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Many computational models of the basal ganglia (BG) have been proposed over the

past twenty-five years. While computational neuroscience models have focused on

closely matching the neurobiology of the BG, computational cognitive neuroscience

(CCN) models have focused on how the BG can be used to implement cognitive

and motor functions. This review article focuses on CCN models of the BG and how

they use the neuroanatomy of the BG to account for cognitive and motor functions

such as categorization, instrumental conditioning, probabilistic learning, working memory,

sequence learning, automaticity, reaching, handwriting, and eye saccades. A total of

19 BG models accounting for one or more of these functions are reviewed and compared.

The review concludes with a discussion of the limitations of existing CCN models of the

BG and prescriptions for future modeling, including the need for computational models of

the BG that can simultaneously account for cognitive and motor functions, and the need

for a more complete specification of the role of the BG in behavioral functions.
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INTRODUCTION

The basal ganglia (BG) are a group of nuclei at the base of the

forebrain that are strongly connected to the cortex. While the

role of the BG had historically been restricted to motor function,

a substantive amount of recent research suggests that the BG

are also involved in a variety of cognitive functions (Steiner and

Tseng, 2010). Behavioral and neural experiments with human

and non-human animals have informed our understanding of

the BG function for over a century, and the past two decades

have seen an increased use of computational models to simulate

the anatomy and functionality of the BG. The most anatomically

detailed computational neuroscience models seldom go as far

as simulating complex animal behavior (because of complexity

issues), but simpler (less anatomically detailed) models can be

used to simultaneously account for some anatomical details and

complex animal behavior. The strength of these later computa-

tional cognitive neuroscience (CCN) models lies in that they can

simultaneously account for both neuroscience data and behav-

ioral data (Ashby and Helie, 2011).

This review article focuses on CCN models of the BG and

classifies existing models according to cognitive and motor func-

tion. The remainder of this article is organized as follows. First,

the anatomy that is usually included in CCN models of the BG

is reviewed. This anatomy section is incomplete by design, as

only details that are simulated to account for specific cognitive or

motor function are included. Next, we review CCN models used

to simulate six different cognitive functions, namely categoriza-

tion, instrumental conditioning, probabilistic learning, working

memory, sequence learning, and automaticity. This presentation

is followed by CCN models of motor function. Computational

cognitive neuroscience models of motor functions are separated

into models of reaching, handwriting, and eye saccades. The

review concludes with a discussion of the limitations of existing

CCN models of the BG and prescriptions for future modeling.

Future directions emphasize the need for CCN models of the

BG that can simultaneously account for cognitive and motor

functions, and the need for a more complete specification of the

role of the BG in the reviewed functions.

NEUROANATOMY OF THE BASAL GANGLIA

The BG include the striatum (caudate, putamen, nucleus accum-

bens), the globus pallidus (GP), the subthalamic nucleus (STN),

the substantia nigra (SN), the ventral tegmental area, and the

olfactory tubercle (see Figure 1). The striatum receives the major-

ity of afferent connections whereas the internal segment of the

GP Globus pallidus (internal) (GPi) and SN pars reticulate (SNr)

are the sources of the majority of efferent connections that target

cortical regions via the thalamus. Based on both structural and

functional evidence, the striatum is often divided into a ventral

and a dorsal part. The ventral striatum includes the nucleus

accumbens, ventromedial portions of the caudate and putamen,

and the olfactory tubercle. The dorsal striatum, which is usually
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FIGURE 1 | Functional anatomy of the basal ganglia. Note that only

subdivisions included in most of the reviewed CCN models are

represented. Purple boxes correspond to areas of the BG while black boxes

are not included in the BG. Blue arrows represent excitatory (glutamatergic)

connections while red arrows represent inhibitory (GABA) connections. The

direct pathway (1) passes through the D1 receptors in the striatum, the

indirect pathway (2) passes through the D2 receptors in the striatum, and

the hyperdirect pathway (3) passes through the STN. If the thalamic

projections target the same cortical region that initially targeted the

striatum, the circuit is called a closed loop. Otherwise, the circuit is an

opened loop.

the main focus of CCN models of the BG, includes the remainder

of the caudate and putamen.

Virtually all of the neocortex sends excitatory (glutamatergic)

projections to the striatum (Reiner, 2010). Corticostriatal input is

massively convergent with estimates ranging from 5,000 to 10,000

cortical neurons converging on a single striatal medium spiny

neuron (MSN; the main striatal projection neurons) (Kincaid

et al., 1998). Classically, corticostriatal organization is thought to

follow a fairly strict spatial topography (Kemp and Powell, 1970).

Along the rostral-to-caudal extent of the BG, the cortical afferents

tend be more prevalent from rostral-to-caudal cortical regions.

For instance, ventral striatum receives input predominantly from

orbitofrontal cortex, ventromedial prefrontal cortex, and ante-

rior cingulate cortex (ACC). As one moves caudally within the

striatum, inputs from areas 9, 46, and 8 become more prevalent

(Haber et al., 2006; Calzavara et al., 2007), followed by inputs

from premotor regions (area 6) with the most caudal motor and

somatosensory cortical regions projecting preferentially to the

caudal putamen (Flaherty and Graybiel, 1994). Spatial topogra-

phy holds as you continue rostrally and ventrally through parietal

and temporal cortices as well as other extrastriate visual areas

(Kemp and Powell, 1970; Yeterian and Pandya, 1993, 1995, 1998).

The thalamus provides another major source of input to

the BG (Wilson, 2004), with the majority of thalamostriatal

projections originating from the parafascicular-centromedian

(CMPf) complex (Smith et al., 2010). Thalamic input to

the striatum synapses on both MSNs and cholinergic toni-

cally active neurons (TANs; a class of large-body interneu-

rons) (Smith et al., 2004), with the latter likely playing an

important role in modulating cortico-striatal synaptic plasticity

(Ashby and Crossley, 2011). Finally, thalamic input to the stria-

tum is in a position to modulate BG function by virtue of

cortico-thalamo-striatal connections and striatal-thalamo-striatal

feedback (Smith et al., 2010).

The BG also receives dopaminergic input that plays a critical

role in modulating striatal activity. Dopamine is projected from

the ventral tegmental area and SN pars compacta to the BG and

prefrontal cortex, among other brain regions. Dopamine firing

patterns fluctuate between two different modes: phasic and tonic.

While the phasic mode is fast-acting and spans milliseconds, the

tonic mode is long-acting and can span minutes or hours. The dis-

sociable function of both phasic and tonic dopamine is debatable

(Dreher and Burnod, 2002; Assadi et al., 2009; Moustafa et al.,

2013). However, various studies suggest that phasic dopamine

plays a key role in synaptic plasticity and reinforcement learning

(Wickens et al., 1996; Reynolds et al., 2001), while tonic dopamine

is important for speeding-up reaction times (Niv et al., 2007;

Moustafa et al., 2008) and controlling the signal-to-noise ratio

(Durstewitz and Seamans, 2008).

Information flow through the BG follows two distinct path-

ways (see Figure 1). Striatal MSNs in the direct pathway project

directly to the output nuclei (e.g., GPi) and selectively express D1-

like receptors (i.e., D1 and D5; Gerfen et al., 1990). The striatal

MSNs in the indirect pathway project to the external segment of

the GP Globus pallidus (external) (GPe) prior to reaching the

output nuclei of the BG (e.g., GPi), and selectively express D2-

like receptors (i.e., D2, D3, and D4; Gerfen and Young, 1988). In

addition to the direct and indirect pathways, the STN is another

major input structure of the BG receiving extensive cortical and

thalamic input. This so-called hyperdirect pathway provides a

means by which frontal cortical regions can monosynapically

influence STN function (Nambu et al., 2002).

With abundant dopamine receptors in the BG affecting the

dynamics of the different pathways, most CCN models of the

BG include a role for dopamine. One important way of testing

whether the hypothesized role for dopamine in the model is ade-

quate is to simulate the model under dopamine-depleted condi-

tions. Specifically, reducing the amount of dopamine available in

the model should produce Parkinsonian symptoms. Parkinson’s

disease (PD) is caused by the accelerated death of dopamine

producing neurons. The pattern of cell loss is opposite to that

of, and more severe than in, normal aging. Within the SN pars

compacta, cell loss is predominately found in the ventral tier

with less (but still extensive) damage in the dorsal tier (Fearnley

and Lees, 1991; Gibb and Lees, 1991). In contrast, normal aging

yields substantially less cell loss and in a dorsal-to-ventral pattern.

Parkinsonian motor symptoms appear after a loss of 60–70% of

SN pars compacta cells and 70–80% of dopamine levels in striatal

nuclei (Bernheimer et al., 1973; Gibb and Lees, 1991). Motor

symptoms include tremor, rigidity, bradykinesia, and akinesia. In

addition to motor deficits, non-demented PD patients present

cognitive symptoms that resemble those observed in patients with

frontal damage. Numerous studies documenting cognitive deficits

of PD patients have revealed impairment in a variety of tasks

related to memory, learning, visuospatial skills, and attention

(e.g., Gotham et al., 1988; Price et al., 2009).
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COGNITIVE FUNCTION

While many cognitive functions have been attributed to the BG

(for a review, see Steiner and Tseng, 2010), relatively few have

been modeled and numerically simulated using CCN models, i.e.,

models that can simultaneously account for both neurobiologi-

cal and behavioral data. Hence, this review does not constitute

an attempt at reviewing all the cognitive and motor functions

attributed to the BG: the focus is on CCN models of the BG.

Note that the model descriptions included are conceptual, in that

implementation details and mathematical formulations are not

discussed. The reader is referred to the cited original papers for

model details and equations. Table 1 summarizes the reviewed

models along with their respective components.

CATEGORIZATION

Categorization is the ubiquitous process by which individual

items are grouped to form categories. The massive convergence

of cortico-striatal connectivity makes the BG an ideal site for

categorization, and much research supports the role of the BG in

category learning (for a review, see Seger, 2008).

Models

One of the earliest and most prominent neurobiological models

of categorization is called COVIS (Ashby et al., 1998). COVIS is a

multiple-system theory that was originally developed to account

for the many behavioral dissociations between verbal and non-

verbal categorization (as described by the general recognition

theory; Ashby and Gott, 1988). COVIS includes an hypothesis-

testing system and a procedural learning system. The hypothesis-

testing system can quickly learn a small set of (e.g., verbal)

categories (those that can be found by hypothesis-testing and

often be verbally described) while the procedural learning system

can learn any type of arbitrary categories in a slow trial-and-error

manner (e.g., non-verbal). Each categorization system relies on

a separate brain circuit but, interestingly, they both include the

BG. In the hypothesis-testing system, the BG is used to support

working memory maintenance and for rule switching. In the

procedural system, the BG is used to learn stimulus—response

associations. The COVIS model of categorization has been used

to simulate a large number of category learning experiments and

made several behavioral predictions, many of which have been

later confirmed by empirical experiments (for a review, Maddox

and Ashby, 2004). For example, COVIS predicts that delaying

the feedback in verbal categorization should not affect perfor-

mance (because the hypothesis-testing system relies on working

memory) whereas delaying feedback in non-verbal categoriza-

tion should impair learning (because the procedural learning

system relies on dopamine-mediated reinforcement learning in

the BG). This prediction was confirmed in Ashby et al. (2003).

In addition, reducing dopamine levels in COVIS can account for

many cognitive symptoms in PD patients such as perseveration,

reduced sensitivity to negative feedback, and others (see Helie

et al., 2012a,b). Likewise, dopamine elevation can account for the

effect of positive affect on verbal category learning (Helie et al.,

2012b). While most COVIS simulations have used a rate version

of the model, a spiking version of the procedural-learning system

has been used to account for some categorization results and

Table 1 | Summary of the basal ganglia components included in the

reviewed models.

DP (1) IP (2) HP (3) Str GPi GPe STN

Cognitive

Ashby et al.

(1998)
X X X

Moustafa

and Gluck

(2011a)

X X

Ashby and

Crossley

(2011)

X X X

Frank (2005) X X X X X
Guthrie et al.

(2013)
X X X X X

Monchi et al.

(2000)
X X X

Ashby et al.

(2005)
X X X

Frank et al.

(2001)
X X X

Moustafa

and Maida

(2007)

X X

Schroll et al.

(2012)
X X X X X X

Nakahara

et al. (2001)
X X X

Ashby et al.

(2007)
X X X

Chersi et al.

(2013)
X X X X * X X

Motor

Bischoff

(1998)
X X X X X X

Magdoom

et al. (2011)
X X X

Gangadhar

et al. (2008)
X X X

Contreras-

Vidal and

Stelmach

(1995)

X X X X X X X

Dominey and

Arbib (1992)
X X *

Krishnan

et al. (2011)
X X X * X X

Note. DP = Direct pathway [(1) in Figure 1]; IP = Indirect pathway [(2) in

Figure 1]; HP = Hyperdirect pathway [(3) in Figure 1]; Str = Striatum; GPi

= Globus pallidus (internal); GPe = Globus pallidus (external); STN = Subthalamic

nucleus. * These models used the substantia nigra pars reticulate (SNr) as

their output node of the basal ganglia. In this context, the SNr is functionally

equivalent to the GPi.

extended to account for instrumental conditioning (Ashby and

Crossley, 2011) and automaticity (Ashby et al., 2007).

As an alternative, Moustafa and Gluck (2011a,b) proposed a

computational model of the striatum and prefrontal cortex that

focuses on the dopamine projections to these areas as well as

their interactions during multi-cue category learning. In this task,

participants learn to select and pay attention to a single cue among

a multi-cue pattern, and then make a categorization response.

Participants learn this task via corrective feedback. In the model,

the prefrontal cortex is essential for attentional selection while
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the striatum is used for motor response selection. Similar to

COVIS, the Moustafa and Gluck (2011a,b) model can account

for categorization deficits in PD patients by reducing dopamine

levels in both the BG and prefrontal cortex, which is in agreement

with empirical results (Kaasinen et al., 2001; Silberstein et al.,

2005). Additionally, the Moustafa and Gluck (2011a,b) model

can account for some effects of dopaminergic and anticholinergic

medication. The Moustafa and Gluck (2011a,b) model assumes

that the administration of anticholinergic medications in PD

interferes with hippocampal function, which is also in agreement

with empirical studies (Meco et al., 1984; Pondal et al., 1996;

Ehrt et al., 2010; Herzallah et al., 2010). In contrast, the current

version of COVIS has not been used to simulate medication effects

in PD.

Synthesis

The reviewed models of categorization both agree that the BG,

and its interaction with the prefrontal cortex, are essential for

category learning. Furthermore, they agree that dopamine levels

in both the BG and prefrontal cortex are important. While COVIS

(Ashby et al., 1998) has been used to simulate a wider range of

categorization tasks, the Moustafa and Gluck (2011a,b) model

has been used to simulate more details in a smaller subset. For

example, one limitation of the Moustafa and Gluck (2011a,b)

model is that it does not simulate complex multi-cue learning

tasks that involve paying attention to more than one stimulus

(which can be done using COVIS). However, the Moustafa and

Gluck (2011a,b) model can simulate the effect of dopaminergic

medication, whereas COVIS has not been used to simulate medi-

cation effects. One important difference between the COVIS and

Moustafa and Gluck (2011a,b) model is that COVIS assigns a

different role for BG and cortical dopamine, namely error signal

and signal gain (respectively). In contrast, Moustafa and Gluck

(2011a,b) assign both of these roles to dopamine in both the BG

and the prefrontal cortex. In addition, an important limitation of

both models is that they oversimplify the anatomy of the BG by

not including the indirect and hyperdirect pathways. Future work

aimed at increasing the biological accuracy of COVIS and the

Moustafa and Gluck (2011a,b) models may highlight some addi-

tional key differences between the modeling approaches and allow

for selecting the most appropriate BG model of categorization.

INSTRUMENTAL CONDITIONING

Instrumental conditioning (also called “operant” conditioning) is

a process by which animals learn to behave in a way that will max-

imize reward and minimize punishment. In a typical instrumental

conditioning experiment, a neutral environment is altered and

begins generating rewards (acquisition phase). Next, the reward

is removed from the environment and the environment reverts to

its neutral state (extinction phase). Extinction is usually followed

by a reacquisition phase, where the reward is introduced again

in the same neutral environment. Typically, a new behavior is

learned during the acquisition phase, and progressively disappears

during the extinction phase. The behavior reappears during the

reacquisition phase, usually at a much faster rate than during

the initial acquisition phase. This phenomenon is called fast

reacquisition. Much evidence implicates the BG in instrumental

conditioning (e.g., O’Doherty et al., 2004; Yin et al., 2005), but

the neurobiology underlying extinction and fast reacquisition is

poorly understood.

Models

Ashby and Crossley (2011) proposed a spiking model of the

direct pathway of the BG (see Figure 1) inspired by the COVIS

procedural learning system (Ashby et al., 1998) to account for

instrumental conditioning. The Ashby and Crossley (2011) model

focuses on the TANs, a population of cholinergic interneurons

in the striatum that is rarely included in CCN models of the

BG. Pakhotin and Bracci (2007) have shown that TANs play

an important role in inhibiting cortical activation of the MSNs

(i.e., the projection neurons generally modeled in the direct and

indirect pathways). As suggested by their name, TANs have a

high baseline firing rate, but they learn to pause in rewarding

contexts (Apicella, 2007). Ashby and Crossley (2011) suggest that

one possible role for the TANs is to protect striatal learning

from catastrophic interference and allow for fast reacquisition. In

addition to the direct pathway, the Ashby and Crossley (2011)

model includes a sensory association area, the supplementary

motor area (SMA), and the CMPf complex.

The Ashby and Crossley (2011) model is an opened loop

through the BG (from sensory association cortex to the SMA).

The stimulus activates the sensory association cortex, which in

turn activates the striatum and the direct pathway of the BG. At

the same time, the context activates the CMPf complex, which

transmits activation to the TANs (this pathway is not included

in Figure 1). At the beginning of an experiment, the simulated

subject does not know that the context is rewarding. Hence, the

TANs do not pause, and the MSNs in the direct pathway cannot

be activated by the sensory association cortex. This prevents

stimulus—response association learning. During the acquisition

phase, the TANs quickly learn that the context is rewarding and

pause. The MSNs are thus released from inhibition and the model

learns to produce the rewarding behavior using reinforcement

learning. Next, during the extinction phase, the TANs learn that

the context is no longer rewarding and stop pausing. This change

inhibits the MSNs and interrupts cortico-striatal learning. Hence,

the associations that were learned during the acquisition phase

are protected. Finally, during the reacquisition phase, the context

becomes rewarding again, and the TANs learn to pause. The

MSNs are released from inhibition, and the learned associations

are in the same state as in the acquisition phase, which pro-

duces fast reacquisition. Using this process, the model has been

used to reproduce the acquisition, extinction, and fast reacquisi-

tion phases typical of instrumental conditioning and single-cell

recording data from TANs showing that the cells learn to pause in

rewarding contexts (Ashby and Crossley, 2011).

Synthesis

The Ashby and Crossley (2011) model is the only CCN model

of instrumental conditioning that can simultaneously account

for behavioral (e.g., fast reacquisition) and single-cell data (from

the TANs). This model constitutes an important step in that it

provides an implementation and numerical simulation of the

theory that TANs learn to pause in rewarding contexts, and how
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this can affect reinforcement learning in the BG. However, the

neuroanatomy of the BG was simplified in that only the direct

pathway through one of the cortico-BG loops was included. It is

unclear at this time how the TANs’ dynamics would affect the

indirect pathway, or how the model would behave if more than

one loops was included. Future work is needed to verify how the

theory implemented in Ashby and Crossley (2011) behaves in a

more detailed model of the BG.

PROBABILISTIC LEARNING

Probabilistic learning typically refers to tasks where the associ-

ation between the response and the reward is uncertain. Unlike

most categorization experiments, the same response to the same

stimulus can result in different outcomes on different trials. While

probabilistic learning has been shown to rely on the BG since the

mid-1990s (Knowlton et al., 1996), it took a decade before CCN

models of the BG were used to attempt to account for probabilistic

learning.

Models

The Frank (2005) model was originally proposed to account for

cognitive deficits in parkinsonism. The model includes both the

direct and indirect pathways through the BG (see Figure 1), the

premotor cortex, and an unspecified input area (probably located

in posterior cortex) (so the model is an opened loop). In the

Frank (2005) model, the input activates both the premotor cortex

and the striatum. However, cortical activation is insufficient to

produce a response, so BG processing is required to gate the

correct response. The focus of the model is on: (1) the role of

the indirect pathway in probabilistic learning and (2) the role of

dopamine in probabilistic learning. In the Frank (2005) model,

the direct pathway is in charge of selecting the appropriate action

(Go) whereas the indirect pathway is in charge of inhibiting

inappropriate actions (NoGo). The direct and indirect pathways

converge in the GPi and compete to control GPi activation, and

eventually the response. Simulation results show that removing

the indirect pathway in the model reduces performance, sug-

gesting that both the direct and indirect pathways are essential

in probabilistic learning. In addition, the effect of the indirect

pathway needs to be specific to each action (so that the indirect

pathway can individually inhibit each action).

As described in the neuroanatomy section above, the com-

petition between the direct and indirect pathways is modulated

by dopamine (the second focus of the Frank (2005) model).

Specifically, higher dopamine levels increase activation in the

direct pathway (e.g., through D1 receptors) and reduces activation

in the indirect pathway (e.g., through D2 receptors). Hence,

dopamine release following unexpected rewards results in long-

term potentiation (LTP) in the direct pathway and long-term

depression (LTD) in the indirect pathway. In contrast, dopamine

dips following the unexpected absence of a reward reduces activa-

tion and produces LTD in the direct pathway but increases acti-

vation and produces LTP in the indirect pathway. The simulation

results suggest that the dynamic range of the dopamine signal is

crucial in probabilistic learning and reversal learning (e.g., when

the response—reward associations are changed during learning).

Reducing (to simulate PD) or increasing (to simulate medication

overdose) dopamine levels can result in simulated Parkinsonian

symptoms (Frank, 2005).

Another interesting model of probabilistic learning was

recently proposed by Guthrie et al. (2013). The Guthrie et al.

(2013) model is based on an earlier computational neuroscience

model of the BG that focuses on the interaction between the direct

and hyperdirect pathways (Leblois et al., 2006). The Guthrie et al.

(2013) model includes two cortico-BG closed-loop that interact

in the striatum. The first loop is called the “cognitive” loop and

is used to identify the visual symbols used in the probabilistic

learning task. The second loop is called the “motor” loop and is

used to select a response based on the observed symbols. Some

of the corticostriatal projections affect both loops, but the rest

of the circuit is segregated. In both loops, the direct pathway is

in charge of selecting the correct channel (i.e., identifying the

symbols or the response) while the hyperdirect pathway sends

non-specific inhibition to the GPi to produce a center-surround

decision process. All corticostriatal synapses are plastic (using

dopamine-mediated reinforcement learning) and the cognitive

loop gradually learns to bias the motor loop, thus producing

faster reaction times. The model successfully reproduces both

neural firing rates and behavioral data in the double-arm bandit

task.

The categorization models reviewed earlier have also been

applied to probabilistic learning. The Moustafa and Gluck (2011a)

model focused on the role of dopamine in probabilistic learning.

In addition to simulating probabilistic learning with normal

dopamine levels, Moustafa and Gluck (2011a) have simulated

the effect of decreased dopamine (as in PD) and the effect of

dopaminergic medication in both the BG and prefrontal cortex.

The COVIS model has also been used to simulate probabilistic

learning (Helie et al., 2012a). While COVIS was not used to

simulate medication effects, the model could account for prob-

abilistic learning with normal and reduced (as in PD) dopamine

levels (with a dosage effect such that lowest levels of dopamine

produced worst performance; see Knowlton et al., 1996).

Synthesis

The reviewed models of probabilistic learning tend to be more

biologically detailed than the reviewed models of categorization.

Specifically, the Frank (2005) model includes the direct and indi-

rect pathways, whereas the Guthrie et al. (2013) model includes

the direct and hyperdirect pathways. In contrast, COVIS (Ashby

et al., 1998) and the Moustafa and Gluck (2011a,b) models only

included the direct pathway. Interestingly, however, the Frank

(2005) model does not include the same details as the Guthrie

et al. (2013) model. Both models include the direct pathway

for action selection, and use dopamine-mediated reinforcement

learning to learn corticostriatal synapses. However, the Frank

(2005) model uses the indirect pathway as a channel-specific exci-

tatory process to cancel inappropriate actions whereas Guthrie

et al. (2013) use the hyperdirect pathway as a non-specific exci-

tatory process to cancel inappropriate actions. Neither model

includes both the indirect and hyperdirect pathways. While there

is agreement on the need for an excitatory process to enhance the

contrast between the selected and non-selected actions, the exact

process is still to be determined.
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While the categorization models only included the direct path-

way of the BG, one of their strengths is that, in addition to their

generality, they also include other brain areas. For instance, Unlike

the Frank (2005) model, the Moustafa and Gluck (2011a,b) model

simulates the role of prefrontal cortex and its dopamine projec-

tions, which is in agreement with empirical studies (Mulder et al.,

2003; Histed et al., 2009). Also, analysis of the parameter space in

the COVIS simulations challenges the role of the BG for proce-

dural learning in probabilistic learning, and suggests instead that

the BG are used for hypothesis-testing in this task (Gluck et al.,

2002). So, both categorization models agree on an important role

for the prefrontal cortex in probabilistic learning, and this role is

missing from both the Frank (2005) and the Guthrie et al. (2013)

models. The most productive future approach might be to add

a prefrontal cortex to the existing probabilistic learning models

and see how this addition affects the dynamic of the different BG

pathways.

WORKING MEMORY

Working memory is a cognitive function used to maintain and

manipulate information in real-time for a short duration (sec-

onds). While working memory has traditionally been associated

with the prefrontal cortex (Fuster, 2008), Monchi et al. (2000)

proposed that the BG may be required to maintain information

in prefrontal cortex.

Models

The Monchi et al. (2000) model was originally proposed to

account for working memory deficits in PD and schizophrenia.

The model includes three BG-thalamocortical closed loops: two

with the prefrontal cortex (one for spatial information and the

other for object information), and one through the ACC (for

strategy selection). In all three cases, only the direct pathway

through the BG was included (see Figure 1). The role of the two

prefrontal-BG loops is to maintain working memory information

about the stimuli, whereas the ACC maintains the adopted strat-

egy by inhibiting all the prefrontal cortex loops except one (i.e.,

representing the selected strategy). Visual input to the BG comes

from the posterior parietal cortex (spatial) and inferior temporal

cortex (object). The model output is located in the premotor

cortex, and the nucleus accumbens (not shown in Figure 1) is

used to provide feedback. In the model, the visual stimulus is

input to the prefrontal cortex loops, and the stimulus activity is

propagated through the direct pathway of the BG. As a result, the

thalamus is released from GPi inhibition, and activation produced

by the stimulus in the prefrontal cortex reverberates through

closed-loops with the thalamus. When a response is required,

the prefrontal cortex transfers its activation to the premotor

cortex. If the response is incorrect, the nucleus accumbens sends

a feedback signal to the ACC loop, which selects a new strategy

by switching its inhibition to different prefrontal cortex loops.

The Monchi et al. (2000) model has been used to simulate

a delayed response task and the Wisconsin Card Sorting Test.

Interestingly, reducing the connection strengths within the BG-

thalamocortical loops produces Parkinsonian symptoms, whereas

reducing nucleus accumbens activity produces deficits similar to

those observed in schizophrenia (Monchi et al., 2000).

Five years later, Ashby et al. (2005) proposed the FROST

model to account for intact spatial working memory main-

tenance. Similar to the Monchi et al. (2000) model, FROST

includes the direct pathway of the BG (see Figure 1), and working

memory maintenance relies on reverberating activation between

the prefrontal cortex and the thalamus. However, unlike in the

Monchi et al. (2000) model, only one prefrontal cortex loop is

included, and thalamic activation is not sufficient to maintain

prefrontal activity: a second set of closed-loops between the

prefrontal cortex and posterior cortex needs to be simultaneously

activated to maintain working memory information. In Ashby

et al. (2005), the focus is on simulating spatial working memory

tasks, and the area of posterior cortex required for working

memory maintenance is the posterior parietal cortex. However,

it is likely the case that the specific location in posterior cortex

depends on what information is being maintained. For instance,

if the items being maintained in working memory were objects,

then it is likely that the posterior cortex area involved would

be inferior temporal cortex. Another difference between FROST

and the Monchi et al. (2000) model is that the striatum in

FROST is activated by a different population of prefrontal neu-

rons (separate from the working memory maintenance prefrontal

population) whereas the same prefrontal neurons are used to

activate the striatum and maintain information in Monchi et al.

(2000). As a result, the striatum becomes activated only after

the stimulus has disappeared in FROST, whereas the striatum

becomes activated as soon as the stimulus appears in Monchi

et al. (2000). These differences between FROST and Monchi

et al. (2000) were motivated by recent single-cell recording

results reviewed in Ashby et al. (2005). FROST has been used

to reproduce single-cell recordings from many experiments in

several brain regions, in addition to accounting for working

memory capacity limitation and the relation between memory

span and the ability to ignore distracting information (Ashby

et al., 2005).

One common theme of the two previous models is that

working memory activity is maintained by closed-loops between

the thalamus and prefrontal cortex, and the main role of the

BG is to release the thalamus from inhibition and allow for the

reverberating activation to take place. However, this view was

challenged by Frank et al. (2001) who proposed a model of BG-

prefrontal cortex interaction in working memory. Specifically,

Frank et al. (2001) argued that in order for the thalamus to

contribute to working memory maintenance in the way described

by the previous models, it would need to have a dedicated

number of cells comparable to the number of cells dedicated

to working memory in prefrontal cortex (which is unlikely).

Instead, the Frank et al. (2001) model proposes that working

memory maintenance is accomplished by reverberating loops

between two cell populations within the prefrontal cortex. Similar

to Monchi et al. (2000) and FROST (Ashby et al., 2005), the

Frank et al. (2001) model includes the direct pathway through

the BG (see Figure 1), but the role of the direct pathway is to

“turn on the switch” on the prefrontal cortex cells and allow for

reverberating activation. The “switch” can only be turned on if

the prefrontal cortex cells from one population simultaneously

receive activation from the BG and the other prefrontal cortex
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cell population. Once the switch is “on”, the BG is no longer

required for working memory maintenance. The Frank et al.

(2001) model has been used to simulate the 1-2-AX task, a

working memory task that requires maintenance but also switch-

ing and selecting new items (Frank et al., 2001). Specifically,

the 1-2-AX task requires the subject to maintain two cues in

working memory in order to correctly select a response to a

target sequence. The identity of the target sequence depends

on the previous cue, which is used to trigger selection and

switching.

One topic that was not addressed by any of the previ-

ous models of working memory is learning. How can the

brain learn what is important, and what needs to be main-

tained in working memory? Moustafa and Maida (2007)

proposed a computational model of prefrontal cortex and

BG interactions that is similar to the Frank et al. (2001)

model except that Moustafa and Maida (2007) also simulate:

(a) temporal difference learning based on phasic dopamine sig-

naling and (b) more than one corticostriatal loops that are

responsible for both motor and cognitive processes. Specif-

ically, the model includes a cortico-striatal motor loop and

a cortico-striatal cognitive loop whose functions are action

selection (choosing motor responses) and cognitive selec-

tion (choosing the perceptual information to be maintained

in working memory), respectively. The model can account

for the separate roles of the motor and cognitive loops

in working memory maintenance, including delayed-response

tasks.

Schroll et al. (2012) recently proposed a CCN model of

working memory to address the problem of learning complex

working memory tasks. The Schroll et al. (2012) model includes

two separate BG-thalamocortical closed loops, one through the

prefrontal cortex for maintenance and another through motor

cortex to produce a response. Only the direct pathways were

used for maintenance and response selection, but the hyper-

direct pathway was also included in the prefrontal loop as a

reset mechanism (see Figure 1). Specifically, visual information

enters the model through the inferior temporal cortex, which

then activates the lateral prefrontal cortex. This activation is

transferred through the direct pathway of the BG and releases

the thalamus from inhibition, which in turn activates the lateral

prefrontal cortex. In the Schroll et al. (2012) model, working

memory activation in the prefrontal cortex is maintained by

a reverberating activation loop through the direct pathway, so

the BG does not only act as a gating mechanism but is part

of the maintenance loop (unlike Monchi et al., 2000; Frank

et al., 2001; Ashby et al., 2005). At any moment, the prefrontal

cortex can activate the STN, which increases activation in the

GPi and interrupt working memory maintenance (i.e., the reset

mechanism). More importantly, the connectivity between the

prefrontal cortex and the striatum and the connections between

the prefrontal cortex and the STN are learned using dopamine-

mediated reinforcement learning. Hence, the model can automat-

ically adapt and only maintain information that is rewarded in

working memory. The model has been used to simulate a delayed

response task, a delayed alternation task, and the 1-2-AX task

(Schroll et al., 2012).

Synthesis

Working memory is one of the most active areas for CCN mod-

eling of the BG. Five different models were reviewed, each having

both commonalities and differences. First, all five models focused

on the interaction between the BG and the prefrontal cortex, but

only included the direct pathway of the BG for working memory

maintenance and response selection. Hence, the neuroanatomy

of the BG was not very detailed. Also, all models except Schroll

et al. (2012) used the BG as a gating mechanism that turns

working memory maintenance “on” or “off”. The main difference

is that Monchi et al. (2000) and Ashby et al. (2005) used the

BG to gate closed loops between the prefrontal cortex and the

thalamus, whereas Frank et al. (2001) and Moustafa and Maida

(2007) used the BG to gate closed loop between two populations

of prefrontal cortex units. This differs from Schroll et al. (2012)

where the BG was not used for gating, but instead was part

of the working memory maintenance mechanism itself (i.e., the

closed loop went through the BG). In all cases, however, working

memory maintenance was achieved by closed loop through the

prefrontal cortex.

Another important difference between the models is that the

Ashby et al. (2005) and the Moustafa and Maida (2007) models

focused on simple maintenance tasks. In contrast, the Monchi

et al. (2000), Frank et al. (2001), and Schroll et al. (2012) models

were able to simulate more complex tasks involving hierarchical

structures and switching. Only the Moustafa and Maida (2007)

and the Schroll et al. (2012) models include learning mechanisms

that allowed for selecting the relevant information that needs to

be maintained in working memory. The other models assumed a

pre-filtering of the information.

Interestingly, there seems to be a progression and a building

up of knowledge related to CCN models of working memory.

The Schroll et al. (2012) model is the most recent, and also the

most detailed. It is the only model that can learn and simulate

complex tasks. However, this model departs from all the others

in that the BG is not used as a gating mechanism but is part

of the maintenance mechanism. This departure from previous

modeling is not extensively discussed in Schroll et al. (2012), and

it is unclear at this point what motivated this departure. More

work is needed to determine which of these two roles the BG

play in working memory, but the overlap in the models, and the

progression in functionality, suggest a steady progress in CCN

modeling of working memory.

SEQUENCE LEARNING

Almost all our everyday behaviors and cognitive activities can be

interpreted as a sequence of steps that bring us closer to achieving

a goal. One key question is how can we learn to chain these

sequences of substeps? Miyachi et al. (1997, 2002) have gathered

much data suggesting that the BG is important in learning such

sequences.

Models

Nakahara et al. (2001) formalized Miyachi et al. (1997, 2002)

findings into a CCN model. According to Nakahara et al. (2001),

sequences are learned in both visual and motor coordinates. The

visual sequences are learned by a BG-thalamocortical closed-loop
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linking the anterior striatum with the dorsolateral prefrontal cor-

tex while motor sequences are learned by a BG-thalamocortical

closed-loop linking the posterior striatum with the SMA. Only

the direct pathway through the BG is included in each loop

(see Figure 1), and both the visual and motor loops learn every

sequence in parallel using reinforcement learning. The visual loop

learns faster than the motor loop, and response coordination

between the loops is controlled by the pre-SMA. According to

Nakahara et al. (2001), the visual loop relies on working memory

and is important for rapid acquisition of sequences. However, the

motor loop is more reliable and produces movement more rapidly

after training. As a result, control is gradually transferred from the

visual loop to the motor loop in the Nakahara et al. (2001) model.

The Nakahara et al. (2001) model has been used to account for:

(1) the time course of learning (including single-cell recordings

and lesion studies); (2) the effect of opposite hand use; (3) the

effect of sequence reversal; and (4) the change in brain locus from

early to late sequence production (Nakahara et al., 2001).

Synthesis

The Nakahara et al. (2001) model is interesting for several reasons.

First, it successfully accounts for lesion data, single-cell record-

ings, and behavioral phenomena. In addition, the transition from

a visual loop to a motor loop represents an early attempt at

bridging the gap between cognitive and motor functions of the

BG. However, a recent study by Desmurget and Turner (2010)

challenges the generality of the Nakahara et al. (2001) model.

Specifically, Desmurget and Turner (2010) had monkeys perform

a sequence of visually-cued joystick movements aimed at moving

a cursor into a pre-determined part of a computer screen. After

some training, muscimol was injected into the motor segment of

the GPi to functionally disconnect the BG from the frontal cortex.

The results show that the kinematics of the movements were

impaired, but not sequence knowledge. Desmurget and Turner

(2010) interpreted these results as suggesting that the BG con-

tributes to motor execution in automatic sequence production,

but not to the motor sequencing or the storage of the overlearned

sequence. This result is problematic for the Nakahara et al. (2001)

model.

AUTOMATICITY

Automaticity results from overtraining in a task until perfor-

mance requires little attentional resources and becomes highly

rigid (Helie et al., 2010; Helie and Cousineau, 2011). Many com-

putational models of automaticity development have assigned a

role for the BG.

Models

First, in the Nakahara et al. (2001) model of sequence learning

(above), automaticity in sequence production is characterized by

a gradual transfer from the visual loop (which learns sequences

in visual coordinates) to the motor loop (which learns sequences

in motor coordinates). This corresponds well with the results

of Miyachi et al. (1997, 2002), who showed using single-cell

recordings that task-sensitive cells in early learning are mostly

located in the anterior striatum whereas selective cells in late

sequence production are mostly located in the posterior striatum

(Miyachi et al., 2002). This specialization of the striatum is

further supported by inactivation studies where muscimol (a

GABA agonist) was injected in different parts of the striatum

in early and late sequence production. Well-learned sequence

production was selectively disrupted by muscimol injection in

the middle-posterior putamen while early sequence production

was selectively disrupted by muscimol injection in the anterior

caudate and putamen (Miyachi et al., 1997).

However, a recent study by Desmurget and Turner (2010)

challenges the generality of the Nakahara et al. (2001) model.

Specifically, injecting muscimol into the motor segment of the

GPi to functionally disconnect the BG from the frontal cortex

affects the kinematics of the movements but not sequence knowl-

edge. These results suggest that the BG contributes to motor

execution in automatic sequence production, but not to the

motor sequencing or the storage of the overlearned sequence.

Interestingly, the results of Desmurget and Turner (2010) are

consistent with a neurobiological model of automaticity in per-

ceptual categorization (SPEED) (Ashby et al., 2007). SPEED uses

the procedural system of COVIS (Ashby et al., 1998) (i.e., the

direct pathway of an opened loop between posterior cortex and

premotor areas) but also includes a Hebbian learning mechanism

between posterior cortex and premotor areas. The role of the

BG in SPEED is to learn to produce the correct categorization

responses early in training to ensure that the correct motor plan in

the premotor areas is consistently activated shortly after the visual

representation in associative cortex (using dopamine-mediated

reinforcement learning). This consistent association between

associative and premotor cortical activity triggers Hebbian learn-

ing between associative cortex (stimulus) and the premotor areas

(response), and the direct cortico-cortical connections eventually

become strong enough so that the BG is no longer required to

produce a response. When responding becomes purely cortical,

the skill is said to be “automatic” [note that this is different

from Nakahara et al. (2001), in which the posterior striatum is

still required for automatic sequence production]. SPEED has

been used to simulate single-cell recordings data in many cat-

egorization experiments, as well as human reaction times and

accuracies in categorization (Ashby et al., 2007; Helie and Ashby,

2009).

While the Hikosaka et al. (2000) and SPEED models can

account for how behavior becomes automatic, they cannot

account for how automatic responses are overridden by goal-

directed behavior when needed (e.g., when the stimulus—

response associations change). Chersi et al. (2013) proposed a

computational model of automaticity in instrumental condi-

tioning that can account for the change back to goal-directed

behavior when needed. The Chersi et al. (2013) model includes

the prefrontal cortex (for goal representation), the motor cor-

tex (for action representation), the sensory cortex (for stimulus

representation), the BG (for action selection), and the thalamus

(to relay information between the BG and the motor cortex). Two

sets of connections are plastic: (1) connections from the prefrontal

cortex to the motor cortex (to learn goal—response associations)

and (2) connections from the sensory cortex to the striatum (to

learn stimulus—response associations). According to this model,

the stimulus activates the sensory cortex, which in turn activates a
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goal in prefrontal cortex and action representations in the stria-

tum. For automatic behavior, the striatal activation propagates

through both the direct and indirect pathways (see Figure 1) of

the BG and an action is selected by inhibiting all but one action at

the output level (SNr, but it is functionally equivalent to the GPi

shown in Figure 1). The action that is not inhibited activates the

appropriate response in motor cortex (through the thalamus). For

goal-directed behaviors, the prefrontal activation propagates to

the appropriate action in motor cortex. When an automatic action

needs to be overwritten by a goal-directed behavior, the prefrontal

cortex sends activation to the STN, which hyperpolarizes the SNr

and prevents the BG from controlling the motor response (Chersi

et al., 2013). The model has been successfully used to account for

the development of automaticity in an instrumental conditioning

task and the reversal of stimulus—response associations after

automaticity had developed (Chersi et al., 2013).

Synthesis

The Nakahara et al. (2001) and the Chersi et al. (2013) models

both assign the role of producing automatic behavior to the BG.

However, this “classic” role of the BG in automaticity is difficult

to reconcile with the Desmurget and Turner (2010) data. As an

alternative, SPEED (Ashby et al., 2007) also assigns an important

role to the BG in automaticity, but this role is restricted to train-

ing automatic cortico-cortical projections that can account for

automaticity. Simply put, the BG is required to learn automatic

behaviors, but the BG is no longer required to produce automatic

behaviors once the cortico-cortical connectivity is sufficiently

strong. The SPEED model can account for the Desmurget and

Turner (2010) data, but it includes only the direct pathway of

one loop through the BG. In contrast, the Nakahara et al. (2001)

model includes two loops through the BG (only the direct path-

ways) and the Chersi et al. (2013) model includes both the direct

and indirect pathways, but only one loop through the BG (similar

to SPEED). In addition to being the most biologically detailed,

the Chersi et al. (2013) model is the only reviewed model that can

override automatic behavior using goal-directed behavior. This is

an important function that was not accounted for by the previous

models. However, like the Nakahara et al. (2001) model, the

Chersi et al. (2013) model cannot account for the Desmurget and

Turner (2010) data. To summarize, each one of these models was

designed to account for a different aspect of automatic behavior,

and successfully accounts for the aspect of automaticity for which

it was designed. The next step is to explore how each one of these

candidate models can account for the missing function/data that

was the focus of the other candidate models.

MOTOR FUNCTION

This section describes motor functions that have been attributed

to the BG and that have been simulated using CCN models.

Hence, computational models that focus only on modeling

biological data or motor function (e.g., kinematics) were not

included. Similar to the section reviewing cognitive functions

above, the model descriptions are conceptual, in that implemen-

tation details and formalities are not discussed. The reader is

referred to the cited original papers for details and equations.

Table 1 summarizes the reviewed models along with their respec-

tive components.

REACHING

The BG has been implicated in reaching movements for many

years (for a review, see Bischoff, 1998). Not surprisingly,

PD patients show unmistakable changes in reaching move-

ments, which can be used for diagnostic purposes (Brown and

Jahanshahi, 1996). Simple reaching movements in PD patients

show longer reaction times and movement times than normal

controls. This reduced movement speed seen in PD reaching

is called bradykinesia. From a physiological perspective, a typ-

ical reaching movement under normal conditions consists of a

sequence of agonist-antagonist bursts. In contrast, a PD reaching

movement is generally multi-staged and involves multiple ago-

nist bursts. Furthermore, PD reaching movements have greater

variability of hand position for larger movements (Sheridan and

Flowers, 1990). PD patients also show impairment in sequential

movements (Weiss et al., 1997). For example, during movements

aimed at reaching a glass of water, PD patients exhibit an inordi-

nately long pause between the reaching and retrieval of the glass.

Models

Several computational models relating dopamine deficiencies to

impaired reaching movements have been proposed. One of the

first models of PD reaching movements is the model of Bischoff

(1998). Bischoff (1998) model includes the prefrontal cortex (for

working memory/learning), the SMA (for sequence generation),

the pre-SMA (for sequence preparation), motor cortex (for move-

ment parameters), the thalamus (to filter information from the

BG to cortex), and the BG. The BG model assigns complementary

roles to the direct and indirect pathways (see Figure 1). According

to Bischoff (1998), the role of the direct pathway is to inform

the motor cortex of the movement’s next sensory state, while the

role of the indirect pathway is to inhibit competing movements.

The function of dopamine is to keep the balance between the

two pathways, which is impaired in PD. The Bischoff (1998)

model was used to simulate the reciprocal aiming task, a task

where subjects are asked to alternatively tap a stylus between two

targets as quickly as possible. Reducing the dopamine levels in the

simulation reproduced bradykinesia and the exaggerated pauses

in sequential movements observed in PD.

Magdoom et al. (2011) also proposed a model of the role of

the BG in PD reaching movements. The model is cast in the

framework of reinforcement learning and focuses on interactions

between the motor cortex and the BG. The Magdoom et al.

(2011) model uses the classical interpretations of BG pathways

according to which the direct pathway facilitates movement, (i.e.,

the “Go” pathway), while the indirect pathway inhibits move-

ments (i.e., the “NoGo” pathway). Switching between the two

pathways is thought to be driven by striatal dopamine levels.

However, Magdoom et al. (2011) also deviate from the classical

“Go”/“NoGo” model of the BG by adding an intermediate regime

called the explore regime. The explore regime is used to control

the stochasticity of action selection when the gradient is absent

or too weak to allow for reinforcement learning. The indirect

pathway is proposed to be the substrate supporting the explore
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regime. Simulations show that under dopamine-deficient condi-

tions of PD, the model spends less time in the “Go” regime while

spending more time in the remaining two regimes. These regime

changes were used to account for a variety of features of impaired

reaching movements in PD including movement undershoot (Van

Gemmert et al., 2003), bradykinesia, and increased path variabil-

ity (Sheridan and Flowers, 1990).

Synthesis

Two models that highlight the role of the BG in reaching were

reviewed. The Bischoff (1998) model includes, in addition to

the BG, cortical areas such as prefrontal areas, the SMA and the

pre-SMA. The model captures bradykinesia and abnormal pauses

in sequential movements under Parkinsonian conditions. The

reaching model of Magdoom et al. (2011) also incorporates the

BG and the motor cortex. However, the Magdoom et al. (2011)

model is cast in the framework of reinforcement learning, whereas

there is no learning in the Bischoff (1998) model. Focus on

learning makes the Magdoom et al. (2011) model consistent with

the proposed role of BG in error correction (Lawrence, 2000). As

a result, the Magdoom et al. (2011) model is more general and

is consistent with the view that a wide range of BG functions

can be explained within the framework of reinforcement learning

(Chakravarthy et al., 2010). The compatibility of the Magdoom

et al. (2011) model with other CCN models of BG function may

facilitate integration to achieve a more complete model of BG

function.

HANDWRITING

Handwriting is a fine motor skill. PD patients often exhibit an

impaired form of handwriting, known as micrographia, char-

acterized by reduced letter size, a “kinky” handwriting contour,

and abnormal fluctuations in velocity and acceleration (Teulings

and Stelmach, 1991; Van Gemmert et al., 1999; Gangadhar et al.,

2009). As a result, handwriting features like stroke size, peak

acceleration, and stroke duration have been attributed to the BG

and used for diagnosis of PD (Phillips et al., 1991; Van Gemmert

et al., 2003).

Models

Although models of PD handwriting are scanty, extensive work

has been done on modeling handwriting generation. One of

the earliest insights into modeling handwriting consisted of per-

forming a Fourier-like resolution of handwriting into oscilla-

tory components (Hollerbach, 1981). This notion has led to the

development of oscillatory or spiking neural network models of

handwriting generation that can be trained to produce single

characters (Schomaker, 1991; Kalveram, 1998). However, the

models of Schomaker (1991) and Kalveram (1998) suffered from

the absence of a plausible procedure for initializing the phases

of neural oscillators, a difficulty that was solved in an oscillatory

neural network model of handwriting generation proposed by

Gangadhar et al. (2007).

While the above-described models did not explicitly include

the BG, Gangadhar et al. (2008) combined the Gangadhar et al.

(2007) handwriting generation model with a model of the BG.

Similar to handwriting patterns observed in PD patients, the

Gangadhar et al. (2008) model exhibits micrographia under

conditions of reduced dopamine. Another significant feature of

the model is the role of the dynamics of the STN and the

GPe, which are connected as a loop to produce complex oscil-

lations. Under pathological conditions, the oscillations of the

STN and the GPe in the model are highly correlated, resembling

the correlated neural firing from STN and GPe neurons under

dopamine-deficient conditions observed in real electrophysiol-

ogy experiments (Bergman et al., 1994; Brown et al., 2001).

Under the influence of correlated oscillations of STN and GPe,

the Gangadhar et al. (2008) model produces handwriting with

large fluctuations in velocity in addition to diminutive letter

size.

As another example, Contreras-Vidal and Stelmach (1995)

attached a BG model to the VITE-WRITE model (Bullock et al.,

1993) to simulate PD handwriting. The Contreras-Vidal and

Stelmach (1995) model includes the direct, indirect, and hyperdi-

rect pathways of the BG (see Figure 1), the SMA, and other motor

and premotor areas. The role of the SMA is to read-in the next

motor subprogram from the movement plan, while the role of

the other motor and premotor areas is to produce the movement

selected by the SMA. The role of the BG is to modulate the

dynamics of the formation of movement trajectories (produced

by VITE-WRITE). Reducing dopamine in the model to simulate

PD results in reduced letter size, as observed in PD patients.

Synthesis

Two models of PD handwriting were reviewed above. The model

of Contreras-Vidal and Stelmach (1995) combines the VITE-

WRITE model (Bullock et al., 1993) with a BG model. The essence

of the model consists of showing that dopamine reduction in PD

causes an imbalance in the outputs of the direct and indirect

pathways. Although constructed out of considerably different

modeling components, the model of Gangadhar et al. (2008)

also shows an imbalance in the activations of the direct and

indirect pathways under simulated PD conditions, which causes

a reduction in letter size. In addition, Gangadhar et al. (2008)

also account for the oscillations in STN-GPe interaction. Loss of

complexity in these oscillations under PD conditions were linked

to higher velocity fluctuations and distorted handwriting contour

in PD handwriting. To summarize, the indirect pathway appears

to be critical in accounting for handwriting.

EYE SACCADES

Eye saccades are rapid, darting eye movements that shift the fovea

to points of interest in the visual scene. There is an extensive

cortical and subcortical network that is responsible for saccade

generation, and the BG play a key role among the subcortical sub-

strates for saccade generation (Hikosaka et al., 2000). The influ-

ence of BG on saccades is propagated via the superior colliculus,

a midbrain nucleus with a central role in saccade generation (not

shown in Figure 1). Studies on Parkinsonian monkeys prepared

by MPTP (a neurotoxin used to destroy dopaminergic neurons)

infusion have observed prolonged saccades, longer reaction times,

smaller peak velocities, and smaller amplitudes (Kato et al., 1995).

Smaller peak velocities and smaller amplitudes in PD saccades

may be comparable to bradykinesia and hypometria found in
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PD reaching movements. Similarly, analogous to PD tremor in

extremities, some PD patients exhibit square-wave jerks in visu-

ally guided saccades (Rascol et al., 1991).

Models

Computational modeling literature that specifically focuses on

the role of BG in saccade generation is rather limited. Dominey

and Arbib (1992) proposed a model of the role of the BG in

sequential saccade generation. Their model includes a num-

ber of relevant neural substrates such as the superior collicu-

lus, thalamus, frontal eye fields, and the BG. In the Dominey

and Arbib (1992) model, the BG is used as an indirect link

between the frontal eye field and the superior colliculus, and

its main function is to prevent saccades while a target stimulus

is foveated. As such, only the direct pathway through the BG

is modeled. The Dominey and Arbib (1992) model has been

used to simulate simple saccade data, memory saccade data,

double saccade data, compensatory saccade data, and lesion

data.

Two decades later, Krishnan et al. (2011) proposed a model

of the role of the BG in saccade generation using the principle

of reinforcement learning. Similar to their model of PD reaching

movement (Magdoom et al., 2011), the indirect pathway serves

as an explorer that drives the saccades toward more rewarding

targets. The model was able to successfully simulate two forms

of visual search, namely feature search and conjunction search,

a sequential saccade task, and a directional saccade task. When

PD-related changes were incorporated in the model by reducing

BG output, the model exhibited increased search times (Krishnan

et al., 2011).

Synthesis

Two models of the role of BG in saccade generation were reviewed

above (Dominey and Arbib, 1992; Krishnan et al., 2011). Both

models can account for a range of saccade data in normal and

lesioned/pathological conditions. The anatomical components

incorporated by the two models are also quite similar. However,

there are two main distinguishing features between the two mod-

els. One of these features is anatomical: the Dominey and Arbib

(1992) model does not include the indirect pathway in the BG,

whereas the indirect pathway plays a key role in the Krishnan

et al. (2011) model. The second feature is functional: the Dominey

and Arbib (1992) model does not involve learning, while that of

Krishnan et al. (2011) model is based on reinforcement learning.

These key differences make the Krishnan et al. (2011) model more

biologically and functionally detailed.

GENERAL DISCUSSION

This article presented a review of CCN models of cognitive

and motor functions. The 19 reviewed models were organized

to highlight BG functionality and classified according to six

cognitive functions (i.e., categorization, instrumental condition-

ing, probabilistic learning, working memory, sequence learning,

and automaticity) and three motor functions (i.e., reaching,

handwriting, and visual saccades). On the one hand, some of

the reviewed models are standalone models of specific func-

tions of BG, e.g., the reaching model of Bischoff (1998). On

the other hand, there are models that are specific instances of

a more general learning framework applied to BG function.

COVIS (Ashby et al., 1998, 2007; Ashby and Crossley, 2011),

and the models of Chakravarthy and colleagues (Krishnan et al.,

2011; Magdoom et al., 2011) belong to the second category.

For example, both the models of Krishnan et al. (2011) and

Magdoom et al. (2011) used a nearly identical reinforcement

learning-based approach to account for the specific motor func-

tions of reaching and saccade generation. A review article by

Chakravarthy et al. (2010) proposes that an expanded frame-

work based on reinforcement learning, adapted to BG anatomy

and physiology, can be used to explain a wide variety of BG

functions. Such a proposal needs a more extensive modeling

and experimental investigation for further confirmation. How-

ever, interestingly, CCN models accounting for more than one

function were accounting for more than one cognitive func-

tion or more than one motor function. None of the reviewed

CCN models could account for at least one motor and one

cognitive function simultaneously. This may be a serious limi-

tation as behavioral experiments are beginning to reveal impor-

tant interactions between motor and cognitive processes. Below,

we discuss how cognitive processes might impact motor func-

tion, and point to novel directions for computational modeling

studies.

INTERACTION OF MOTOR AND COGNITIVE PROCESSES

While none of the models included simultaneously accounted

cognitive and motor functions, they all had a cognitive and motor

component. For example, the Ashby and Crossley (2011) model

made a cognitive decision, but it also included premotor areas

associated with the response. It just did not include a detailed

model of the motor response (e.g., how is the left button pressed).

Likewise, the Gangadhar et al. (2007) has to include a cognitive

component specifying what character is to be drawn. However,

the focus is on how the movement is produced. Perhaps the model

that comes closest to integrating motor and cognitive functions is

the model of Guthrie et al. (2013). In this model, both a cognitive

and a motor decision are taken, and the interaction between these

decisions is accounted for. However, this model does not include a

detailed simulation of how the movement is produced. Therefore,

it was only discussed in the context of cognitive function.

One way to explore how cognitive and motor functions

interact is to explore disease states. For example, akinesia

and bradykinesia in PD are arguably associated with BG (and

corticostriatal circuits) dysfunction, while tremor is perhaps

associated with cerebellar, thalamic, and STN abnormalities

(Kassubek et al., 2002; Probst-Cousin et al., 2003; Weinberger

et al., 2009; Zaidel et al., 2009; Mure et al., 2011). For example,

Schillaci et al. (2011) found that PD patients with akinesia and

rigidity as the predominant symptoms have significantly more

widespread dopamine loss in the striatum than PD patients with

tremor as the predominant symptom. Because these different

brain areas (e.g., striatum, cerebellum) are also involved in

different cognitive functions, it is reasonable to hypothesize that

different PD motor symptoms may be associated with different

cognitive impairments. Accordingly, Jankovic et al. (1990) found

that PD patients with predominant tremor are less cognitively
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impaired than patients with bradykinesia. Below we explore some

specific PD motor symptoms and their relation to cognition.

Akinesia

Experimental studies have shown that PD patients with severe

akinesia are generally more cognitively impaired than PD patients

with predominant tremor (Vakil and Herishanu-Naaman, 1998;

Poletti et al., 2011, 2012; Poletti and Bonuccelli, 2013). For

instance, PD patients with severe akinesia and rigidity symptoms

are more impaired than PD patients with severe resting tremor at

working memory tasks (Moustafa et al., 2013). Likewise, studies

have shown that PD patients with tremor are usually less cogni-

tively impaired than PD patients with akinesia or gait dysfunction

(Burn et al., 2006; Lyros et al., 2008; Oh et al., 2009; Domellof

et al., 2011). For example, Vakil and Herishanu-Naaman (1998)

found that tremor-dominant PD patients are less impaired at

procedural learning than akinesia-dominant PD patients.

Most motor models of the BG and corticostriatal circuit

function have been able to explain the occurrence of akinesia

and bradykinesia, but not tremor (Obeso et al., 2008). We sug-

gest that motor performance may rely on cognitive processes in

two different ways: (a) maintenance of motor plans in working

memory while performing a sequence of movements, such as

hand/leg movement, grasping, or reaching (Hayhoe et al., 2002;

Ohbayashi et al., 2003; Piek et al., 2004; Issen and Knill, 2012); or

(b) maintenance of goals in working memory while performing

a motor act, such as maintaining the goal of grasping the cup

in working memory while moving the hands (Batuev, 1989;

McIntyre et al., 1998; Matsumoto et al., 2003). This relationship

between cognitive and motor processes could explain why some

cognitive training programs are effective at treating motor dys-

function in PD patients (Disbrow et al., 2012). Although this is

speculative, computational models are needed to explicitly study

the complex relationship between motor and cognitive processes

in healthy subjects and PD patients.

Freezing of gait

Freezing of gait—paroxysmal cessation of motor output—is a

common symptom in advanced PD (Hoehn and Yahr stage 2+)

(Giladi et al., 1992). Freezing of gait is debilitating since it often

leads to falls and, importantly, is not manageable by common

psychopharmacological medications (Giladi et al., 1992; Matar

et al., 2013).

Research shows that perceptual and cognitive factors play a

role in successful locomotion and the occurrence of freezing

of gait episodes in PD patients (Lewis and Barker, 2009; Nai-

smith et al., 2010; Matar et al., 2013). For example, providing

auditory or visual cues or instructions can often reduce the

occurrence of freezing behavior in PD patients (Lewis and Barker,

2009). Other studies found that walking dysfunction in PD is

related to difficulty in resolving response interference produced

by distractors (Plotnik et al., 2011; Vandenbossche et al., 2011).

Locomotive dysfunction in PD is associated with brain volume

changes (Kostic et al., 2012; Tessitore et al., 2012) and aberrant

neural activity within the prefrontal cortex (Matsui et al., 2005;

Shine et al., 2013), suggesting a role for cognitive processes in

locomotion.

There are currently no computational models that simulate

the role of cognitive processes in the occurrence of freezing

of gait in PD patients. Prior computational models of BG-

cortex interactions have focused on the simulation of cognitive

processes (O’Reilly and Frank, 2006), learning, or simple action

selection in static environments (Gurney et al., 2001) without

considering how cognitive factors might affect motor actions

such as locomotion. Future models should simulate how the

cortex represents multiple inputs (including perceptual and

cognitive) that feed into the BG, which is important for action

selection (e.g., move right, left, forward, etc.). Future models

should also be more dynamical in that they should continuously

receive and update perceptual input from the environment and

produce motor output (step right, left, . . .), which then takes the

model to a new perceptual input, and so forth.

WHAT IS THE ROLE OF THE BASAL GANGLIA IN COGNITIVE AND

MOTOR FUNCTION?

In addition to the current unavailability of CCN models of the

BG that can simultaneously account for cognitive and motor

function, another limitation of the current state of BG modeling

is the absence of consensus on the specific function of the BG in a

given task. For example, many CCN models of working memory

assign a role for the BG, but some models use the BG as a gating

mechanism allowing for thalamo-cortical loops (e.g., Monchi

et al., 2000; Ashby et al., 2005), while others use the BG as a gating

mechanism for cortico-cortical loops (e.g., Frank et al., 2001) or

as the actual maintenance mechanism (Schroll et al., 2012). As

with many other cognitive and motor functions, CCN models

are critical in pinpointing the specific function of the BG in the

cognitive task (e.g., working memory). Computational models

can be simulated to identify the consequences of different design

choices, and these predictions need to be tested empirically.

While models tend to do very well at simulating the function that

motivated the model, it is unclear at this point how the model can

handle other (different) functions. One way to select useful BG

CCN models is to consider generalization capabilities. Towards

this end, general integrative frameworks are most useful. For

example, the reinforcement learning approach of Chakravarthy

and colleagues (Krishnan et al., 2011; Magdoom et al., 2011)

or the COVIS-based approach of Ashby and colleagues (Ashby

et al., 1998; Apicella, 2007; Ashby and Crossley, 2011) are useful

because they have been used to account for functions that were

outside of the original scope of the model. Other models of

cognitive and motor functions need to be generalized to account

for data for which they were not originally designed to build

biological “cognitive architectures”. Frameworks that are already

general should attempt to bridge the gap between CCN models

of cognitive function and CCN models of motor function. This

could be achieved by integrating existing models. For example,

a detailed CCN model of motor function could be added to

the COVIS framework. Likewise, a detailed CCN model of

cognitive function could be added to the reinforcement-learning-

based approach of Chakravarthy and colleagues. While more

data will help in eliminating some of the candidate CCN BG

models, generalization and integration will be required to avoid

overfitting the model to the available data.
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