo-Hinojo et al. [76]. SLA is a critical trait that reflects the photosynthetic
capacity of plants, which is related to leaf-scale CO2 uptake and can manifest the growth
and reproduction strategy under certain environmental conditions. With the combined
influence of CO2 and SLA, NIRv can provide more universal predictions of GPP than LAI.
Furthermore, NIRv captures the fraction of sunlit and shaded leaves in vegetation canopies,
while LAI ignores the difference in photosynthetic capacity between these two types of
leaves [77,78]. Our findings suggest that NIRv can better predict GPP when combined with
other predictors and compensate for the spatial–temporal limitations of SIF measurements.

4.2. Environmental Factors and Plant Traits Paired with VIs

Most machine learning-based GPP estimation models indirectly represent the effects
of CO2 fertilization on GPP by incorporating FPAR or other vegetation indices [21,79,80],
although multiple pieces of evidence show that the rising atmospheric CO2 concentration
is one of the dominant factors driving vegetation growth [81–83]. We explicitly tested the
contribution of incorporating the atmospheric CO2 concentration into our study’s GPP
models and how it affected performance. We found that incorporating CFE did contribute
to the performance of the VI-based machine learning GPP model, especially for models
developed based on LAI (Figure 5).

Our analysis (Figure 2) shows that preseason temperature is pivotal for all three VIs-
based models. Temperature affects photosynthetic intensity at the leaf scale by altering
the activity of enzymes in the chloroplast, with either high or low temperatures inhibiting
enzyme activity [84]. Niu et al. [85] evaluated the flux tower data and found that the
relationship between vegetation photosynthesis and temperature at the ecosystem scale
followed the same pattern as the leaf scale. Numerous studies have revealed that tempera-
ture is one of the dominant limiting factors in high northern latitudes [86–89]. Temperature
has been confirmed as the key environmental factor controlling the rising GPP of northern
Eurasia [90]. Furthermore, preseason temperature also strongly regulates the phenology of
plants, which essentially determines the length of the photosynthetic active period and,
subsequently, annual GPP [86,91–94]. However, it has also been found that warming leads
to earlier spring phenology, reducing vegetation’s peak growth in North American boreal
forests [95].

Solar radiation is crucial for providing energy for photosynthesis. On the one hand,
incoming shortwave radiation regulates leaf development and controls the process of leaf
senescence by affecting plant hormones (e.g., ethylene and abscisic acid). On the other
hand, radiation intensity determines the photosynthetic rate of vegetation [96]. Several
recent reports have suggested that when reflectance-based VIs incorporating biophysical
and biochemical properties are paired with incoming shortwave radiation, changes in GPP
are more easily captured [97,98]. This is in line with our findings that radiation participates
as the most important climatic variable in NIRv- and LAI-based models (Figure 2). In
the SIF-based models, we also discovered that radiation is insignificant. Solar radiation
has proven to be a dominant driver of SIF yield based on theoretical and experimental
analysis [70,99,100]. Fluorescence signals are considered the most direct response to radi-
ation absorbed by the vegetation canopy during photosynthesis, which is coupled with
the radiation.

Tramontana et al. [35] concluded that the performance of models using remote sensing
data alone is comparable to the best model, implying that climate factors have a minor
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effect. However, we found that there is some room for improving model performance
when predicting GPP using remote sensing data alone, which is achieved by selecting
an optimal combination of features. Previous studies implied that NIRv, to some extent,
captures the influences of climate on canopy development. In other words, the accuracy
of NIRv in predicting GPP is not significantly increased by meteorological data [101].
Nevertheless, our results suggest that incorporating meteorological information increased
accuracy significantly for the NIRv- and LAI-based GPP estimation models (Figure 3).
This is likely due to the fact that NIRv and LAI describe vegetation canopy structure well
but cannot fully reflect photosynthetic activity, and the machine learning algorithm can
represent the nonlinear interactions between the climate variable and the VIs.

Canopy height, specific leaf area, and leaf nitrogen content were influential explanatory
variables in all of the GPP models we developed. Given the globally consistent correlations
between Nm, SLA, and rate of photosynthesis [42,43], these photosynthesis-related plant
traits can provide substantial constraints on GPP estimates at the global scale [102]. We
found that Nm is a crucial explanatory variable in LAI-based models, and its importance
in models across biomes even outweighs that of LAI. Our results are consistent with
previous studies, which found that combining Nm and LAI could improve the explanation
of variability in GPP [103].

Although a universal slope between OCO-2 SIF and flux tower GPP was previously
found for diverse biomes by Li et al. [74], two subsequent investigations revealed that
the SIF–GPP relationship is not constant throughout time and space but is regulated by
environmental conditions [37,38]. The explanation for these findings is thought to be the
variances in vegetation canopy structure [37,98], though the mechanism is unknown. We
constructed two types of models, PFT-specific and universal, and found that the accuracy
difference between them is insignificant. Plant traits associated with photosynthesis may
vary considerably among biomes and vegetation types in different geographic zones. The
selected plant traits (i.e., Hc, SLA, and Nm) contain a large amount of canopy structure
information that is dependent on specific biomes, which aids the predictions of GPP spatial
patterns and mechanistically better reveals the photosynthetic capacity of vegetation.

4.3. Sources of Uncertainty

The keys to the success of data-driven models based on machine learning algorithms
when upscaling the relationships between the ancillary variables and GPP from site level
to global scale are (1) sufficient sample size for training the model, (2) predictors matching
the spatial scale of the target variable at the site scale, and (3) gridded inputs with the same
spatial and temporal resolution with global coverage. Although the method we used in this
study achieved reasonable performance while employing the fewest explanatory variables
possible, some aspects still need further improvements.

The original spatial resolution of gridded datasets, including VIs, PFT, plant traits,
and climate data, is inconsistent, and resampling introduces uncertainties in global GPP
estimates. It is widely assumed that the smaller the pixel corresponding to the location
of the flux tower, the more reliable the pixel value is, i.e., the more representative of the
environmental conditions around the tower. Limited by the spatial resolution of remote
sensing and reanalysis data, the predictors cannot match EC towers’ GPP estimates well
at the ecosystem scale. The spatial distribution of the flux sites is not even and is notably
sparse for some areas and vegetation types (e.g., equatorial regions and EBF). In order
to better understand these important yet poorly understood ecosystems’ physiological
responses to global environmental changes, we call for expansion of eddy covariance sites
and ecological research stations in these areas. The plant traits utilized take the form of
gridded data that were developed based on the TRY database and which are constant
in time. This may be altered as a result of climate change [51]. We expect to clarify the
mechanisms that lead to plant trait changes and validate or improve our models using
time-varying data.
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5. Conclusions

Two widely used machine learning algorithms, i.e., RF and ANN, were employed to
estimate global GPP. We dynamically selected variables by removing the ones with the
lowest importance and then re-learning, which allows us to achieve the highest possible
prediction accuracy using as few explanatory variables as possible, considerably improving
prediction efficiency. We systematically compared the performance divergencies of different
VIs in predicting GPP and determined the best way to combine each vegetation index with
other explanatory variables, reflecting the close relationship between plant traits and
ecosystem functions.

Under the data-driven approach, we investigated divergencies in the performance of
GPP models developed based on three VIs (i.e., SIF, NIRv, and LAI). We identified which
biophysical properties, environmental factors, and climatic variables paired with individual
VIs had the best predictive power for GPP and elucidated the potential mechanisms. We
show that each vegetation index is a crucial driver of simulated spatial and temporal
variability in GPP, and the SIF-based model performs best when modeled using a single
vegetation index. However, NIRv combined with CO2, plant traits, and climatic factors
can achieve the highest prediction accuracy. Furthermore, we consistently found that
preseason temperature was selected as an important factor for estimating GPP in all six
models. For the NIRv- and LAI-based GPP prediction models, solar radiation is the
most critical climatic factor. We found that plant traits provide crucial canopy structure
information, which effectively enhances the accuracy of all GPP models. Climatic variables
are essential factors for improving the accuracy of NIRv- or LAI-based GPP models, but
not for SIF-based models.

Our study provides valuable information on the configuration of data-driven models
designed to improve the accuracy of global GPP predictions and provides insights into the
underlying physiological and ecological mechanisms involved.
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