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Exploring the biophysical option space for feeding
the world without deforestation
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Safeguarding the world’s remaining forests is a high-priority goal. We assess the biophysical

option space for feeding the world in 2050 in a hypothetical zero-deforestation world. We

systematically combine realistic assumptions on future yields, agricultural areas, livestock

feed and human diets. For each scenario, we determine whether the supply of crop products

meets the demand and whether the grazing intensity stays within plausible limits. We find

that many options exist to meet the global food supply in 2050 without deforestation, even at

low crop-yield levels. Within the option space, individual scenarios differ greatly in terms of

biomass harvest, cropland demand and grazing intensity, depending primarily on the

quantitative and qualitative aspects of human diets. Grazing constraints strongly limit the

option space. Without the option to encroach into natural or semi-natural land, trade

volumes will rise in scenarios with globally converging diets, thereby decreasing the food

self-sufficiency of many developing regions.
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F
uture land use faces several interconnected challenges.
Terrestrial ecosystems play a key role in the global climate
system, host a substantial fraction of global biodiversity and

provide ecosystems services that are essential for humans,
including food, fibre, energy, water and air purification,
micro-climate regulation and protection from natural hazards1.
Three-quarters of the earth’s terrestrial, ice-free surface is
currently under human use2,3, and one-quarter of global
potential net primary production (NPPpot, the annual net
production of organic matter by primary producers such as
plants that would prevail in the absence of humans) is
appropriated by humans4,5. Land use is associated with many
other environmental effects, such as eutrophication, pollution,
biodiversity loss or climate effects, reaching levels that jeopardize
the provision of ecosystem services to society6,7. Exploring ways
that allow feeding and fuelling the growing global population

while safeguarding the life-supporting functions of ecosystems is
generally recognized as an urgent sustainability challenge1,8.

Protecting the remaining forested ecosystems is a central
desideratum in this context. Forests store more carbon than any
other land-cover type per unit area9 and host a considerable
fraction of the global biodiversity10. A sizeable fraction of global
pristine forests has already been converted into agricultural
areas2, and this process is ongoing, particularly in tropical
regions11,12. International activities such as the UN collaborative
program ‘Reducing Emissions from Deforestation and Forest
Degradation in Developing Countries’ (REDD) aim at protecting
the remaining forest ecosystems for climate-change mitigation
targets. The global extent of forests is also proposed as an
indicator for delineating a safe operating space for humanity, and
its significance in the context of sustainability is highlighted13.

However, safeguarding the existing forests constrains agri-
cultural development as it limits the expansion of cropland and
grazing areas. Consequently, the increasing demand for food,
feed, fibre and fuel of a growing world population14–16 will have
to be met on shrinking per capita land areas. Recent studies
suggest that providing sufficient food without cropland expansion
is possible17, for example, by increasing yields above the current
rates18, based on higher agricultural inputs and associated with
massive trade volumes19. In contrast, other studies argue that
low-input farming systems, such as organic agriculture, are vital
for safeguarding important ecosystem services20–22. Whether and
under which conditions low-input or organic agricultural systems
are able to feed the world is fiercely debated23,24, warranting
further investigation25. In the context of studies assessing the
strategies of land-based climate-change mitigation, the future
development of human diets26,27 and efficiency gains in global
livestock systems28–31 have been identified as crucial. However,
because of their large feed requirements, efficiency gains in
livestock systems that are based on the enhanced use of cropland-
derived concentrate feedstuff can also aggravate land competition
for food production8,28,32. In contrast, the use of land that is not
directly usable for food production with ruminants has an
important potential to contribute to food security and the
maintenance of livelihoods in specific contexts33–35. This plurality
of viewpoints warrants a systematic exploration of the interplay of
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Figure 1 | Key parameters and their variants combined within BioBaM

and values for the year 2000. (a) Cropland expansion variants (million

km2), from no-expansion (þ0%) to full expansion into highly productive

grazing land2 (þ 70%). The þ 11% variant is in line with FAO forecasts14.

(b) Boxplots of the region- and cultivar-specific crop yields in each variant

(t dmha� 1 yr� 1), from extensive low organic yield to intensive-farming,

high-yield variants. Coloured boxes indicate the two inner quartiles

(425 and o75) per world region; whiskers indicate the minimum and

maximum values. (c) Variants of livestock feedstuff composition based on

feed-conversion ratios (kg input (dm) per kg output (dm)). (d) Variant of

human diets, quantity and composition (kcal per cap per day). VEGAN

denotes a diet without livestock products; VEGETARIAN denotes a diet

without meat but with eggs, and milk. These two and MEAT, a diet with a

considerable fraction of livestock meat, are literature derived67 and represent

recommendations based on health considerations. The BAU scenario is in line

with the FAO forecast for 2050 (ref. 14), whereas the RICH scenario assumes

the diet of North America in 2000 to prevail globally in 2050. All variants

except 2000 and BAU assume a global convergence of per capita diets.

(e) Variants of the origin of meat in human diet variants expressed as

monogastric share in total animal calories. The bar for the BAU variant refers

to the range of all diet variants with the exception of VEGAN. The

combination of all variants results in 500 individual scenarios. (Note that the

VEGAN diet variant does not include variants of livestock system parameters

(c,e)). Values for 2000 from (refs 57,66).
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factors such as diets, yields and livestock efficiencies for
agricultural development.

In particular, constraints to grazing become decisive in a
zero-deforestation world. In that situation, cropland expansion
can expand to unused, unforested land—which is typically of low
productivity due to climate constraints and of high nature value
(then, its conversion entails high ecological costs)—or, more
likely, to other areas, that is, areas not used for cropping and
infrastructure. Most of these areas are used for grazing, albeit at
varying intensities2,36,37.

In this study, we systematically explore the options and
constraints resulting from a hypothetical zero-deforestation
boundary condition for agricultural production, thereby explicitly
assessing limitations to grazing. We explore the individual role of
supply-side measures (including cropland output intensification
and cropland expansion), efficiency measures in the livestock
system (increases in feed-conversion ratios) and demand-side
measures (quantitative and qualitative changes in the human
diet). For each of these parameters, we collected published
forecasts for 2050 and incorporated them into a consistent
biomass balance model (BioBaM; Supplementary Methods)38,39

to assess their combined effects. For each scenario which is a
unique combination of individual variants of five parameters
(Fig. 1), it calculates biomass demand and supply balances—for
the globe and for 11 world regions—along with the average
grazing intensity and regional biophysical trade balances.

We assessed the feasibility of 500 scenarios. ‘Feasibility’ was
defined as a situation in which global food demand is matched by
cropland supply, and livestock grazing intensity stays within
ecological thresholds. Trade is assumed to balance deficits of
regional production and consumption for all feasible scenarios,
assuming no trade barriers exist. The option space is defined as
the sum of all feasible scenarios.

Our analysis reveals that a large range of options exist to feed a
no-deforestation world. Nearly two-thirds of the 500 calculated
scenarios are classified as ‘feasible’ or ‘probably feasible,’ even
with low cropland-yield levels or RICH diets, but not when these
two are combined. Cropland constraints and grazing constraints
are approximately equally frequent. Biomass harvest, cropland
demand and grazing intensity vary broadly within the option
space, largely depending on diets. Grazing constraints strongly
limit the option space in a world with moderate to high cropland
expansion. Within the option space, trade volumes will rise if a
more regionally equal per capita diet is adopted and no
encroachment of farming into natural or semi-natural land is
assumed.

Results
General results. An overview of the option space according to
our scenario calculations is displayed in Fig. 2. More than 40% of
all scenarios (211) are not feasible. Eighteen per cent of all
scenarios are limited by cropland availability, 16% by limits to
grazing intensity and 7% by a concomitance of both constraints.
Whereas all VEGAN scenarios and 94% of the VEGETARIAN
scenarios are feasible, approximately two-thirds of the BAU diet
and only a small fraction of the RICH diet are found to be feasible
(15%). With high yield levels, 71% of all scenarios are feasible
(or probably feasible), compared with only 39% if organic yields
are assumed. Apparently, the increased area demand resulting
from low yields renders scenarios with richer diets unfeasible. The
expansion of cropland into grazing areas enlarges the option
space, but grazing constraints become increasingly important.
The RICH diet combined with intermediate yield levels is feasible
only in cases where a large share of high-quality grazing land is
converted into cropland. Such scenarios, however, are often
constrained by thresholds related to grazing intensities, owing
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Figure 2 | The biophysical option space in 2050. The option space (green

cells) results from the combination of four yield variants, five cropland

expansion variants, two variants of the feed basis for livestock at the supply

side (lines) and five human diet variants combined with three variants of

the origin of livestock products at the demand side (columns). Each cell in

the option space represents a scenario. Scenarios affected by cropland

limitations represent cases where the global demand for cropland products

exceeds global supply by more than 5% and scenarios affected by grazing

limitations when global grazing intensity exceeds ecological thresholds.

‘Probably feasible’ are scenarios for which demand and supply differ

by o5%. *For the VEGAN diet, the source of livestock products is not

relevant.
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to the decreased grazing land availability following cropland
expansion.

Factors determining the option space. Figure 3 displays the
relationship between cropland and grazing constraints and
the individual parameters. This illustration highlights the strong
effect of grazing constraints on the option space, particularly in
response to cropland expansion.

Cropland constraints are closely connected to yield levels and
cropland expansion variants. Low yields imply that a high
number of scenarios are constrained by the availability of
cropland, which hold true particularly for the ORGANIC yield
variant. Grazing constraints depend on the origin of livestock
products in human diets and the feedstuff composition.
Apparently, the effect of reduced grazing area availability can
be compensated for by lower demand for livestock products and
by the higher reliance of livestock feeding on cropland-based
products.

The results suggest that roughage-based livestock systems are
primarily confronted with grazing constraints, whereas grain-
based livestock feeding faces cropland constraints. Ruminant-
based supply systems are primarily affected by grazing limits;
monogastric pathways are more affected by cropland limits.

Human diets play a decisive role in the option space:
Vegetarian or vegan diets are less often restricted by cropland
availability or limits on the biomass supply of grazing land.
Richer diets and cropland expansion are approximately evenly
limiting. The two meat-based diets, BAU and MEAT, are similar
with regard to cropland limits, despite the differences in global
average calorie supply. However, they show distinct differences
with regard to the limits posed by grazing. The MEAT diet,
characterized by a larger demand for livestock products than the
world average of the BAU diet variant (but a demand
substantially lower than today’s levels in industrial countries;
Supplementary Tables 1 and 2), is strongly affected by grazing
limits, although it has a smaller overall calorie supply.

In general terms, ruminant-based diets show a much smaller
option space in the MEAT and BAU variants, constrained by
limits to grazing. However, Fig. 2 reveals a noteworthy detail.
Under conditions of low yields and small cropland areas,
ruminant-based diets have an advantage over monogastric-based
diets. In these cases, ruminants use resources that do not compete
for cropland that is, in this scenario group, limited.

Characterization of feasible and probably feasible scenarios.
The feasible and probably feasible scenarios vary strongly with
regard to cropland demand, crop yields, grazing intensity and
biomass harvest. The results for these parameters for all feasible
scenarios are displayed in Fig. 4 in a breakdown into human diets
(for other aggregations, see Supplementary Figs 3–6). Cropland
demand shows a huge variation across all feasible scenarios
(Fig. 4a). Whereas the VEGAN diets require less cropland than in
the year 2000, the BAU and MEAT diets reach a cropland
demand up to 23.5Mkm2, 52% above the current levels. In
contrast, the maximum cropland demand of the RICH diet is
similar to the maximum of the BAU diets. However, here, the
number of feasible scenarios is considerably reduced by grazing
constraints. RICH diets are feasible only with considerable
cropland expansion and high cropland yields (Fig. 4b), whereas
the other diet variants are also feasible with low or moderate
levels. Crop yields do not vary strongly between diet variants
(factor 1.5 between lowest and highest; Fig. 4b).

Grazing intensity is highly variable in the option space and
strongly dependent on diets, ranging from 0 to 36% of actual NPP
(Fig. 4c). No grazing is associated with the purely plant-based
human diet. Low values of grazing intensity are found in the
VEGETARIAN diets, and the highest grazing intensities are
found in the MEAT diets.

Unsurprisingly, biomass harvest varies by a factor of B3
among the diet variants. Note, however, that the variation of
harvest within each diet group purely results from differences in
livestock systems, that is, feed composition and the fraction of
livestock products in human diets. The RICH diet variant is not
feasible with ruminant products (Supplementary Fig. 7).

Emerging trade patterns. The scenarios differ strongly in their
regional self-sufficiency rates (that is, the ratio of domestic
extraction and consumption). In feasible and probably feasible
scenarios, regional deficits are balanced by imports from surplus
regions. Figure 5 displays the resulting net trade patterns
according to four scenario groups. Group (a) includes all feasible
VEGETARIAN diet scenarios combined with organic yields,
group (b) includes the strongly heterogeneous BAU diets com-
bined with relatively homogenous cropland yields (YIELDGAP),
group (c) includes the same diet scenarios as (b), combined with
regionally strongly divergent FAO yields, and group (d) includes
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the MEAT diet combined with the more homogenous YIELD-
GAP yields. Throughout the four scenario groups, the direction of
trade flows for individual regions is very similar, but the volumes
of the flows differ strongly. When looking at the medians, Europe,
North America and Oceania, Russia and Central Asia, Latin
America and South-East Asia are net exporters, whereas North
Africa, Sub-Saharan Africa and South Asia are net importers.
Only East Asia changes the direction of trade flows between the
four scenario groups. Whereas Sub-Saharan Africa is a net
importer of crop products, it is an exporter of ruminant products
(expressed in roughage/grass equivalents). The latter can be
explained by the vast grassland areas available in that region and
the assumption in BioBaM that exported livestock products are

produced in regions with large production potentials. South Asia,
dominated by India, is relatively self-sufficient with regard to
cropland products, with the exception of scenario group (d),
but it is strongly dependent on imports of ruminant products.
Note that the numbers shown in Fig. 5 represent the medians of
scenario groups; extreme assumptions on factors such as cropland
expansion can alter the magnitude and even the direction of trade
flows in specific scenarios (Supplementary Table 9).

The first three scenario groups are comparable with regard to
the global trade volumes, the fourth (MEAT diet combined with
YIELDGAP yields) results in an almost twice as large global trade
volume. In overall terms, a convergence of cropland yields
(YIELDGAP) increases the self-sufficiency of developing
countries, whereas converging diets decrease self-sufficiency.

Discussion
Nearly two-thirds of all scenarios appear feasible or probably
feasible in a world that—hypothetically—refrains from clearing
any further forests for agricultural purposes. This result indicates
that deforestation is not a precondition for supplying the world
with sufficient food in terms of quantity and quality in 2050 and
that many options exist based on different strategies. Our analysis
reveals that even a global adoption of diets currently prevailing in
the Western world would be feasible without deforestation if
cropland yields rose massively and cropland expanded strongly
into areas that are today used for grazing. Furthermore, high
yields17 are no biophysical necessity; the world population can be
fed healthily even with low cropland yields and little cropland
expansion when diets with a reduced fraction of livestock
products are adopted.

According to our analysis, human diets are the strongest
determinant of the biophysical option space, stronger than yields
or cropland availability. Unsurprisingly, vegan diets and diets
with a low share of livestock products (for example, the
VEGETARIAN variant) show the largest number of feasible
scenarios, in line with other studies19,33,40, representing pathways
that also make it possible to avoid the otherwise virulent grazing
constraints and significantly reduce the option space. Other
factors, such as high yields or intensive livestock systems, do not
show such a strong effect on the number of feasible scenarios and
do not necessarily reduce cropland demand or grazing intensity
because the land-sparing effect can be annihilated by rich diets
(Figs 3 and 4 and Supplementary Figs 3–6). These findings
underpin the insight of other studies that stress the importance of
demand-side measures for sustainability26,27,33,41. A vegan or
vegetarian diet is associated with only half the cropland demand,
grazing intensity and overall biomass harvest of comparable
meat-based human diets. Furthermore, a decreasing share of
livestock products in human diets could also be associated with
health benefits, particularly in the industrialized regions40,42.

However, it is important to note that livestock provides many
services other than food, for example, draught power, nutrient
management and risk avoidance. For instance, livestock enables
the use of land that cannot be used for cropping due to harsh
environmental conditions and thus helps broaden society’s
resource base33,34,43. This effect becomes visible in our analysis
in scenarios that combine low yields with little cropland
expansion. In such contexts, diets relatively high in ruminant
products show advantages over the monogastric-based variants.
With increased cropland production, however, this advantage of
ruminant livestock is lost.

Yields show a smaller effect than human diets on the overall
option space, but low yield levels limit the number of feasible
scenarios, particularly for diets with meat, which are affected
primarily by cropland constraints. In this vein, our results suggest
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that even in a zero-deforestation world, low-yielding agriculture
such as organic farming is a feasible option if paired with a
vegetarian or vegan diet, or, to a lesser extent, if based on a
massive cropland expansion, adding a nuanced perspective to this
controversy23–25. In contrast, the expansion of cropland does not
critically influence the option space, with the exception of the
zero-cropland expansion variants, where approximately half of
scenarios are not feasible. Cropland area and grazing intensity are
strongly interlinked in our analysis. Under ‘zero deforestation,’
large cropland entails smaller grazing lands and thus higher
grazing intensity. The other factors assessed in our analysis do not
show such strong overall effects within the entire option space,
but they introduce variability within, for example, diet groups
(Fig. 4 and Supplementary Fig. 7).

A further substantial contribution to widen the option space
could be expected from reducing waste levels8. However,
assessing the associated affects was beyond the scope of the
paper, due to the intricacies of determining waste levels and
discerning avoidable from unavoidable waste flows44. Therefore,
we assumed low waste levels to prevail only in the four contract-
converge scenarios (Supplementary Table 3). Consequently, the
option space might be smaller if these low waste levels could not
be reached. Climate-change effects on yields are not taken into
account in this study, in line with the projections by the FAO14.
Severe effects on the option space can be expected if yields are
substantially decreased45. However, the effect of low yields on the
option space is reflected in the ORGANIC variant in our
assessment.

Our assessment reveals a particularly intricate trade-off related
to food security. According to our scenarios, and in line with19,
global dietary patterns that aim for an equal per capita provision
of food (contract-converge scenarios) are, in general, terms bound
to create trade-offs with targets of national self-sufficiency
because they increase the import dependency of many
developing regions. In regions with low purchasing power, a
decrease in national self-sufficiency (per se neither necessary nor
sufficient to guarantee food security at the individual level)
may threaten food security46. We find that the reduction in self-
sufficiency associated with the MEAT diet cannot, or can only
partly, be compensated for by strategies that aim at ubiquitously

closing currently prevailing yield gaps on cropland19, a strategy
identified as instrumental to warranting food security and to
reducing biomass harvest and cropland demand on the
global scale8,16,41,47. Massive cropland expansion into grazing
land could mitigate this trade-off (Supplementary Table 9). Our
analysis reveals that this could reduce import dependencies in
some regions, but it would do so at the expense of encroachment
of farming into semi-natural or natural land, which is associated
with considerable socio-ecological costs48. Note that our results
do not assume any trade barriers because they were calculated as
the biomass trade flows that would be required to compensate for
regional deficits in biomass supply. Socioeconomic barriers or
obstacles to biomass trade, which could result from subsidy
systems, tariffs or other regulations, could narrow the
options space by rendering more scenarios unfeasible. A better
understanding of the conditions under which trade influences
the development of agricultural productivity49,50 is hence a
noteworthy scientific challenge.

Important constraints to the future option space result from
limits to grazing intensity. Although cropland availability is a
widely discussed planetary boundary3,13,36, many unknowns
related to grazing limits prevail. This knowledge limitation is
due primarily to the very limited data availability and the huge
range of uncertainty related to the extent and intensity of grazing
on the global scale2,37. In light of these data gaps, our results have
been based on simple assumptions on grazing intensity thresholds
and consistent data sets on land use and NPP patterns. There
remains a lack of critical knowledge on, for example, the role of
management, different livestock species and biomass flows and
their geographic location but also on the interrelation between
grazing and ecosystem processes and aspects of inter-annual
variation (seasonality of grassland production). However, our
finding that grazing pressure may become a prohibitive factor in
many scenarios calls for concerted research in this area.

The option space analysed here is delineated solely on the basis
of a biophysical balance between supply and demand. It is not
aimed at exploring probabilities, and it does not support
straightforward conclusions regarding the desirability, political
practicability or sustainability performance of different scenarios.
The approach enables exploration of the biophysical boundary
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conditions within which developments can unfold. Many more
constraints and considerations become decisive when preferred
solutions within this option space are to be identified. Assessment
tools developed for such purposes need to weigh the full array of
the direct and indirect costs51 and benefits of individual pathways
to provide problem-shift robust results. A central trade-off relates
to the area savings resulting from increased yields. These savings
may increase carbon storage52,53, but this effect can potentially
be compensated for by emissions from increased energy and
resource demand in agriculture or increased biomass use3,7,16,28.
The total amount of biomass required for the food system is
important. For example, the benefits from increased soil carbon
stocks of organic agriculture22 can be annihilated by the larger
area demand resulting from lower yields of organic agriculture54.
In this regard, the massive green-house gas emission costs
associated with the expansion of cropland into grazing land,
currently not well documented48,55, will be crucial. Analogous
trade-offs can be suspected with topics such as nitrogen leaching,
phosphorus depletion or biodiversity loss. In this context,
scenarios that rely on smaller cropland areas and lower land
use intensity levels could be favourable.

The identification of preferred future options would require
additional analyses beyond biophysical analyses and the
assessment of fundamental and complex economic, political
and social effects associated with envisaged changes, such as
the structural change in diet trajectories, farming practices, the
replacement of land use systems and economic effects, for
example, rising food prices.

Integrated assessment models enable assessment of the
cost-benefit structures of future developments, often based on
optimization approaches and conducted in detailed, economic
sector-specific manner50. Complementary to such approaches,
simple, transparent and data-based approaches such as those
employed in this article enable scrutiny of the biophysical
conditions, constraints and effects of anticipated changes in the
land system, for example, by contextualizing results or by
providing reality checks56. Fostering both research strands is a
prerequisite for advancing our scientific understanding of the
trade-offs related to land use and for identifying political
strategies that allow developments to stay within the
biophysical boundaries the Earth system poses to society.

Methods
Model framework and databases. The scenario analysis was performed with
BioBaM, a biophysical accounting model that calculates the balance between
biomass supply and biomass demand at the level of 11 world regions, for 14
biomass demand categories and corresponding primary commodities. BioBaM is
based on consistent data on ecological and socioeconomic biomass flows and land
use, and it respects thermodynamic principles (the law of conservation of mass
and energy). It uses extensive databases for the year 2000, containing consistent
data on socio-ecological biomass flows in ecosystems and socioeconomic systems
(including, for example, NPP, used and unused harvests for 175 cultivars, the
consumption of final products such as food and fibre, the differentiation of 11 final
commodity groups), and it is consistent with spatially explicit information on land
use2,4,5,57,58. Integrating these data sets into a model that allows consistent
integration of biomass demand and supply flows, biophysical scenarios of the
global agro-food system for 2050 were constructed, systematically combining four
yield variants, five cropland expansion variants, two variants of the feedstuff
composition of livestock diets, five human diet variants and three variants on the
origin of livestock products on the demand side. For each of the resulting 500
scenarios, global biomass supply-demand balances were calculated for assessing the
option space. The option space is defined as the sum of feasible scenarios—that is,
when global demand for cropland products is matched by supply by at least by 95%
(considering a 5% uncertainty range; cropland constraints) and livestock products’
grazing intensity—that is, the ratio of grazed or mowed biomass to actually
prevailing NPP4,59 stays below ecological thresholds (grazing constraints). In the
absence of more reliable data, we assumed that no more than 70% of NPP could be
grazed or mowed in highly productive grazing lands and that this ratio decreased
with productivity, down to 25% in low-productive ecosystems such as steppes or
semi-deserts2,4 (Supplementary Fig. 2), areas that are often under sporadic grazing
regimes2,4,37. These maximum grazing intensities are far above the current levels.

Feasibility is assessed on the global scale, and trade is assumed to balance regional
differences in demand and supply, assuming no trade barriers prevail.

On the supply side, the model calculates (a) the potential supply of food and
feed from cropland as a function of cropland availability and yield levels and
(b) the potential roughage supply from grassland, calculated by combining
estimates on available grazing land (remaining after cropland expansion) with
estimates on actual NPP per unit area4 and the maximum achievable grazing
intensities for four different grazing land classes, characterized by varying,
region-specific maximum grazing suitability2,4. Areas for cropland and grazing
land are taken from Erb et al.2.

On the demand side, the model calculates for each specific human diet (a) the
demand of primary crops for food and feed from cropland and (b) roughage
demand for the production of meat and milk from grassland (see below). It
discerns 14 product groups, for example, cereals, pulses, ruminant meat and eggs.
The per capita food demand was multiplied by total population numbers60, plus an
added fraction for household food waste61. We converted household crop demand
to primary crop demand by applying region- and crop-specific (a) seed factors
and b) factors for processing losses, wastes and byproducts (for example, brans in
flour production, based on commodity balances by62). All biomass data were
converted into the unit dry biomass based on water-content tables57.

Regional deficits in crop (both food and feed) or roughage supply is assumed to
be compensated for by interregional trade. The volume of regional net trade was
assessed the following way: for all feasible scenarios, the deficit of crop products
(both food and feed) or roughage in a region was assumed to be compensated for
by a surplus production of crop products and roughage in those regions with
highest remaining production potentials after subtracting domestic consumption.
Thus, we present a biophysical net trade balance that does not include, for example,
any economically induced trade barriers. To yield comparable results, we express
trade flows of ruminant products in roughage equivalents, that is, the amount of
roughage that would be required to close the regional supply deficit of meat and
milk product demand.

Parameters and variants. Four yield variants are calculated: HIGH, FAO,
YIELDGAP and ORGANIC, all variants discerning 11 crop groups. FAO denotes
yields of the FAO projection14 and serves as starting point. These projections are
available only for some crops and have been complemented based on alternative
data sets. The HIGH variant is in line with the Global Orchestration scenario by
the Millennium Ecosystem Assessment63 and is 9% above the FAO variant. The
YIELDGAP variant assumes the yield gap to be closed to an attainable maximum,
resulting in a less heterogeneous global pattern of cropland yields47. The
ORGANIC variant assumes lower yields in industrialized systems and reflects yield
losses due to organic farming over business-as-usual trajectories25,64,65. Note that
in this variant, regions with little industrialized agriculture are not affected by yield
reductions (Supplementary Table 6).

On the basis of the literature and our own assessments, five variants of cropland
expansion were constructed (þ 0%, þ 11%, þ 22%, þ 40% and þ 70%). For all
these variants, it was assumed that cropland expands only into grazing land of the
highest productivity. The þ 11% variant is in line with the FAO projection14 and
results in a cropland expansion by 11% over the year 2000. In the þ 22% variant,
this value is doubled in each region. Variants þ 40 and þ 70% assume that 50 and
100%, respectively, of the highly productive grazing lands are converted into
cropland, resulting in a global expansion of cropland over 2000 by 40 and 70%.
Regional cropland expansion varies largely for all scenarios (Supplementary
Table 7). As a consequence of cropland expansion, the grazing area is assumed to
shrink to the same extent. We did not assess variants of cropland expansion into
grazing land of lower productivity, such as savannas or steppes, or into wilderness
areas because of the high costs (for example, infrastructure demand) associated
with such a strategy and the apparent difficulties to achieve similar crop-yield
levels.

Regional estimates of feedstuff composition and feeding-conversion ratios are
based on linear extrapolations of the trajectories between 1995 and 2030 provided
by Bouwman et al.66 The data refer to two feed categories, crop-based feed
(for example, cereals and oil cake) and roughage (straw and grass). The variant
GRAIN assumes a 30% increase in crop-based feeds in feedstuff composition,
whereas ROUGH reduces crop-based feed in feedstuff composition by 50% in all
regions. Differences in the nutritional values of grain-based and roughage-based
feedstuffs were taken into account based on data taken from57,66.

Five human diets are discerned, all providing sufficient energy and protein. The
BAU variant is in line with FAO14 and yields a global average diet of 2,947 kcal per
cap per day with large regional differences. In the RICH variant, the per capita food
demand of all regions in 2050 converges to per capita food demand of North
America in 2000 (ref. 62), yielding 3.546 kcal per cap per day. The variants MEAT
(a reduced meat diet), VEGETARIAN (ovo-lacto vegetarian) and VEGAN
(exclusively plant-based) follow USDA recommendations67 and are characterized
with a per capita intake of 2,648 for MEAT and 2,636 kcal per cap per day for
VEGETARIAN and VEGAN in all regions. This value is close to the global average
in the year 2000 (2,657 kcal per cap per day) (ref. 62). The share and type
of livestock-product composition varies, being 25% in the MEAT diet,
13% in the VEGETARIAN diet (only milk and eggs) and 0% in the VEGAN diet
(Supplementary Table 2). The global demand for livestock products in the MEAT
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variant is 50% higher than that in the global average of the BAU variant, but it is
26–36% lower than the BAU demand in Western Europe and North America,
respectively.

For each human diet scenario, we assumed different origins of livestock
products. The BAU variant is based on the respective regional diet variant
according to FAO projections. The MONOGASTRIC variant assumes all livestock
products originate from monogastric species (eggs, in the case of the vegetarian
diet), and the opposite is assumed for the RUMINANT variant (milk, in the case of
the vegetarian diet).
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